Search results for: residence time
17515 Attenuation Scale Calibration of an Optical Time Domain Reflectometer
Authors: Osama Terra, Hatem Hussein
Abstract:
Calibration of Optical Time Domain Reflectometer (OTDR) is crucial for the accurate determination of loss budget for long optical fiber links. In this paper, the calibration of the attenuation scale of an OTDR using two different techniques is discussed and implemented. The first technique is the external modulation method (EM). A setup is proposed to calibrate an OTDR over a dynamic range of around 15 dB based on the EM method. Afterwards, the OTDR is calibrated using two standard reference fibers (SRF). Both SRF are calibrated using cut-back technique; one of them is calibrated at our home institute (the National Institute of Standards – NIS) while the other at the National Physical Laboratory (NPL) of the United Kingdom to confirm our results. In addition, the parameters contributing the calibration uncertainty are thoroughly investigated. Although the EM method has several advantages over the SRF method, the uncertainties in the SRF method is found to surpass that of the EM method.Keywords: optical time domain reflectometer, fiber attenuation measurement, OTDR calibration, external source method
Procedia PDF Downloads 46717514 Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach
Authors: Charline David, Alexandre Blondin Massé, Arnaud Zinflou
Abstract:
In 2016, Clements, Hurn, and Li proposed a multiple equation time series approach for the short-term load forecasting, reporting an average mean absolute percentage error (MAPE) of 1.36% on an 11-years dataset for the Queensland region in Australia. We present an adaptation of their model to the electrical power load consumption for the whole Quebec province in Canada. More precisely, we take into account two additional meteorological variables — cloudiness and wind speed — on top of temperature, as well as the use of multiple meteorological measurements taken at different locations on the territory. We also consider other minor improvements. Our final model shows an average MAPE score of 1:79% over an 8-years dataset.Keywords: short-term load forecasting, special days, time series, multiple equations, parallelization, clustering
Procedia PDF Downloads 10717513 Assessing Project Performance through Work Sampling and Earned Value Analysis
Authors: Shobha Ramalingam
Abstract:
The majority of the infrastructure projects are affected by time overrun, resulting in project delays and subsequently cost overruns. Time overrun may vary from a few months to as high as five or more years, placing the project viability at risk. One of the probable reasons noted in the literature for this outcome in projects is due to poor productivity. Researchers contend that productivity in construction has only marginally increased over the years. While studies in the literature have extensively focused on time and cost parameters in projects, there are limited studies that integrate time and cost with productivity to assess project performance. To this end, a study was conducted to understand the project delay factors concerning cost, time and productivity. A case-study approach was adopted to collect rich data from a nuclear power plant project site for two months through observation, interviews and document review. The data were analyzed using three different approaches for a comprehensive understanding. Foremost, a root-cause analysis was performed on the data using Ishikawa’s fish-bone diagram technique to identify the various factors impacting the delay concerning time. Based on it, a questionnaire was designed and circulated to concerned executives, including project engineers and contractors to determine the frequency of occurrence of the delay, which was then compiled and presented to the management for a possible solution to mitigate. Second, a productivity analysis was performed on select activities, including rebar bending and concreting through a time-motion study to analyze product performance. Third, data on cost of construction for three years allowed analyzing the cost performance using earned value management technique. All three techniques allowed to systematically and comprehensively identify the key factors that deter project performance and productivity loss in the construction of the nuclear power plant project. The findings showed that improper planning and coordination between multiple trades, concurrent operations, improper workforce and material management, fatigue due to overtime were some of the key factors that led to delays and poor productivity. The findings are expected to act as a stepping stone for further research and have implications for practitioners.Keywords: earned value analysis, time performance, project costs, project delays, construction productivity
Procedia PDF Downloads 10017512 Importance of Road Infrastructure on the People Live in Afghanistan
Authors: Mursal Ibrahim Zada
Abstract:
Since 2001, the new Government of Afghanistan has put the improvement of transportation in rural area as one of the key issues for the development of the country. Since then, about 17,000 km of rural roads were planned to be constructed in the entire country. This thesis will assess the impact of rural road improvement on the development of rural communities and housing facilities. Specifically, this study aims to show that the improved road has leads to an improvement in the community, which in turn has a positive effect on the lives of rural people. To obtain this goal, a questionnaire survey was conducted in March 2015 to the residents of four different districts of Kabul province, Afghanistan, where the road projects were constructed in recent years. The collected data was analyzed using on a regression analysis considering different factors such as land price, waiting time at the station, travel time to the city, number of employed family members and so on. Three models are developed to demonstrate the relationship between different factors before and after the improvement of rural transportation. The results showed a significant change positively in the value of land price and housing facilities, travel time to the city, waiting time at the station, number of employed family members, fare per trip to the city, and number of trips to the city per month after the pavement of the road. The results indicated that the improvement of transportation has a significant impact on the improvement of the community in different parts, especially on the price of land and housing facility and travel time to the city.Keywords: accessibility, Afghanistan, housing facility, rural area, land price
Procedia PDF Downloads 26817511 Impact of Digitized Monitoring & Evaluation System in Technical Vocational Education and Training
Authors: Abdul Ghani Rajput
Abstract:
Although monitoring and evaluation concept adopted by Technical Vocational Education and Training (TVET) organization to track the progress over the continuous interval of time based on planned interventions and subsequently, evaluating it for the impact, quality assurance and sustainability. In digital world, TVET providers are giving preference to have real time information to do monitoring of training activities. Identifying the benefits and challenges of digitized monitoring & evaluation real time information system has not been sufficiently tackled in this date. This research paper looks at the impact of digitized M&E in TVET sector by analyzing two case studies and describe the benefits and challenges of using digitized M&E system. Finally, digitized M&E have been identified as carriers for high potential of TVET sector.Keywords: digitized M&E, innovation, quality assurance, TVET
Procedia PDF Downloads 23417510 Short-Term Operation Planning for Energy Management of Exhibition Hall
Authors: Yooncheol Lee, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
This paper deals with the establishment of a short-term operational plan for an air conditioner for efficient energy management of exhibition hall. The short-term operational plan is composed of a time series of operational schedules, which we have searched using genetic algorithms. Establishing operational schedule should be considered the future trends of the variables affecting the exhibition hall environment. To reflect continuously changing factors such as external temperature and occupant, short-term operational plans should be updated in real time. But it takes too much time to evaluate a short-term operational plan using EnergyPlus, a building emulation tool. For that reason, it is difficult to update the operational plan in real time. To evaluate the short-term operational plan, we designed prediction models based on machine learning with fast evaluation speed. This model, which was created by learning the past operational data, is accurate and fast. The collection of operational data and the verification of operational plans were made using EnergyPlus. Experimental results show that the proposed method can save energy compared to the reactive control method.Keywords: exhibition hall, energy management, predictive model, simulation-based optimization
Procedia PDF Downloads 34117509 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction
Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé
Abstract:
One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.Keywords: input variable disposition, machine learning, optimization, performance, time series prediction
Procedia PDF Downloads 11317508 A Multi-Release Software Reliability Growth Models Incorporating Imperfect Debugging and Change-Point under the Simulated Testing Environment and Software Release Time
Authors: Sujit Kumar Pradhan, Anil Kumar, Vijay Kumar
Abstract:
The testing process of the software during the software development time is a crucial step as it makes the software more efficient and dependable. To estimate software’s reliability through the mean value function, many software reliability growth models (SRGMs) were developed under the assumption that operating and testing environments are the same. Practically, it is not true because when the software works in a natural field environment, the reliability of the software differs. This article discussed an SRGM comprising change-point and imperfect debugging in a simulated testing environment. Later on, we extended it in a multi-release direction. Initially, the software was released to the market with few features. According to the market’s demand, the software company upgraded the current version by adding new features as time passed. Therefore, we have proposed a generalized multi-release SRGM where change-point and imperfect debugging concepts have been addressed in a simulated testing environment. The failure-increasing rate concept has been adopted to determine the change point for each software release. Based on nine goodness-of-fit criteria, the proposed model is validated on two real datasets. The results demonstrate that the proposed model fits the datasets better. We have also discussed the optimal release time of the software through a cost model by assuming that the testing and debugging costs are time-dependent.Keywords: software reliability growth models, non-homogeneous Poisson process, multi-release software, mean value function, change-point, environmental factors
