Search results for: network user rules
6772 An Entropy Based Novel Algorithm for Internal Attack Detection in Wireless Sensor Network
Authors: Muhammad R. Ahmed, Mohammed Aseeri
Abstract:
Wireless Sensor Network (WSN) consists of low-cost and multi functional resources constrain nodes that communicate at short distances through wireless links. It is open media and underpinned by an application driven technology for information gathering and processing. It can be used for many different applications range from military implementation in the battlefield, environmental monitoring, health sector as well as emergency response of surveillance. With its nature and application scenario, security of WSN had drawn a great attention. It is known to be valuable to variety of attacks for the construction of nodes and distributed network infrastructure. In order to ensure its functionality especially in malicious environments, security mechanisms are essential. Malicious or internal attacker has gained prominence and poses the most challenging attacks to WSN. Many works have been done to secure WSN from internal attacks but most of it relay on either training data set or predefined threshold. Without a fixed security infrastructure a WSN needs to find the internal attacks is a challenge. In this paper we present an internal attack detection method based on maximum entropy model. The final experimental works showed that the proposed algorithm does work well at the designed level.Keywords: internal attack, wireless sensor network, network security, entropy
Procedia PDF Downloads 4556771 Interactive Winding Geometry Design of Power Transformers
Authors: Paffrath Meinhard, Zhou Yayun, Guo Yiqing, Ertl Harald
Abstract:
Winding geometry design is an important part of power transformer electrical design. Conventionally, the winding geometry is designed manually, which is a time-consuming job because it involves many iteration steps in order to meet all cost, manufacturing and electrical requirements. Here a method is presented which automatically generates the winding geometry for given user parameters and allows the user to interactively set and change parameters. To achieve this goal, the winding problem is transferred to a mixed integer nonlinear optimization problem. The relevant geometrical design parameters are defined as optimization variables. The cost and other requirements are modeled as constraints. For the solution, a stochastic ant colony optimization algorithm is applied. It is well-known, that an optimizer can get stuck in a local minimum. For the winding problem, we present efficient strategies to come out of local minima, furthermore a reduced variable search range helps to accelerate the solution process. Numerical examples show that the optimization result is delivered within seconds such that the user can interactively change the variable search area and constraints to improve the design.Keywords: ant colony optimization, mixed integer nonlinear programming, power transformer, winding design
Procedia PDF Downloads 3806770 Human Computer Interaction Using Computer Vision and Speech Processing
Authors: Shreyansh Jain Jeetmal, Shobith P. Chadaga, Shreyas H. Srinivas
Abstract:
Internet of Things (IoT) is seen as the next major step in the ongoing revolution in the Information Age. It is predicted that in the near future billions of embedded devices will be communicating with each other to perform a plethora of tasks with or without human intervention. One of the major ongoing hotbed of research activity in IoT is Human Computer Interaction (HCI). HCI is used to facilitate communication between an intelligent system and a user. An intelligent system typically comprises of a system consisting of various sensors, actuators and embedded controllers which communicate with each other to monitor data collected from the environment. Communication by the user to the system is typically done using voice. One of the major ongoing applications of HCI is in home automation as a personal assistant. The prime objective of our project is to implement a use case of HCI for home automation. Our system is designed to detect and recognize the users and personalize the appliances in the house according to their individual preferences. Our HCI system is also capable of speaking with the user when certain commands are spoken such as searching on the web for information and controlling appliances. Our system can also monitor the environment in the house such as air quality and gas leakages for added safety.Keywords: human computer interaction, internet of things, computer vision, sensor networks, speech to text, text to speech, android
Procedia PDF Downloads 3626769 CFD Simulation for Development of Cooling System in a Cooking Oven
Authors: V. Jagadish, Mathiyalagan V.
