Search results for: spread reshaping code
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2643

Search results for: spread reshaping code

1713 An Innovative Poly System Theory for the Go-Out of Chinese Culture

Authors: Jianhua Wang, Ying Zhou, Han Guo

Abstract:

Translation underwent culture turn for more than half a century, which brought translation and its studies beyond intra-texts. Different cultures in recent years have developed towards a translation turn, which made a great contribution to relocate national or local cultures being localized to become regional or global cultures. As China grows quickly economically integrating into the world, it becomes urgent to relate China’s story and disseminate the Chinese culture. Due to the weaknesses and drawbacks of different existing cultural translation theories for Chinese culture to go out, a new perspective on translation turn for the go-out of Chinese culture should be drawn to spread better and disseminate Chinese culture to other countries. Based on the existing cultural translation theories, the equivalence of ideology, style of the translator and agency of the support are proposed to draw a new perspective: an innovative poly-system theory for Chinese culture translation.

Keywords: cultural translation theory, Chinese culture, innovative poly system, global cultures

Procedia PDF Downloads 453
1712 Effects of Education on Farmers’ Productivity Outputs in Rural Nigeria

Authors: Thomas Ogilegwu Orohu

Abstract:

This paper highlights the effect of education on farmers’ productivity in rural Nigeria which includes potential to obtain paid employment or generate income through self-help employment using skills learnt in school. The paper emphasizes that education help farmers’ in agro-processing units in production to reduce post harvest wastage. It highlights the benefits of schooling for farmers’ productivity, particularly in terms of efficiency gains and increased farm productivity. As technological innovation spread more widely within the country, the importance of formal education in farm production ought to become more apparent. Education help farmers to improve attitudes, beliefs and habits that may lead to greater willingness to accept risk, adopts innovation, save investment and generally to embrace productive practices. Finally factors affecting farmers’ education and appropriate recommendation were given with the hope that if resolutely implemented would bring the attainment of desired farm education to farmers to improve farm productivity outputs.

Keywords: benefit, education, effect, productivity

Procedia PDF Downloads 320
1711 Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center

Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael

Abstract:

Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.

Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency

Procedia PDF Downloads 36
1710 Applying Arima Data Mining Techniques to ERP to Generate Sales Demand Forecasting: A Case Study

Authors: Ghaleb Y. Abbasi, Israa Abu Rumman

Abstract:

This paper modeled sales history archived from 2012 to 2015 bulked in monthly bins for five products for a medical supply company in Jordan. The sales forecasts and extracted consistent patterns in the sales demand history from the Enterprise Resource Planning (ERP) system were used to predict future forecasting and generate sales demand forecasting using time series analysis statistical technique called Auto Regressive Integrated Moving Average (ARIMA). This was used to model and estimate realistic sales demand patterns and predict future forecasting to decide the best models for five products. Analysis revealed that the current replenishment system indicated inventory overstocking.

Keywords: ARIMA models, sales demand forecasting, time series, R code

Procedia PDF Downloads 386
1709 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection

Authors: Jiandong Lv, Xingang Wang, Cuiling Shao

Abstract:

The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.

Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer

Procedia PDF Downloads 250
1708 The Necessity of Neurolinguistics in Master’s Studies in the English Language Department

Authors: Dielleza Namani, Laureta Kadrijaj-Qerimi

Abstract:

Neurolinguistics studies the relationship between the brain and language. It is a subject not often found in the syllabus of universities in the Balkans but more spread in Europe and especially the United States of America. The purpose of this study is to see what importance this subject has for studies in the English language department. It contains an analysis of other research papers written regarding neurolinguistics, a questionnaire made for professors and deans at private and public universities in Kosovo, and an interview with a neurolinguistics professor in England. Since this subject is not found in the syllabus of any of the universities in Kosovo, the researchers wanted to find out why this happens but, at the same time, provide reasons why they should consider having it in the future. The results showed that for this subject, there had been researching made, but not enough so far, which gives more information and feedback on why it needs to be in the syllabus, and how linguists can use the knowledge they receive from this subject in their workplace. Also, the professors and deans see this subject as too medical for their students to learn and not necessary for their future jobs. Hopefully, in the near future, there will be more research done on why this is important and how English language students can benefit from it.