Procedia PDF Downloads 7717507 A Multi-Criteria Model for Scheduling of Stochastic Single Machine Problem with Outsourcing and Solving It through Application of Chance Constrained
Authors: Homa Ghave, Parmis Shahmaleki
Abstract:
This paper presents a new multi-criteria stochastic mathematical model for a single machine scheduling with outsourcing allowed. There are multiple jobs processing in batch. For each batch, all of job or a quantity of it can be outsourced. The jobs have stochastic processing time and lead time and deterministic due dates arrive randomly. Because of the stochastic inherent of processing time and lead time, we use the chance constrained programming for modeling the problem. First, the problem is formulated in form of stochastic programming and then prepared in a form of deterministic mixed integer linear programming. The objectives are considered in the model to minimize the maximum tardiness and outsourcing cost simultaneously. Several procedures have been developed to deal with the multi-criteria problem. In this paper, we utilize the concept of satisfaction functions to increases the manager’s preference. The proposed approach is tested on instances where the random variables are normally distributed.Keywords: single machine scheduling, multi-criteria mathematical model, outsourcing strategy, uncertain lead times and processing times, chance constrained programming, satisfaction function
Procedia PDF Downloads 26717506 The Effect of Extremely Low Frequency Magnetic Field on Rats Brain
Authors: Omar Abdalla, Abdelfatah Ahmed, Ahmed Mustafa, Abdelazem Eldouma
Abstract:
The purpose of this study is evaluating the effect of extremely low frequency magnetic field on Waster rats brain. The number of rats used in this study were 25, which were divided into five groups, each group containing five rats as follows: Group 1: The control group which was not exposed to energized field; Group 2: Rats were exposed to a magnetic field with an intensity of 0.6 mT (2 hours/day); Group 3: Rats were exposed to a magnetic field of 1.2 mT (2 hours/day); Group4: Rats were exposed to a magnetic field of 1.8 mT (2 hours/day); Group 5: Rats were exposed to a magnetic field of 2.4 mT (2 hours/day) and all groups were exposed for seven days, by designing a maze and calculating the time average for arriving to the decoy at special conditions. We found the time average before exposure for the all groups was G2=330 s, G3=172 s, G4=500 s and G5=174 s, respectively. We exposed all groups to ELF-MF and measured the time and we found: G2=465 s, G3=388 s, G4=501 s, and G5=442 s. It was observed that the time average increased directly with field strength. Histological samples of frontal lop of brain for all groups were taken and we found lesion, atrophy, empty vacuoles and disorder choroid plexus at frontal lope of brain. And finally we observed the disorder of choroid plexus in histological results and Alzheimer's symptoms increase when the magnetic field increases.Keywords: nonionizing radiation, biophysics, magnetic field, shrinkage
Procedia PDF Downloads 54817505 Effect of Preloading on Long-Term Settlement of Closed Landfills: A Numerical Analysis
Authors: Mehrnaz Alibeikloo, Hajar Share Isfahani, Hadi Khabbaz
Abstract:
In recent years, by developing cities and increasing population, reconstructing on closed landfill sites in some regions is unavoidable. Long-term settlement is one of the major concerns associated with reconstruction on landfills after closure. The purpose of this research is evaluating the effect of preloading in various patterns of height and time on long-term settlements of closed landfills. In this regard, five scenarios of surcharge from 1 to 3 m high within 3, 4.5 and 6 months of preloading time have been modeled using PLAXIS 2D software. Moreover, the numerical results have been compared to those obtained from analytical methods, and a good agreement has been achieved. The findings indicate that there is a linear relationship between settlement and surcharge height. Although, long-term settlement decreased by applying a longer and higher preloading, the time of preloading was found to be a more effective factor compared to preloading height.Keywords: preloading, long-term settlement, landfill, PLAXIS 2D
Procedia PDF Downloads 20017504 Kemmer Oscillator in Cosmic String Background
Authors: N. Messai, A. Boumali
Abstract:
In this work, we aim to solve the two dimensional Kemmer equation including Dirac oscillator interaction term, in the background space-time generated by a cosmic string which is submitted to an uniform magnetic field. Eigenfunctions and eigenvalues of our problem have been found and the influence of the cosmic string space-time on the energy spectrum has been analyzed.Keywords: Kemmer oscillator, cosmic string, Dirac oscillator, eigenfunctions
Procedia PDF Downloads 58717503 Effects of Boiling Temperature and Time on Colour, Texture and Sensory Properties of Volutharpa ampullacea perryi Meat
Authors: Xianbao Sun, Jinlong Zhao, Shudong He, Jing Li
Abstract:
Volutharpa ampullacea perryi is a high-protein marine shellfish. However, few data are available on the effects of boiling temperatures and time on quality of the meat. In this study, colour, texture and sensory characteristics of Volutharpa ampullacea perryi meat during the boiling cooking processes (75-100 °C, 5-60 min) were investigated by colors analysis, texture profile analysis (TPA), scanning electron microscope (SEM) and sensory evaluation. The ratio of cooking loss gradually increased with the increase of temperature and time. The colour of meat became lighter and more yellower from 85 °C to 95 °C in a short time (5-20 min), but it became brown after a 30 min treatment. TPA results showed that the Volutharpa ampullacea perryi meat were more firm and less cohesive after a higher temperature (95-100 °C) treatment even in a short period (5-15 min). Based on the SEM analysis, it was easily found that the myofibrils structure was destroyed at a higher temperature (85-100 °C). Sensory data revealed that the meat cooked at 85-90 °C in 10-20 min showed higher scores in overall acceptance, as well as color, hardness and taste. Based on these results, it could be constructed that Volutharpa ampullacea perryi meat should be heated on a suitable condition (such as 85 °C 15 min or 90 °C 10 min) in the boiling cooking to be ensure a better acceptability.Keywords: Volutharpa ampullacea perryi meat, boiling cooking, colour, sensory, texture
Procedia PDF Downloads 28517502 Improving 99mTc-tetrofosmin Myocardial Perfusion Images by Time Subtraction Technique
Authors: Yasuyuki Takahashi, Hayato Ishimura, Masao Miyagawa, Teruhito Mochizuki
Abstract:
Quantitative measurement of myocardium perfusion is possible with single photon emission computed tomography (SPECT) using a semiconductor detector. However, accumulation of 99mTc-tetrofosmin in the liver may make it difficult to assess that accurately in the inferior myocardium. Our idea is to reduce the high accumulation in the liver by using dynamic SPECT imaging and a technique called time subtraction. We evaluated the performance of a new SPECT system with a cadmium-zinc-telluride solid-state semi- conductor detector (Discovery NM 530c; GE Healthcare). Our system acquired list-mode raw data over 10 minutes for a typical patient. From the data, ten SPECT images were reconstructed, one for every minute of acquired data. Reconstruction with the semiconductor detector was based on an implementation of a 3-D iterative Bayesian reconstruction algorithm. We studied 20 patients with coronary artery disease (mean age 75.4 ± 12.1 years; range 42-86; 16 males and 4 females). In each subject, 259 MBq of 99mTc-tetrofosmin was injected intravenously. We performed both a phantom and a clinical study using dynamic SPECT. An approximation to a liver-only image is obtained by reconstructing an image from the early projections during which time the liver accumulation dominates (0.5~2.5 minutes SPECT image-5~10 minutes SPECT image). The extracted liver-only image is then subtracted from a later SPECT image that shows both the liver and the myocardial uptake (5~10 minutes SPECT image-liver-only image). The time subtraction of liver was possible in both a phantom and the clinical study. The visualization of the inferior myocardium was improved. In past reports, higher accumulation in the myocardium due to the overlap of the liver is un-diagnosable. Using our time subtraction method, the image quality of the 99mTc-tetorofosmin myocardial SPECT image is considerably improved.Keywords: 99mTc-tetrofosmin, dynamic SPECT, time subtraction, semiconductor detector
Procedia PDF Downloads 33917501 Two Efficient Heuristic Algorithms for the Integrated Production Planning and Warehouse Layout Problem
Authors: Mohammad Pourmohammadi Fallah, Maziar Salahi
Abstract:
In the literature, a mixed-integer linear programming model for the integrated production planning and warehouse layout problem is proposed. To solve the model, the authors proposed a Lagrangian relax-and-fix heuristic that takes a significant amount of time to stop with gaps above 5$\%$ for large-scale instances. Here, we present two heuristic algorithms to solve the problem. In the first one, we use a greedy approach by allocating warehouse locations with less reservation costs and also less transportation costs from the production area to locations and from locations to the output point to items with higher demands. Then a smaller model is solved. In the second heuristic, first, we sort items in descending order according to the fraction of the sum of the demands for that item in the time horizon plus the maximum demand for that item in the time horizon and the sum of all its demands in the time horizon. Then we categorize the sorted items into groups of 3, 4, or 5 and solve a small-scale optimization problem for each group, hoping to improve the solution of the first heuristic. Our preliminary numerical results show the effectiveness of the proposed heuristics.Keywords: capacitated lot-sizing, warehouse layout, mixed-integer linear programming, heuristics algorithm
Procedia PDF Downloads 20017500 Quick Covering Machine for Grain Drying Pavement
Authors: Fatima S. Rodriguez, Victorino T. Taylan, Manolito C. Bulaong, Helen F. Gavino, Vitaliana U. Malamug
Abstract:
In sundrying, the quality of the grains are greatly reduced when paddy grains were caught by the rain unsacked and unstored resulting to reduced profit. The objectives of this study were to design and fabricate a quick covering machine for grain drying pavement to test and evaluate the operating characteristics of the machine according to its deployment speed, recovery speed, deployment time, recovery time, power consumption, aesthetics of laminated sack, conducting partial budget, and cost curve analysis. The machine was able to cover the grains in a 12.8 m x 22.5 m grain drying pavement at an average time of 17.13 s. It consumed 0 .53 W-hr for the deployment and recovery of the cover. The machine entailed an investment cost of $1,344.40 and an annual cost charge of $647.32. Moreover, the savings per year using the quick covering machine was $101.83.Keywords: quick, covering machine, grain, drying pavement
Procedia PDF Downloads 37817499 Combination between Intrusion Systems and Honeypots
Authors: Majed Sanan, Mohammad Rammal, Wassim Rammal