Abstract:
Prediction of Door Touch temperature of a Cooking Oven using CFD Simulation. Self-Clean cycle is carried out in Cooking ovens to convert food spilling into ashes which makes cleaning easy. During this cycle cavity of oven is exposed to high temperature around 460 C. At this operating point the user may prone to touch the Door surfaces, Side Shield, Control Panel. To prevent heat experienced by user, cooling system is built in oven. The most effective cooling system is developed with existing design constraints through CFD Simulations. Cross Flow fan is used for Cooling system due to its cost effectiveness and it can give more air flow with low pressure drop.Keywords: CFD, MRF, RBM, RANS, new product development, simulation, thermal analysis
Procedia PDF Downloads 1606768 Analyzing the Impact of Global Financial Crisis on Interconnectedness of Asian Stock Markets Using Network Science
Authors: Jitendra Aswani
Abstract:
In the first section of this study, impact of Global Financial Crisis (GFC) on the synchronization of fourteen Asian Stock Markets (ASM’s) of countries like Hong Kong, India, Thailand, Singapore, Taiwan, Pakistan, Bangladesh, South Korea, Malaysia, Indonesia, Japan, China, Philippines and Sri Lanka, has been analysed using the network science and its metrics like degree of node, clustering coefficient and network density. Then in the second section of this study by introducing the US stock market in existing network and developing a Minimum Spanning Tree (MST) spread of crisis from the US stock market to Asian Stock Markets (ASM) has been explained. Data used for this study is adjusted the closing price of these indices from 6th January, 2000 to 15th September, 2013 which further divided into three sub-periods: Pre, during and post-crisis. Using network analysis, it is found that Asian stock markets become more interdependent during the crisis than pre and post crisis, and also Hong Kong, India, South Korea and Japan are systemic important stock markets in the Asian region. Therefore, failure or shock to any of these systemic important stock markets can cause contagion to another stock market of this region. This study is useful for global investors’ in portfolio management especially during the crisis period and also for policy makers in formulating the financial regulation norms by knowing the connections between the stock markets and how the system of these stock markets changes in crisis period and after that.Keywords: global financial crisis, Asian stock markets, network science, Kruskal algorithm
Procedia PDF Downloads 4246767 A t-SNE and UMAP Based Neural Network Image Classification Algorithm
Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang
Abstract:
Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.Keywords: t-SNE, UMAP, fashion MNIST, neural networks
Procedia PDF Downloads 1986766 Knowledge Representation Based on Interval Type-2 CFCM Clustering
Authors: Lee Myung-Won, Kwak Keun-Chang
Abstract:
This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation
Procedia PDF Downloads 3226765 Competitivity in Procurement Multi-Unit Discrete Clock Auctions: An Experimental Investigation
Authors: Despina Yiakoumi, Agathe Rouaix
Abstract:
Laboratory experiments were run to investigate the impact of different design characteristics of the auctions, which have been implemented to procure capacity in the UK’s reformed electricity markets. The experiment studies competition among bidders in procurement multi-unit discrete descending clock auctions under different feedback policies and pricing rules. Theory indicates that feedback policy in combination with the two common pricing rules; last-accepted bid (LAB) and first-rejected bid (FRB), could affect significantly the auction outcome. Two information feedback policies regarding the bidding prices of the participants are considered; with feedback and without feedback. With feedback, after each round participants are informed of the number of items still in the auction and without feedback, after each round participants have no information about the aggregate supply. Under LAB, winning bidders receive the amount of the highest successful bid and under the FRB the winning bidders receive the lowest unsuccessful bid. Based on the theoretical predictions of the alternative auction designs, it was decided to run three treatments. First treatment considers LAB with feedback; second treatment studies LAB without feedback; third treatment investigates FRB without feedback. Theoretical predictions of the game showed that under FRB, the alternative feedback policies are indifferent to the auction outcome. Preliminary results indicate that LAB with feedback and FRB without feedback achieve on average higher clearing prices in comparison to the LAB treatment without feedback. However, the clearing prices under LAB with feedback and FRB without feedback are on average lower compared to the theoretical predictions. Although under LAB without feedback theory predicts the clearing price will drop to the competitive equilibrium, experimental results indicate that participants could still engage in cooperative behavior and drive up the price of the auction. It is showed, both theoretically and experimentally, that the pricing rules and the feedback policy, affect the bidding competitiveness of the auction by providing opportunities to participants to engage in cooperative behavior and exercise market power. LAB without feedback seems to be less vulnerable to market power opportunities compared to the alternative auction designs. This could be an argument for the use of LAB pricing rule in combination with limited feedback in the UK capacity market in an attempt to improve affordability for consumers.Keywords: descending clock auctions, experiments, feedback policy, market design, multi-unit auctions, pricing rules, procurement auctions