Keywords: English language department, neurolinguistics, second language acquisition, teaching methods

Procedia PDF Downloads 95
1707 The Efficacy of Government Strategies to Control COVID 19: Evidence from 22 High Covid Fatality Rated Countries

Authors: Imalka Wasana Rathnayaka, Rasheda Khanam, Mohammad Mafizur Rahman

Abstract:

TheCOVID-19 pandemic has created unprecedented challenges to both the health and economic states in countries around the world. This study aims to evaluate the effectiveness of governments' decisions to mitigate the risks of COVID-19 through proposing policy directions to reduce its magnitude. The study is motivated by the ongoing coronavirus outbreaks and comprehensive policy responses taken by countries to mitigate the spread of COVID-19 and reduce death rates. This study contributes to filling the knowledge by exploiting the long-term efficacy of extensive plans of governments. This study employs a Panel autoregressive distributed lag (ARDL) framework. The panels incorporate both a significant number of variables and fortnightly observations from22 countries. The dependent variables adopted in this study are the fortnightly death rates and the rates of the spread of COVID-19. Mortality rate and the rate of infection data were computed based on the number of deaths and the number of new cases per 10000 people.The explanatory variables are fortnightly values of indexes taken to investigate the efficacy of government interventions to control COVID-19. Overall government response index, Stringency index, Containment and health index, and Economic support index were selected as explanatory variables. The study relies on the Oxford COVID-19 Government Measure Tracker (OxCGRT). According to the procedures of ARDL, the study employs (i) the unit root test to check stationarity, (ii) panel cointegration, and (iii) PMG and ARDL estimation techniques. The study shows that the COVID-19 pandemic forced immediate responses from policymakers across the world to mitigate the risks of COVID-19. Of the four types of government policy interventions: (i) Stringency and (ii) Economic Support have been most effective and reveal that facilitating Stringency and financial measures has resulted in a reduction in infection and fatality rates, while (iii) Government responses are positively associated with deaths but negatively with infected cases. Even though this positive relationship is unexpected to some extent in the long run, social distancing norms of the governments have been broken by the public in some countries, and population age demographics would be a possible reason for that result. (iv) Containment and healthcare improvements reduce death rates but increase the infection rates, although the effect has been lower (in absolute value). The model implies that implementation of containment health practices without association with tracing and individual-level quarantine does not work well. The policy implication based on containment health measures must be applied together with targeted, aggressive, and rapid containment to extensively reduce the number of people infected with COVID 19. Furthermore, the results demonstrate that economic support for income and debt relief has been the key to suppressing the rate of COVID-19 infections and fatality rates.

Keywords: COVID-19, infection rate, deaths rate, government response, panel data

Procedia PDF Downloads 76
1706 Changing Arbitrary Data Transmission Period by Using Bluetooth Module on Gas Sensor Node of Arduino Board

Authors: Hiesik Kim, Yong-Beom Kim, Jaheon Gu

Abstract:

Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to rate up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group (SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with a different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as open source hardware, gas sensor, and Bluetooth module and algorithm controlling transmission rate is demonstrated. Experiment controlling transmission rate also is progressed by developing Android application receiving measured data, and controlling this rate is available at the experiment result. It is important that in the future, improvement for communication algorithm be needed because a few error occurs when data is transferred or received.

Keywords: Arduino, Bluetooth, gas sensor, IoT, transmission

Procedia PDF Downloads 279
1705 A Study of Agile Based Approaches to Improve Software Quality

Authors: Gurmeet Kaur

Abstract:

Agile software development methods are being recognized as popular, and efficient approach to the development of software system that has a short delivery period with high quality also that meets customer requirements with zero defect. In agile software development, quality means quality of code where in the quality is maintained through the use of methods or approaches like refactoring, test driven development, behavior driven development, acceptance test driven development, and demand driven development. Software quality is measured in term of metrics such as the number of defects during development of software. Usage of above mentioned methods or approaches, reduces the possibilities of defects in developed software, and hence improve quality. This paper focuses on study of agile based quality methods or approaches for software development that ensures improved quality of software as well as reduced cost, and customer satisfaction.