Abstract:
Today, security is a major concern. Intrusion Detection, Prevention Systems and Honeypot can be used to moderate attacks. Many researchers have proposed to use many IDSs ((Intrusion Detection System) time to time. Some of these IDS’s combine their features of two or more IDSs which are called Hybrid Intrusion Detection Systems. Most of the researchers combine the features of Signature based detection methodology and Anomaly based detection methodology. For a signature based IDS, if an attacker attacks slowly and in organized way, the attack may go undetected through the IDS, as signatures include factors based on duration of the events but the actions of attacker do not match. Sometimes, for an unknown attack there is no signature updated or an attacker attack in the mean time when the database is updating. Thus, signature-based IDS fail to detect unknown attacks. Anomaly based IDS suffer from many false-positive readings. So there is a need to hybridize those IDS which can overcome the shortcomings of each other. In this paper we propose a new approach to IDS (Intrusion Detection System) which is more efficient than the traditional IDS (Intrusion Detection System). The IDS is based on Honeypot Technology and Anomaly based Detection Methodology. We have designed Architecture for the IDS in a packet tracer and then implemented it in real time. We have discussed experimental results performed: both the Honeypot and Anomaly based IDS have some shortcomings but if we hybridized these two technologies, the newly proposed Hybrid Intrusion Detection System (HIDS) is capable enough to overcome these shortcomings with much enhanced performance. In this paper, we present a modified Hybrid Intrusion Detection System (HIDS) that combines the positive features of two different detection methodologies - Honeypot methodology and anomaly based intrusion detection methodology. In the experiment, we ran both the Intrusion Detection System individually first and then together and recorded the data from time to time. From the data we can conclude that the resulting IDS are much better in detecting intrusions from the existing IDSs.Keywords: security, intrusion detection, intrusion prevention, honeypot, anomaly-based detection, signature-based detection, cloud computing, kfsensor
Procedia PDF Downloads 38817498 A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process
Authors: Kai Chen, Shuguang Cui, Feng Yin
Abstract:
Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP.Keywords: Gaussian process, spectral mixture, non-stationary, convolution
Procedia PDF Downloads 20017497 Analysis of Silicon Controlled Rectifier-Based Electrostatic Discharge Protection Circuits with Electrical Characteristics for the 5V Power Clamp
Authors: Jun-Geol Park, Kyoung-Il Do, Min-Ju Kwon, Kyung-Hyun Park, Yong-Seo Koo
Abstract:
This paper analyzed the SCR (Silicon Controlled Rectifier)-based ESD (Electrostatic Discharge) protection circuits with the turn-on time characteristics. The structures are the LVTSCR (Low Voltage Triggered SCR), the ZTSCR (Zener Triggered SCR) and the PTSCR (P-Substrate Triggered SCR). The three structures are for the 5V power clamp. In general, the structures with the low trigger voltage structure can have the fast turn-on characteristics than other structures. All the ESD protection circuits have the low trigger voltage by using the N+ bridge region of LVTSCR, by using the zener diode structure of ZTSCR, by increasing the trigger current of PTSCR. The simulation for the comparison with the turn-on time was conducted by the Synopsys TCAD simulator. As the simulation results, the LVTSCR has the turn-on time of 2.8 ns, ZTSCR of 2.1 ns and the PTSCR of 2.4 ns. The HBM simulation results, however, show that the PTSCR is the more robust structure of 430K in HBM 8kV standard than 450K of LVTSCR and 495K of ZTSCR. Therefore the PTSCR is the most effective ESD protection circuit for the 5V power clamp.Keywords: ESD, SCR, turn-on time, trigger voltage, power clamp
Procedia PDF Downloads 34917496 Mapping the Pain Trajectory of Breast Cancer Survivors: Results from a Retrospective Chart Review
Authors: Wilfred Elliam
Abstract:
Background: Pain is a prevalent and debilitating symptom among breast cancer patients, impacting their quality of life and overall well-being. The experience of pain in this population is multifaceted, influenced by a combination of disease-related factors, treatment side effects, and individual characteristics. Despite advancements in cancer treatment and pain management, many breast cancer patients continue to suffer from chronic pain, which can persist long after the completion of treatment. Understanding the progression of pain in breast cancer patients over time and identifying its correlates is crucial for effective pain management and supportive care strategies. The purpose of this research is to understand the patterns and progression of pain experienced by breast cancer survivors over time. Methods: Data were collected from breast cancer patients at Hartford Hospital at four time points: baseline, 3, 6 and 12 weeks. Key variables measured include pain, body mass index (BMI), fatigue, musculoskeletal pain, sleep disturbance, and demographic variables (age, employment status, cancer stage, and ethnicity). Binomial generalized linear mixed models were used to examine changes in pain and symptoms over time. Results: A total of 100 breast cancer patients aged 18 years old were included in the analysis. We found that the effect of time on pain (p = 0.024), musculoskeletal pain (p= <0.001), fatigue (p= <0.001), and sleep disturbance (p-value = 0.013) were statistically significant with pain progression in breast cancer patients. Patients using aromatase inhibitors have worse fatigue (<0.05) and musculoskeletal pain (<0.001) compared to patients with Tamoxifen. Patients who are obese (<0.001) and overweight (<0.001) are more likely to report pain compared to patients with normal weight. Conclusion: This study revealed the complex interplay between various factors such as time, pain, sleep disturbance in breast cancer patient. Specifically, pain, musculoskeletal pain, sleep disturbance, fatigue exhibited significant changes across the measured time points, indicating a dynamic pain progression in these patients. The findings provide a foundation for future research and targeted interventions aimed at improving pain in breast cancer patient outcomes.Keywords: breast cancer, chronic pain, pain management, quality of life