Procedia PDF Downloads 2986764 Optimization of Vertical Axis Wind Turbine Based on Artificial Neural Network
Authors: Mohammed Affanuddin H. Siddique, Jayesh S. Shukla, Chetan B. Meshram
Abstract:
The neural networks are one of the power tools of machine learning. After the invention of perceptron in early 1980's, the neural networks and its application have grown rapidly. Neural networks are a technique originally developed for pattern investigation. The structure of a neural network consists of neurons connected through synapse. Here, we have investigated the different algorithms and cost function reduction techniques for optimization of vertical axis wind turbine (VAWT) rotor blades. The aerodynamic force coefficients corresponding to the airfoils are stored in a database along with the airfoil coordinates. A forward propagation neural network is created with the input as aerodynamic coefficients and output as the airfoil co-ordinates. In the proposed algorithm, the hidden layer is incorporated into cost function having linear and non-linear error terms. In this article, it is observed that the ANNs (Artificial Neural Network) can be used for the VAWT’s optimization.Keywords: VAWT, ANN, optimization, inverse design
Procedia PDF Downloads 3246763 Designing a Low Power Consumption Mote in Wireless Sensor Network
Authors: Saidi Nabiha, Khaled Zaatouri, Walid Fajraoui, Tahar Ezzeddine
Abstract:
The market of Wireless Sensor Network WSN has a great potential and development opportunities. Researchers are focusing on optimization in many fields like efficient deployment and routing protocols. In this article, we will concentrate on energy efficiency for WSN because WSN nodes are habitually deployed in severe No Man’s Land with batteries are not rechargeable, so reducing energy consumption represents an important challenge to extend the life of the network. We will present the design of new WSN mote based on ultra low power STM32L microcontrollers and the ZIGBEE transceiver CC2520. We will compare it to existent motes and we will conclude that our mote is promising in energy consumption.Keywords: component, WSN mote, power consumption, STM32L, sensors, CC2520
Procedia PDF Downloads 5736762 RASPE: Risk Advisory Smart System for Pipeline Projects in Egypt
Authors: Nael Y. Zabel, Maged E. Georgy, Moheeb E. Ibrahim
Abstract:
A knowledge-based expert system with the acronym RASPE is developed as an application tool to help decision makers in construction companies make informed decisions about managing risks in pipeline construction projects. Choosing to use expert systems from all available artificial intelligence techniques is due to the fact that an expert system is more suited to representing a domain’s knowledge and the reasoning behind domain-specific decisions. The knowledge-based expert system can capture the knowledge in the form of conditional rules which represent various project scenarios and potential risk mitigation/response actions. The built knowledge in RASPE is utilized through the underlying inference engine that allows the firing of rules relevant to a project scenario into consideration. This paper provides an overview of the knowledge acquisition process and goes about describing the knowledge structure which is divided up into four major modules. The paper shows one module in full detail for illustration purposes and concludes with insightful remarks.Keywords: expert system, knowledge management, pipeline projects, risk mismanagement
Procedia PDF Downloads 3116761 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms
Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary
Abstract:
In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy
Procedia PDF Downloads 1556760 An Improved Discrete Version of Teaching–Learning-Based Optimization for Supply Chain Network Design
Authors: Ehsan Yadegari
Abstract:
While there are several metaheuristics and exact approaches to solving the Supply Chain Network Design (SCND) problem, there still remains an unfilled gap in using the Teaching-Learning-Based Optimization (TLBO) algorithm. The algorithm has demonstrated desirable results with problems with complicated combinational optimization. The present study introduces a Discrete Self-Study TLBO (DSS-TLBO) with priority-based solution representation that can solve a supply chain network configuration model to lower the total expenses of establishing facilities and the flow of materials. The network features four layers, namely suppliers, plants, distribution centers (DCs), and customer zones. It is designed to meet the customer’s demand through transporting the material between layers of network and providing facilities in the best economic Potential locations. To have a higher quality of the solution and increase the speed of TLBO, a distinct operator was introduced that ensures self-adaptation (self-study) in the algorithm based on the four types of local search. In addition, while TLBO is used in continuous solution representation and priority-based solution representation is discrete, a few modifications were added to the algorithm to remove the solutions that are infeasible. As shown by the results of experiments, the superiority of DSS-TLBO compared to pure TLBO, genetic algorithm (GA) and firefly Algorithm (FA) was established.Keywords: supply chain network design, teaching–learning-based optimization, improved metaheuristics, discrete solution representation