Keywords: ATDD, BDD, DDD, TDD

Procedia PDF Downloads 174
1704 The Possibility of Content and Language Integrated Learning at Japanese Primary Schools

Authors: Rie Adachi

Abstract:

In Japan, it is required to improve students’ English communicative proficiency and the Education Ministry will start English education for the third grade and upper from year 2020 on. Considering the problems with the educational system, Content and Language Integrated Learning (CLIL) is more appropriate to be employed in elementary schools rather than just introducing English lessons. Effective CLIL takes place in the 4Cs Framework, and different strategies are used in various activities, such as arts and crafts, bodily expression, singing, playing roles, etc. After a CLIL workshop for local teachers focused on the 4Cs, the writer conducted a survey of the 36 participants using a questionnaire and found that they did not know the word CLIL, but seemed to have an interest after attending the workshop. The writer concluded that researchers and practitioners need to spread awareness of the 4Cs framework, to apply CLIL into Japanese educational context, to provide CLIL teacher training program and so on, in order to practice CLIL in Japanese elementary schools and nurture students with a global mindset.

Keywords: CLIL, 4Cs, homeroom teachers, intercultural understanding

Procedia PDF Downloads 170
1703 Private Law, Public Justice: Another Look at Imprisonment for Debt under the Jordanian Law

Authors: Haitham A. Haloush

Abstract:

Debtors' imprisonment in Jordan is a problematic issue since it impinges upon required financial guarantees that are presumably offered by debtors on the one hand, and infringes flagrantly the International Covenant on Civil and Political Rights on the other hand. Jordan lacks regulatory provisions in this respect and debtors' imprisonment is indirectly exercised in Jordan without giving a special legal attention to this concern. From this perspective, this research reviews the available regulations, standard laws and codes of conduct that might guide the implementation of the International Covenant on Civil and Political Rights in the Jordanian context. Furthermore, this article will examine the suitability of the Jordanian legal system in providing sufficient protection for debtors. The author argues that there are serious obstacles in this aspect.

Keywords: the Jordanian civil code, the Jordanian execution law, imprisonment for debt, good faith, the Jordanian constitution, the international covenant on civil and political rights

Procedia PDF Downloads 124
1702 Protective Approach of Mentha Piperita against Cadmium Induced Renotoxicity in Albino Rats

Authors: Baby Tabassum, Priya Bajaj

Abstract:

Cadmium is the second most hazardous heavy metal occurring in both elemental as well as compound forms. It is a highly toxic metal with a very high bio-concentration factor (BCF>100). WHO permitted groundwater cadmium concentration is 0.005 mg/L only, but reality is far away from this limit. A number of natural and anthropogenic industrial activities contribute to the spread of cadmium into the environment. The present study had been designated to find out the renal changes at functional level after cadmium intoxication and protection against these changes offered by Mentha piperata. For the purpose, albino rats were selected as the model organism. Cadmium significantly increases the serum level of serum proteins and nitrogenous wastes showing reduced filtration rate of kidneys. Pretreatment with Mentha piperata leaf extract causes significant retention of these levels to normalcy. These findings conclude that Cadmium exposure affects renal functioning but Mentha could prevent it, proving its nephro-protective potential against heavy metal toxicity.