Procedia PDF Downloads 3617495 Solving Directional Overcurrent Relay Coordination Problem Using Artificial Bees Colony
Authors: M. H. Hussain, I. Musirin, A. F. Abidin, S. R. A. Rahim
Abstract:
This paper presents the implementation of Artificial Bees Colony (ABC) algorithm in solving Directional OverCurrent Relays (DOCRs) coordination problem for near-end faults occurring in fixed network topology. The coordination optimization of DOCRs is formulated as linear programming (LP) problem. The objective function is introduced to minimize the operating time of the associated relay which depends on the time multiplier setting. The proposed technique is to taken as a technique for comparison purpose in order to highlight its superiority. The proposed algorithms have been tested successfully on 8 bus test system. The simulation results demonstrated that the ABC algorithm which has been proved to have good search ability is capable in dealing with constraint optimization problems.Keywords: artificial bees colony, directional overcurrent relay coordination problem, relay settings, time multiplier setting
Procedia PDF Downloads 33217494 Increase Productivity by Using Work Measurement Technique
Authors: Mohammed Al Awadh
Abstract:
In order for businesses to take advantage of the opportunities for expanded production and trade that have arisen as a result of globalization and increased levels of competition, productivity growth is required. The number of available sources is decreasing with each passing day, which results in an ever-increasing demand. In response to this, there will be an increased demand placed on firms to improve the efficiency with which they utilise their resources. As a scientific method, work and time research techniques have been employed in all manufacturing and service industries to raise the efficiency of use of the factors of production. These approaches focus on work and time. The goal of this research is to improve the productivity of a manufacturing industry's production system by looking at ways to measure work. The work cycles were broken down into more manageable and quantifiable components. On the observation sheet, these aspects were noted down. The operation has been properly analysed in order to identify value-added and non-value-added components, and observations have been recorded for each of the different trails.Keywords: time study, work measurement, work study, efficiency
Procedia PDF Downloads 7417493 Social Value of Travel Time Savings in Sub-Saharan Africa
Authors: Richard Sogah
Abstract:
The significance of transport infrastructure investments for economic growth and development has been central to the World Bank’s strategy for poverty reduction. Among the conventional surface transport infrastructures, road infrastructure is significant in facilitating the movement of human capital goods and services. When transport projects (i.e., roads, super-highways) are implemented, they come along with some negative social values (costs), such as increased noise and air pollution for local residents living near these facilities, displaced individuals, etc. However, these projects also facilitate better utilization of existing capital stock and generate other observable benefits that can be easily quantified. For example, the improvement or construction of roads creates employment, stimulates revenue generation (toll), reduces vehicle operating costs and accidents, increases accessibility, trade expansion, safety improvement, etc. Aside from these benefits, travel time savings (TTSs) which are the major economic benefits of urban and inter-urban transport projects and therefore integral in the economic assessment of transport projects, are often overlooked and omitted when estimating the benefits of transport projects, especially in developing countries. The absence of current and reliable domestic travel data and the inability of replicated models from the developed world to capture the actual value of travel time savings due to the large unemployment, underemployment, and other labor-induced distortions has contributed to the failure to assign value to travel time savings when estimating the benefits of transport schemes in developing countries. This omission of the value of travel time savings from the benefits of transport projects in developing countries poses problems for investors and stakeholders to either accept or dismiss projects based on schemes that favor reduced vehicular operating costs and other parameters rather than those that ease congestion, increase average speed, facilitate walking and handloading, and thus save travel time. Given the complex reality in the estimation of the value of travel time savings and the presence of widespread informal labour activities in Sub-Saharan Africa, we construct a “nationally ranked distribution of time values” and estimate the value of travel time savings based on the area beneath the distribution. Compared with other approaches, our method captures both formal sector workers and individuals/people who work outside the formal sector and hence changes in their time allocation occur in the informal economy and household production activities. The dataset for the estimations is sourced from the World Bank, the International Labour Organization, etc.Keywords: road infrastructure, transport projects, travel time savings, congestion, Sub-Sahara Africa