Procedia PDF Downloads 526759 Impact of Social Networks on Agricultural Technology Adoption: A Case Study of Ongoing Extension Programs for Paddy Cultivation in Matara District in Sri Lanka
Authors: Paulu Saramge Shalika Nirupani Seram
Abstract:
The study delves into the complex dynamics of social networks and how they affect paddy farmers’ adoption of agricultural technologies, which are included in Yaya Development program, Weedy rice program and Good Agricultural Practices (GAP) program in Matara district. Identify the social networks among the farmers of ongoing Extension Programs in Matara district, examine the farmers’ adoption level to the ongoing extension programs in Matara district, analyze the impacts of social networks for the adoption to the technologies of ongoing extension programs and give suggestions and recommendations to improve the social network of paddy farmers in Matara District for ongoing extension programs are the objectives of this research. A structured questionnaire survey was conducted with 25 farmers from Matara-North (Wilpita), 25 farmers from Matara-Central (Kamburupitiya), and 25 farmers from Matara-South (Malimbada). UCINET (Version -6.771) software was used for social network analysis, and other than that, descriptive statistics and inferential statistics were used to analyze the findings. Matara-North has the highest social network density, and Matara-South has the lowest social network density according to the social network analysis. Dissemination of intensive technologies requires the most prominent actors of the social network, and in Matara district, agricultural instructors have the highest ability to disseminate technologies. The influence of actors in the social network, the trustworthiness of AI officers, and the trust of indigenous knowledge about paddy cultivation have a significant effect on the technology adoption of farmers. The research endeavors to contribute a nuanced understanding of the social networks and agricultural technology adoption in Matara District, offering practical insights for stakeholders involved in agricultural extension services.Keywords: agricultural extension, paddy cultivation, social network, technology adoption
Procedia PDF Downloads 656758 The Management Information System for Convenience Stores: Case Study in 7 Eleven Shop in Bangkok
Authors: Supattra Kanchanopast
Abstract:
The purpose of this research is to develop and design a management information system for 7 eleven shop in Bangkok. The system was designed and developed to meet users’ requirements via the internet network by use of application software such as My SQL for database management, Apache HTTP Server for Web Server and PHP Hypertext Preprocessor for an interface between web server, database and users. The system was designed into two subsystems as the main system, or system for head office, and the branch system for branch shops. These consisted of three parts which are classified by user management as shop management, inventory management and Point of Sale (POS) management. The implementation of the MIS for the mini-mart shop, can lessen the amount of paperwork and reduce repeating tasks so it may decrease the capital of the business and support an extension of branches in the future as well.Keywords: convenience store, the management information system, inventory management, 7 eleven shop
Procedia PDF Downloads 4826757 Peer Support Groups as a Tool to Increase Chances of Passing General Practice UK Qualification Exams
Authors: Thomas Abraham, Garcia de la Vega Felipe, Lubna Nishath, Nzekwe Nduka, Powell Anne-Marie
Abstract:
Introduction: The purpose of this paper is to discuss the effectiveness of a peer support network created to provide medical education, pastoral support, and reliable resources to registrars to help them pass the MRCGP exams. This paper will include a description of the network and its purpose, discuss how it has been used by trainees since its creation, and explain how this methodology can be applied to other areas of medical education and primary care. Background: The peer support network was created in February 2021, using Facebook, Telegram, and WhatsApp platforms to facilitate discussion of cases and answer queries about the exams, share resources, and offer peer support from qualified GPs and specialists. The network was created and is maintained by the authors of this paper and is open to anyone who is registered with the General Medical Council (GMC) and is studying for the MRCGP exams. Purpose: The purpose of the network is to provide medical education, pastoral support, and reliable