Keywords: albino rat, cadmium, Mentha piperata, nephrotoxicity

Procedia PDF Downloads 399
1701 India’s Emigration Act: Its Emergence and Changes

Authors: Sudhaveni Naresh

Abstract:

Emigration is not a new phenomenon in India but globalization has reinforced it. India has been a source of emigrants for many countries for a long period. Over 25 million Indian diaspora is spread across the world. Historically, during the British rule indenture labour from India was sent to other colonies. To regulate indentured emigration and to provide a mechanism for emigration, the British India government enacted Emigration Act, 1922. After independence, a majority of unskilled and semi-skilled labour emigrated to Gulf and South-East Asia, whereas white-collar workers preferred North America, Europe and Australia. They are contributing to both the economies in origin and destination. Due to increasing quantum of emigration, the Ministry of Labour enacted Emigration Act, 1983, which deals with the emigration of Indian workers for overseas employment on contractual basis, seeks to safeguard emigrants’ interest and ensures their welfare. The paper explains the reason behind enacting Emigration Act, 1983, and the changes in the form of an Emigration (Amendment) Rules, 2009. This paper examines the current status, effectiveness of the Act and rules.

Keywords: economic growth, emigrants, Emigration Act 1983, remittance

Procedia PDF Downloads 336
1700 Effect of Design Parameters on Porpoising Instability of a High Speed Planing Craft

Authors: Lokeswara Rao P., Naga Venkata Rakesh N., V. Anantha Subramanian

Abstract:

It is important to estimate, predict, and avoid the dynamic instability of high speed planing crafts. It is known that design parameters like relative location of center of gravity with respect to the dynamic lift centre and length to beam ratio of the craft have influence on the tendency to porpoise. This paper analyzes the hydrodynamic performance on the basis of the semi-empirical Savitsky method and also estimates the same by numerical simulations based on Reynolds Averaged Navier Stokes (RANS) equations using a commercial code namely, STAR- CCM+. The paper examines through the same numerical simulation considering dynamic equilibrium, the changing running trim, which results in porpoising. Some interesting results emerge from the study and this leads to early detection of the instability.

Keywords: CFD, planing hull, porpoising, Savitsky method

Procedia PDF Downloads 181
1699 Detection of COVID-19 Cases From X-Ray Images Using Capsule-Based Network

Authors: Donya Ashtiani Haghighi, Amirali Baniasadi

Abstract:

Coronavirus (COVID-19) disease has spread abruptly all over the world since the end of 2019. Computed tomography (CT) scans and X-ray images are used to detect this disease. Different Deep Neural Network (DNN)-based diagnosis solutions have been developed, mainly based on Convolutional Neural Networks (CNNs), to accelerate the identification of COVID-19 cases. However, CNNs lose important information in intermediate layers and require large datasets. In this paper, Capsule Network (CapsNet) is used. Capsule Network performs better than CNNs for small datasets. Accuracy of 0.9885, f1-score of 0.9883, precision of 0.9859, recall of 0.9908, and Area Under the Curve (AUC) of 0.9948 are achieved on the Capsule-based framework with hyperparameter tuning. Moreover, different dropout rates are investigated to decrease overfitting. Accordingly, a dropout rate of 0.1 shows the best results. Finally, we remove one convolution layer and decrease the number of trainable parameters to 146,752, which is a promising result.

Keywords: capsule network, dropout, hyperparameter tuning, classification

Procedia PDF Downloads 79
1698 Investigation of Sick Building Syndrome in Student Dormitories

Authors: Maryam Ghasemi

Abstract:

Sick Building Syndrome (SBS) occurs when residents experience negative health impacts linked to their time spent there. Nevertheless, no single symptom or cause can be identified immediately. The confinement may be concentrated or localized in a particular room or area or spread throughout the building. Often, predicaments appear when a building is determined or maintained differently from its original design or intended operating procedures or purposes. Sometimes indoor air problems result from poor building design and occupant activities. This is a case study about a problem that is still going on in the Alfam Studios Dormitory. The goal is to find out if there is a case of SBS at the Eastern Mediterranean University (EMU). The methodology used in this article is both qualitative and quantitative. The information was gathered through a review of the literature, observations, a questionnaire, and interviews with the students' neighbors. There are twelve studio rooms, and in each studio room, two students live. The questionnaires and discussions took place with all twenty-four students. This study showed that in the dormitory design, ventilation and lighting in terms of sick building syndrome might not have been considered.