Procedia PDF Downloads 11417492 Multishape Task Scheduling Algorithms for Real Time Micro-Controller Based Application
Authors: Ankur Jain, W. Wilfred Godfrey
Abstract:
Embedded systems are usually microcontroller-based systems that represent a class of reliable and dependable dedicated computer systems designed for specific purposes. Micro-controllers are used in most electronic devices in an endless variety of ways. Some micro-controller-based embedded systems are required to respond to external events in the shortest possible time and such systems are known as real-time embedded systems. So in multitasking system there is a need of task Scheduling,there are various scheduling algorithms like Fixed priority Scheduling(FPS),Earliest deadline first(EDF), Rate Monotonic(RM), Deadline Monotonic(DM),etc have been researched. In this Report various conventional algorithms have been reviewed and analyzed, these algorithms consists of single shape task, A new Multishape scheduling algorithms has been proposed and implemented and analyzed.Keywords: dm, edf, embedded systems, fixed priority, microcontroller, rtos, rm, scheduling algorithms
Procedia PDF Downloads 40717491 Rapid Identification and Diagnosis of the Pathogenic Leptospiras through Comparison among Culture, PCR and Real Time PCR Techniques from Samples of Human and Mouse Feces
Authors: S. Rostampour Yasouri, M. Ghane, M. Doudi
Abstract:
Leptospirosis is one of the most significant infectious and zoonotic diseases along with global spreading. This disease is causative agent of economoic losses and human fatalities in various countries, including Northern provinces of Iran. The aim of this research is to identify and compare the rapid diagnostic techniques of pathogenic leptospiras, considering the multifacetedness of the disease from a clinical manifestation and premature death of patients. In the spring and summer of 2020-2022, 25 fecal samples were collected from suspected leptospirosis patients and 25 Fecal samples from mice residing in the rice fields and factories in Tonekabon city. Samples were prepared by centrifugation and passing through membrane filters. Culture technique was used in liquid and solid EMJH media during one month of incubation at 30°C. Then, the media were examined microscopically. DNA extraction was conducted by extraction Kit. Diagnosis of leptospiras was enforced by PCR and Real time PCR (SYBR Green) techniques using lipL32 specific primer. Out of the patients, 11 samples (44%) and 8 samples (32%) were determined to be pathogenic Leptospira by Real time PCR and PCR technique, respectively. Out of the mice, 9 Samples (36%) and 3 samples (12%) were determined to be pathogenic Leptospira by the mentioned techniques, respectively. Although the culture technique is considered to be the gold standard technique, but due to the slow growth of pathogenic Leptospira and lack of colony formation of some species, it is not a fast technique. Real time PCR allowed rapid diagnosis with much higher accuracy compared to PCR because PCR could not completely identify samples with lower microbial load.Keywords: culture, pathogenic leptospiras, PCR, real time PCR
Procedia PDF Downloads 8917490 Analytical Solutions of Time Space Fractional, Advection-Dispersion and Whitham-Broer-Kaup Equations
Authors: Muhammad Danish Khan, Imran Naeem, Mudassar Imran
Abstract:
In this article, we study time-space Fractional Advection-Dispersion (FADE) equation and time-space Fractional Whitham-Broer-Kaup (FWBK) equation that have a significant role in hydrology. We introduce suitable transformations to convert fractional order derivatives to integer order derivatives and as a result these equations transform into Partial Differential Equations (PDEs). Then the Lie symmetries and corresponding optimal systems of the resulting PDEs are derived. The symmetry reductions and exact independent solutions based on optimal system are investigated which constitute the exact solutions of original fractional differential equations.Keywords: modified Riemann-Liouville fractional derivative, lie-symmetries, optimal system, invariant solutions
Procedia PDF Downloads 43917489 Message Authentication Scheme for Vehicular Ad-Hoc Networks under Sparse RSUs Environment
Authors: Wen Shyong Hsieh, Chih Hsueh Lin
Abstract:
In this paper, we combine the concepts of chameleon hash function (CHF) and identification based cryptography (IBC) to build a message authentication environment for VANET under sparse RSUs. Based on the CHF, TA keeps two common secrets that will be embedded to all identities to be as the evidence of mutual trusting. TA will issue one original identity to every RSU and vehicle. An identity contains one public ID and one private key. The public ID, includes three components: pseudonym, random key, and public key, is used to present one entity and can be verified to be a legal one. The private key is used to claim the ownership of the public ID. Based on the concept of IBC, without any negotiating process, a CHF pairing key multiplied by one private key and other’s public key will be used for mutually trusting and to be utilized as the session key of secure communicating