resources to registrars to help them pass the exams. The network is free to use and is designed to take the onus away from a single medical educator and collate a vast amount of information from multiple medical educators/trainers; thereby creating a digital library of information for all trainees - exam related or otherwise. Methodology The network is managed by a team of moderators who respond to queries and facilitate discussion. Smaller study groups are created from the main group and provide a platform for trainees to work together, share resources, and provide peer support. The network has had thousands of trainees using it since February 2021, with positive feedback from all trainees. Results: The feedback from trainees has been overwhelmingly positive. Word of mouth has spread rapidly, growing the groups exponentially. Trainees add colleagues to the groups and often stay after they pass their exams to 'give back' to their fellow trainees. To date, thousands of trainees have passed the MRCGP exams using the resources and support provided by the network. Conclusion The success of this peer support network demonstrates the effectiveness of creating a network of thousands of doctors to provide medical education and support.Keywords: peer support, medical education, pastoral support, MRCGP exams
Procedia PDF Downloads 1356756 Robust Stabilization against Unknown Consensus Network
Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha
Abstract:
This paper considers a robust stabilization problem of a single agent in a multi-agent consensus system composed of identical agents, when the network topology of the system is completely unknown. It is shown that the transfer function of an agent in a consensus system can be described as a multiplicative perturbation of the isolated agent transfer function in frequency domain. Applying known robust stabilization results, we present sufficient conditions for a robust stabilization of an agent against unknown network topology.Keywords: single agent control, multi-agent system, transfer function, graph angle
Procedia PDF Downloads 4526755 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG
Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan
Abstract:
Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.Keywords: EEG, functional connectivity, graph theory, TFCMI
Procedia PDF Downloads 4316754 On the Optimization of a Decentralized Photovoltaic System
Authors: Zaouche Khelil, Talha Abdelaziz, Berkouk El Madjid
Abstract:
In this paper, we present a grid-tied photovoltaic system. The studied topology is structured around a seven-level inverter, supplying a non-linear load. A three-stage step-up DC/DC converter ensures DC-link balancing. The presented system allows the extraction of all the available photovoltaic power. This extracted energy feeds the local load; the surplus energy is injected into the electrical network. During poor weather conditions, where the photovoltaic panels cannot meet the energy needs of the load, the missing power is supplied by the electrical network. At the common connexion point, the network current shows excellent spectral performances.Keywords: seven-level inverter, multi-level DC/DC converter, photovoltaic, non-linear load
Procedia PDF Downloads 1926753 River Network Delineation from Sentinel 1 Synthetic Aperture Radar Data
Authors: Christopher B. Obida, George A. Blackburn, James D. Whyatt, Kirk T. Semple
Abstract:
In many regions of the world, especially in developing countries, river network data are outdated or completely absent, yet such information is critical for supporting important functions such as flood mitigation efforts, land use and transportation planning, and the management of water resources. In this study, a method was developed for delineating river networks using Sentinel 1 imagery. Unsupervised classification was applied to multi-temporal Sentinel 1 data to discriminate water bodies from other land covers then the outputs were combined to generate a single persistent water bodies product. A thinning algorithm was then used to delineate river centre lines, which were converted into vector features and built into a topologically structured geometric network. The complex river system of the Niger Delta was used to compare the performance of the Sentinel-based method against alternative freely available water body products from United States Geological Survey, European Space Agency and OpenStreetMap and a river network derived from a Shuttle Rader Topography Mission Digital Elevation Model. From both raster-based and vector-based accuracy assessments, it was found that the Sentinel-based river network products were superior to the comparator data sets by a substantial margin. The geometric river network that was constructed permitted a flow routing analysis which is important for a variety of environmental management and planning applications. The extracted network will potentially be applied for modelling dispersion of hydrocarbon pollutants in Ogoniland, a part of the Niger Delta. The approach developed in this study holds considerable potential for generating up to date, detailed river network data for the many countries where such data are deficient.Keywords: Sentinel 1, image processing, river delineation, large scale mapping, data comparison, geometric network