Keywords: sick building, lighting, ventilation, illness, humidity

Procedia PDF Downloads 78
1697 Study on Network-Based Technology for Detecting Potentially Malicious Websites

Authors: Byung-Ik Kim, Hong-Koo Kang, Tae-Jin Lee, Hae-Ryong Park

Abstract:

Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.

Keywords: Advanced Persistent Threat (APT), malware, network security, network packet, exploit kits

Procedia PDF Downloads 369
1696 Real Time Detection, Prediction and Reconstitution of Rain Drops

Authors: R. Burahee, B. Chassinat, T. de Laclos, A. Dépée, A. Sastim

Abstract:

The purpose of this paper is to propose a solution to detect, predict and reconstitute rain drops in real time – during the night – using an embedded material with an infrared camera. To prevent the system from needing too high hardware resources, simple models are considered in a powerful image treatment algorithm reducing considerably calculation time in OpenCV software. Using a smart model – drops will be matched thanks to a process running through two consecutive pictures for implementing a sophisticated tracking system. With this system drops computed trajectory gives information for predicting their future location. Thanks to this technique, treatment part can be reduced. The hardware system composed by a Raspberry Pi is optimized to host efficiently this code for real time execution.

Keywords: reconstitution, prediction, detection, rain drop, real time, raspberry, infrared

Procedia PDF Downloads 420
1695 The Road to Abolition of Death Penalty in China: With the Perspective of the Ninth Amendment

Authors: Huang Gui

Abstract:

This paper supplies some possible approaches of the death penalty reform in China basic on the analyzing the reformation conducted by the Ninth Amendment. There now are 46 crimes punishable by death, and this penalty still plays a significant role in the criminal punishment structure. In order to abolish entirely the death penalty in Penal Code, the legislature of China should gradually abolish the death penalty for the nonviolent crimes and then for the nonlethal violent crimes and finally for the lethal violent crimes. In the case where the death penalty has not yet been abolished completely, increasing the applicable conditions of suspension of execution of death penalty and reducing the scope of applicable objects (elderly defendant and other kinds of special objects) of death penalty would be an effective road to control and limit the use of death penalty in judicial practice.

Keywords: death penalty, the eighth amendment, the ninth amendment, suspension of execution of death, immediate execution of death, China

Procedia PDF Downloads 481
1694 Reliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks

Authors: Mohamed Adnan Landolsi, Ali F. Almutairi

Abstract:

The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultra-wideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response (CIR) using parameters related to the “skewness” of the CIR and its root mean square (RMS) delay spread. A log-normal fit is presented for the probability densities of the CIR parameters. Simulation results show that different environments (residential, office, outdoor, etc.) have measurable differences in their CIR parameters’ statistics, which is then exploited in determining the nature of the propagation channels. Correct LOS/NLOS channel identification rates exceeding 90% are shown to be achievable for most types of environments. Additional improvement is also obtained by combining both CIR skewness and RMS delay statistics.

Keywords: UWB, propagation, LOS, NLOS, identification

Procedia PDF Downloads 253
1693 Relation between Tourism and Health: Case Study AIDS in Lebanon

Authors: Viana Hassan

Abstract:

Each year, 600 million tourists travelled abroad to practice several types of tourism. Nowadays, whatever is the type of tourism practiced it considered as a real public health problem which can contribute the spread of several diseases such as AIDS, H1N1, NDM1 With regard to HIV/AIDS, Lebanon is always considered as a low HIV prevalence country. However, the potential risks associated with the mobility of the population, migration and tourism. The total number of cases reported by the ministry of health since 1989 until the end of 2011 is of 1455 cases, with an average of 85 new cases per year over the last three years. The main reason of the increased number is Travel and migration which represent 50% of the risks reported by cumulative cases. Given the interest of this kind of epidemic it would be interesting to study the Evolution of HIV/ AIDS and its relation with travel and tourism The main aim of this research is to study in general the relation between tourism and health, more specific to understand the relation between Tourism and AIDS, the problem of the transmission of HIV in Lebanon, the ways of contamination and the countries in which these people are contaminated.