between RSUs and vehicles. To help the vehicles to do message authenticating, the RSUs are assigned to response the vehicle’s temple identity request using two short time secretes that are broadcasted by TA. To light the loading of request information, one day is divided into M time slots. At every time slot, TA will broadcast two short time secretes to all valid RSUs for that time slot. Any RSU can response the temple identity request from legal vehicles. With the collected announcement of public IDs from the neighbor vehicles, a vehicle can set up its neighboring set, which includes the information about the neighbor vehicle’s temple public ID and temple CHF pairing key that can be derived by the private key and neighbor’s public key and will be used to do message authenticating or secure communicating without the help of RSU.Keywords: Internet of Vehicles (IOV), Vehicular Ad-hoc Networks (VANETs), Chameleon Hash Function (CHF), message authentication
Procedia PDF Downloads 39217488 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models
Authors: Ramin Vafadary, Maryam Khanbaghi
Abstract:
Forecasting electricity load is important for various purposes like planning, operation, and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet, and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria, namely, the mean absolute error and root mean square error. The National Renewable Energy Laboratory (NREL) residential energy consumption data is used to train the models. The results of this study show that the SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts, we can improve the robustness of the models for 24 hours ahead of electricity load forecasting.Keywords: bagging, Fbprophet, Holt-Winters, LSTM, load forecast, SARIMA, TensorFlow probability, time series
Procedia PDF Downloads 10017487 MB-Slam: A Slam Framework for Construction Monitoring
Authors: Mojtaba Noghabaei, Khashayar Asadi, Kevin Han
Abstract:
Simultaneous Localization and Mapping (SLAM) technology has recently attracted the attention of construction companies for real-time performance monitoring. To effectively use SLAM for construction performance monitoring, SLAM results should be registered to a Building Information Models (BIM). Registring SLAM and BIM can provide essential insights for construction managers to identify construction deficiencies in real-time and ultimately reduce rework. Also, registering SLAM to BIM in real-time can boost the accuracy of SLAM since SLAM can use features from both images and 3d models. However, registering SLAM with the BIM in real-time is a challenge. In this study, a novel SLAM platform named Model-Based SLAM (MB-SLAM) is proposed, which not only provides automated registration of SLAM and BIM but also improves the localization accuracy of the SLAM system in real-time. This framework improves the accuracy of SLAM by aligning perspective features such as depth, vanishing points, and vanishing lines from the BIM to the SLAM system. This framework extracts depth features from a monocular camera’s image and improves the localization accuracy of the SLAM system through a real-time iterative process. Initially, SLAM can be used to calculate a rough camera pose for each keyframe. In the next step, each SLAM video sequence keyframe is registered to the BIM in real-time by aligning the keyframe’s perspective with the equivalent BIM view. The alignment method is based on perspective detection that estimates vanishing lines and points by detecting straight edges on images. This process will generate the associated BIM views from the keyframes' views. The calculated poses are later improved during a real-time gradient descent-based iteration method. Two case studies were presented to validate MB-SLAM. The validation process demonstrated promising results and accurately registered SLAM to BIM and significantly improved the SLAM’s localization accuracy. Besides, MB-SLAM achieved real-time performance in both indoor and outdoor environments. The proposed method can fully automate past studies and generate as-built models that are aligned with BIM. The main contribution of this study is a SLAM framework for both research and commercial usage, which aims to monitor construction progress and performance in a unified framework. Through this platform, users can improve the accuracy of the SLAM by providing a rough 3D model of the environment. MB-SLAM further boosts the application to practical usage of the SLAM.Keywords: perspective alignment, progress monitoring, slam, stereo matching.
Procedia PDF Downloads 23117486 An Approach for Determining and Reducing Vehicle Turnaround Time for Outbound Logistics by Using Critical Path Method
Authors: Prajakta M. Wazat, D. N. Raut
Abstract:
The study consists of a fast moving consumer goods (FMCG) beverage company wherein a portion of the supply chain which deals with outbound logistics is taken for improvement in order to reduce its logistics cost by using critical path method (CPM) method. Logistics is a major portion of the supply chain where customers are not willing to pay as it adds cost to product without adding value. In this study, it is necessary to ensure that products are delivered to clients at the right time while preserving high-quality standards from the beginning to the end of the supply chain. CPM is a logical sequencing method where in the most efficient route is achieved by arranging the series of events. CPM enables to identify a critical factor in order to minimize the delays and interruption by providing a feasible solution.Keywords: FMCG, supply chain, outbound logistics, vehicle turnaround time, critical path method, cost reduction
Procedia PDF Downloads 169