Procedia PDF Downloads 1396752 Social Network Impact on Self Learning in Teaching and Learning in UPSI (Universiti Pendidikan Sultan Idris)
Authors: Azli Bin Ariffin, Noor Amy Afiza Binti Mohd Yusof
Abstract:
This study aims to identify effect of social network usage on the self-learning method in teaching and learning at Sultan Idris Education University. The study involved 270 respondents consisting of students in the pre-graduate and post-graduate levels from nine fields of study offered. Assessment instrument used is questionnaire which measures respondent’s background includes level of study, years of study and field of study. Also measured the extent to which social pages used for self-learning and effect received when using social network for self-learning in learning process. The results of the study showed that students always visit Facebook more than other social sites. But, it is not for the purpose of self-learning. Analyzed data showed that 45.5% students not sure about using social sites for self-learning. But they realize the positive effect that they will received when use social sites for self-learning to improve teaching and learning process when 72.7% respondent agreed with all the statements provided.Keywords: facebook, self-learning, social network, teaching, learning
Procedia PDF Downloads 5376751 Evaluating Portfolio Performance by Highlighting Network Property and the Sharpe Ratio in the Stock Market
Authors: Zahra Hatami, Hesham Ali, David Volkman
Abstract:
Selecting a portfolio for investing is a crucial decision for individuals and legal entities. In the last two decades, with economic globalization, a stream of financial innovations has rushed to the aid of financial institutions. The importance of selecting stocks for the portfolio is always a challenging task for investors. This study aims to create a financial network to identify optimal portfolios using network centralities metrics. This research presents a community detection technique of superior stocks that can be described as an optimal stock portfolio to be used by investors. By using the advantages of a network and its property in extracted communities, a group of stocks was selected for each of the various time periods. The performance of the optimal portfolios compared to the famous index. Their Sharpe ratio was calculated in a timely manner to evaluate their profit for making decisions. The analysis shows that the selected potential portfolio from stocks with low centrality measurement can outperform the market; however, they have a lower Sharpe ratio than stocks with high centrality scores. In other words, stocks with low centralities could outperform the S&P500 yet have a lower Sharpe ratio than high central stocks.Keywords: portfolio management performance, network analysis, centrality measurements, Sharpe ratio
Procedia PDF Downloads 1546750 Consumer Behaviour Model for Apparel E-Tailers Using Structural Equation Modelling
Authors: Halima Akhtar, Abhijeet Chandra
Abstract:
The paper attempts to analyze the factors that influence the Consumer Behavior to purchase apparel through the internet. The intentions to buy apparels online were based on in terms of user style, orientation, size and reputation of the merchant, social influence, perceived information utility, perceived ease of use, perceived pleasure and attractiveness and perceived trust and risk. The basic framework used was Technology acceptance model to explain apparels acceptance. A survey was conducted to gather the data from 200 people. The measures and hypotheses were analyzed using Correlation testing and would be further validated by the Structural Equation Modelling. The implications of the findings for theory and practice could be used by marketers of online apparel websites. Based on the values obtained, we can conclude that the factors such as social influence, Perceived information utility, attractiveness and trust influence the decision for a user to buy apparels online. The major factors which are found to influence an online apparel buying decision are ease of use, attractiveness that a website can offer and the trust factor which a user shares with the website.Keywords: E-tailers, consumer behaviour, technology acceptance model, structural modelling
Procedia PDF Downloads 1866749 Development of a Hamster Knowledge System Based on Android Application
Authors: Satien Janpla, Thanawan Boonpuck, Pattarapan Roonrakwit
Abstract:
In this paper, we present a hamster knowledge system based on android application. The objective of this system is to advice user to upkeep and feed hamsters based on mobile application. We describe the design approaches and functional components of this system. The system was developed based on knowledge based of hamster experts. The results were divided by the research purposes into 2 parts: developing the mobile application for advice users and testing and evaluating the system. Black box technique was used to evaluate application performances and questionnaires were applied to measure user satisfaction with system usability by specialists and users.Keywords: hamster knowledge, Android application, black box, questionnaires
Procedia PDF Downloads 3416748 Of an 80 Gbps Passive Optical Network Using Time and Wavelength Division Multiplexing