Keywords: AIDS, tourism, health, Lebanon

Procedia PDF Downloads 337
1692 The Power of Earned Media: Exploring the Key Success of Love Destiny, Thai Smash Hit Television Drama

Authors: Wilaiwan Jongwilaikasaem, Phatteera Sarakornborrirak

Abstract:

While Thai television producers feel anxious about digital disruption, Love Destiny, Thai television period drama became smash hit in Thailand in 2018. Audience throughout the country not only watched the drama both offline and online but also spread the content of the drama on social media and followed cultural trends from the protagonist. Thus, the main purpose of this article is to examine the secret behind the success of Love Destiny. Data were collected from content analysis and in-depth interview. The result shows that the key success of the drama is from earned media phenomenon from the audience and marketers’ engagement. As Love Destiny has full-flavored content with traditional challenged plot, delicate production, and presentation of Thainess in a positive and tangible way; audience and marketers are enthusiastic about building up the popular trend of Love Destiny on social media and also coming back home to watch televisions when the drama was on the air.

Keywords: Thai drama, earned media, Love Destiny, television

Procedia PDF Downloads 177
1691 Predicting Shortage of Hospital Beds during COVID-19 Pandemic in United States

Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi

Abstract:

World-wide spread of coronavirus grows the concern about planning for the excess demand of hospital services in response to COVID-19 pandemic. The surge in the hospital services demand beyond the current capacity leads to shortage of ICU beds and ventilators in some parts of US. In this study, we forecast the required number of hospital beds and possible shortage of beds in US during COVID-19 pandemic to be used in the planning and hospitalization of new cases. In this paper, we used a data on COVID-19 deaths and patients’ hospitalization besides the data on hospital capacities and utilization in US from publicly available sources and national government websites. we used a novel ensemble modelling of deep learning networks, based on stacking different linear and non-linear layers to predict the shortage in hospital beds. The results showed that our proposed approach can predict the excess hospital beds demand very well and this can be helpful in developing strategies and plans to mitigate this gap.

Keywords: COVID-19, deep learning, ensembled models, hospital capacity planning

Procedia PDF Downloads 158
1690 Variation of Clinical Manifestations of COVID-19 Over Time of Pandemic

Authors: Mahdi Asghari Ozma, Fatemeh Aghamohammadzadeh, Mahin Ahangar Oskouee

Abstract:

In late 2019, the people of the world were involved with a new infection by the coronavirus, named SARS-COV-2 (COVID-19), which disseminated around the world quickly. This infection has the ability to affect various systems of the body, including respiratory, gastrointestinal, urinary, and hematology, which can be transmitted by various body samples in different ways. To control this fast-transmitted infection by preventing its transmission to other people, rapid diagnosis is vital, which can be done by examining the patient's clinical symptoms and also using various serological, molecular, and radiological methods. Symptoms caused by COVID-19 in patients include fever, cough, sore throat, headache, fatigue, shortness of breath, loss of taste or smell, skin rash, myalgia, and conjunctivitis. These clinical features were appearing gradually in different time periods from the onset of the infection, and patients showed varied and new symptoms at different times, which show the variety of symptoms over time during the spread of the infection.

Keywords: COVID-19, diagnosis, symptom, variation, novel coronavirus

Procedia PDF Downloads 89
1689 Visualizing Class Metrics and Object Calls for Software Systems

Authors: Mohammad Alnabhan, Awni Hammouri, Mustafa Hammad, Anas Al-Badareen, Omamah Al-Thnebat

Abstract:

Software visualization is one of the main techniques used to simplify the presentation of software systems and enhance their understandability. It is used to present the software system in a visual manner using simple, clear and meaningful symbols. This study proposes a new 2D software visualization approach. In this approach, each class is represented by rectangle, the name of the class placed above the rectangle, the size of class (Line of Code) represented by the height of the rectangle. The methods and the attributes are represented by circles and triangles respectively. The relationships among classes correspond to arrows. The proposed visualization approach was evaluated in terms of applicability and efficiency. Results have confirmed successful implementation of the proposed approach, and its ability to provide a simple and effective graphical presentation of extracted software components and properties.

Keywords: software visualization, software metrics, calling relationships, 2D graphs

Procedia PDF Downloads 205
1688 Persistent Ribosomal In-Frame Mis-Translation of Stop Codons as Amino Acids in Multiple Open Reading Frames of a Human Long Non-Coding RNA

Authors: Leonard Lipovich, Pattaraporn Thepsuwan, Anton-Scott Goustin, Juan Cai, Donghong Ju, James B. Brown

Abstract:

Two-thirds of human genes do not encode any known proteins. Aside from long non-coding RNA (lncRNA) genes with recently-discovered functions, the ~40,000 non-protein-coding human genes remain poorly understood, and a role for their transcripts as de-facto unconventional messenger RNAs has not been formally excluded. Ribosome profiling (Riboseq) predicts translational potential, but without independent evidence of proteins from lncRNA open reading frames (ORFs), ribosome binding of lncRNAs does not prove translation. Previously, we mass-spectrometrically documented translation of specific lncRNAs in human K562 and GM12878 cells. We now examined lncRNA translation in human MCF7 cells, integrating strand-specific Illumina RNAseq, Riboseq, and deep mass spectrometry in biological quadruplicates performed at two core facilities (BGI, China; City of Hope, USA). We excluded known-protein matches. UCSC Genome Browser-assisted manual annotation of imperfect (tryptic-digest-peptides)-to-(lncRNA-three-frame-translations) alignments revealed three peptides hypothetically explicable by 'stop-to-nonstop' in-frame replacement of stop codons by amino acids in two ORFs of the lncRNA MMP24-AS1. To search for this phenomenon genomewide, we designed and implemented a novel pipeline, matching tryptic-digest spectra to wildcard-instead-of-stop versions of repeat-masked, six-frame, whole-genome translations. Along with singleton putative stop-to-nonstop events affecting four other lncRNAs, we identified 24 additional peptides with stop-to-nonstop in-frame substitutions from multiple positive-strand MMP24-AS1 ORFs. Only UAG and UGA, never UAA, stop codons were impacted. All MMP24-AS1-matching spectra met the same significance thresholds as high-confidence known-protein signatures. Targeted resequencing of MMP24-AS1 genomic DNA and cDNA from the same samples did not reveal any mutations, polymorphisms, or sequencing-detectable RNA editing. This unprecedented apparent gene-specific violation of the genetic code highlights the importance of matching peptides to whole-genome, not known-genes-only, ORFs in mass-spectrometry workflows, and suggests a new mechanism enhancing the combinatorial complexity of the proteome. Funding: NIH Director’s New Innovator Award 1DP2-CA196375 to LL.

Keywords: genetic code, lncRNA, long non-coding RNA, mass spectrometry, proteogenomics, ribo-seq, ribosome, RNAseq

Procedia PDF Downloads 235
1687 Bayesian Structural Identification with Systematic Uncertainty Using Multiple Responses

Authors: André Jesus, Yanjie Zhu, Irwanda Laory

Abstract:

Structural health monitoring is one of the most promising technologies concerning aversion of structural risk and economic savings. Analysts often have to deal with a considerable variety of uncertainties that arise during a monitoring process. Namely the widespread application of numerical models (model-based) is accompanied by a widespread concern about quantifying the uncertainties prevailing in their use. Some of these uncertainties are related with the deterministic nature of the model (code uncertainty) others with the variability of its inputs (parameter uncertainty) and the discrepancy between a model/experiment (systematic uncertainty). The actual process always exhibits a random behaviour (observation error) even when conditions are set identically (residual variation). Bayesian inference assumes that parameters of a model are random variables with an associated PDF, which can be inferred from experimental data. However in many Bayesian methods the determination of systematic uncertainty can be problematic. In this work systematic uncertainty is associated with a discrepancy function. The numerical model and discrepancy function are approximated by Gaussian processes (surrogate model). Finally, to avoid the computational burden of a fully Bayesian approach the parameters that characterise the Gaussian processes were estimated in a four stage process (modular Bayesian approach). The proposed methodology has been successfully applied on fields such as geoscience, biomedics, particle physics but never on the SHM context. This approach considerably reduces the computational burden; although the extent of the considered uncertainties is lower (second order effects are neglected). To successfully identify the considered uncertainties this formulation was extended to consider multiple responses. The efficiency of the algorithm has been tested on a small scale aluminium bridge structure, subjected to a thermal expansion due to infrared heaters. Comparison of its performance with responses measured at different points of the structure and associated degrees of identifiability is also carried out. A numerical FEM model of the structure was developed and the stiffness from its supports is considered as a parameter to calibrate. Results show that the modular Bayesian approach performed best when responses of the same type had the lowest spatial correlation. Based on previous literature, using different types of responses (strain, acceleration, and displacement) should also improve the identifiability problem. Uncertainties due to parametric variability, observation error, residual variability, code variability and systematic uncertainty were all recovered. For this example the algorithm performance was stable and considerably quicker than Bayesian methods that account for the full extent of uncertainties. Future research with real-life examples is required to fully access the advantages and limitations of the proposed methodology.

Keywords: bayesian, calibration, numerical model, system identification, systematic uncertainty, Gaussian process

Procedia PDF Downloads 327
1686 AIPM:An Integrator and Pull Request Matching Model in Github

Authors: Zhifang Liao, Yanbing Li, Li Xu, Yan Zhang, Xiaoping Fan, Jinsong Wu

Abstract:

Pull Request (PR) is the primary method for code contributions from the external contributors in Github. PR review is an essential part of open source software developments for maintaining the quality of software. Matching a new PR of an appropriate integrator will make the PR review more effective. However, PR and integrator matching are now organized manually in Github. To reduce this cost, we presented an AIPM model to predict highly relevant integrator of incoming PRs. AIPM uses topic model to extract topics from the PRs, and builds a one-to-one correspondence between topics and integrators. Then, AIPM finds the most suitable integrator according to the maximum entry of the topic-document distribution. On average, AIPM can reach a precision of 60%, and even in some projects, can reach a precision of 80%.

Keywords: pull Request, integrator matching, Github, open source project, topic model

Procedia PDF Downloads 302
1685 Object-Oriented Program Comprehension by Identification of Software Components and Their Connexions

Authors: Abdelhak-Djamel Seriai, Selim Kebir, Allaoua Chaoui

Abstract:

During the last decades, object oriented program- ming has been massively used to build large-scale systems. However, evolution and maintenance of such systems become a laborious task because of the lack of object oriented programming to offer a precise view of the functional building blocks of the system. This lack is caused by the fine granularity of classes and objects. In this paper, we use a post object-oriented technology namely software components, to propose an approach based on the identification of the functional building blocks of an object oriented system by analyzing its source code. These functional blocks are specified as software components and the result is a multi-layer component based software architecture.

Keywords: software comprehension, software component, object oriented, software architecture, reverse engineering

Procedia PDF Downloads 416
1684 Numerical Simulation of Two-Dimensional Porous Cylinder Flow in In-Line Arrangement

Authors: Hamad Alhajeri, Abdulrahman Almutairi, A. H. Alenezi, M. H. Alhajeri, Ayedh Alajmi

Abstract:

The flow around three porous cylinders in inline arrangement is investigated in this paper computationally using the commercial code FLUENT. The arrangement generally operates with the dirty gases passing through the porous cylinders, the particulate material being deposited on the outside of the cylinders. However, in a combined cycle power plant, filtration is required to allow the hot exhaust gases to be fed to a turbine without causing any physical damage to the turbine blades. Three cylinder elements are placed in a two-dimensional rectangle duct with fixed face velocity and varying the velocity ratio between the approach and face velocity. Particle trajectories are obtained for a number of particle diameters and different inlet (approach) velocity to face filtration velocity ratios to investigate the behavior of particles around the cylinder.

Keywords: porous cylinders, CFD, fluid flow, filtration

Procedia PDF Downloads 484