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Faizan Khan, Xiaodong Yang
Abstract:
Internet Service Providers are driving endless demands for higher bandwidth and data throughput as new services and applications require higher bandwidth. Users want immediate and accurate data delivery. This article focuses on converting old conventional networks into passive optical networks based on time division and wavelength division multiplexing. The main focus of this research is to use a hybrid of time-division multiplexing and wavelength-division multiplexing to improve network efficiency and performance. In this paper, we design an 80 Gbps Passive Optical Network (PON), which meets the need of the Next Generation PON Stage 2 (NGPON2) proposed in this paper. The hybrid of the Time and Wavelength division multiplexing (TWDM) is said to be the best solution for the implementation of NGPON2, according to Full-Service Access Network (FSAN). To co-exist with or replace the current PON technologies, many wavelengths of the TWDM can be implemented simultaneously. By utilizing 8 pairs of wavelengths that are multiplexed and then transmitted over optical fiber for 40 Kms and on the receiving side, they are distributed among 256 users, which shows that the solution is reliable for implementation with an acceptable data rate. From the results, it can be concluded that the overall performance, Quality Factor, and bandwidth of the network are increased, and the Bit Error rate is minimized by the integration of this approach.Keywords: bit error rate, fiber to the home, passive optical network, time and wavelength division multiplexing
Procedia PDF Downloads 706747 Allocation of Mobile Units in an Urban Emergency Service System
Authors: Dimitra Alexiou
Abstract:
In an urban area the allocation placement of an emergency service mobile units, such as ambulances, police patrol must be designed so as to achieve a prompt response to demand locations. In this paper, a partition of a given urban network into distinct sub-networks is performed such that; the vertices in each component are close and simultaneously the difference of the sums of the corresponding population in the sub-networks is almost uniform. The objective here is to position appropriately in each sub-network a mobile emergency unit in order to reduce the response time to the demands. A mathematical model in the framework of graph theory is developed. In order to clarify the corresponding method a relevant numerical example is presented on a small network.Keywords: graph partition, emergency service, distances, location
Procedia PDF Downloads 4996746 Mechanically Strong and Highly Thermal Conductive Polymer Composites Enabled by Three-Dimensional Interconnected Graphite Network
Authors: Jian Zheng
Abstract:
Three-dimensional (3D) network structure has been recognized as an effective approach to enhance the mechanical and thermal conductive properties of polymeric composites. However, it has not been applied in energetic materials. In this work, a fluoropolymer based composite with vertically oriented and interconnected 3D graphite network was fabricated for polymer bonded explosives (PBXs). Here, the graphite and graphene oxide platelets were mixed, and self-assembled via rapid freezing and using crystallized ice as the template. The 3D structure was finally obtained by freezing-dry and infiltrating with the polymer. With the increasing of filler fraction and cooling rate, the thermal conductivity of the polymer composite was significantly improved to 2.15 W m⁻¹ K⁻¹ by 1094% than that of pure polymer. Moreover, the mechanical properties, such as tensile strength and elastic modulus, were enhanced by 82% and 310%, respectively, when the highly ordered structure was embedded in the polymer. We attribute the increased thermal and mechanical properties to this 3D network, which is beneficial to the effective heat conduction and force transfer. This study supports a desirable way to fabricate the strong and thermal conductive fluoropolymer composites used for the high-performance polymer bonded explosives (PBXs).Keywords: mechanical properties, oriented network, graphite polymer composite, thermal conductivity
Procedia PDF Downloads 1616745 Implementing a Database from a Requirement Specification
Abstract:
Creating a database scheme is essentially a manual process. From a requirement specification, the information contained within has to be analyzed and reduced into a set of tables, attributes and relationships. This is a time-consuming process that has to go through several stages before an acceptable database schema is achieved. The purpose of this paper is to implement a Natural Language Processing (NLP) based tool to produce a from a requirement specification. The Stanford CoreNLP version 3.3.1 and the Java programming were used to implement the proposed model. The outcome of this study indicates that the first draft of a relational database schema can be extracted from a requirement specification by using NLP tools and techniques with minimum user intervention. Therefore, this method is a step forward in finding a solution that requires little or no user intervention.Keywords: information extraction, natural language processing, relation extraction
Procedia PDF Downloads 2616744 Structural Vulnerability of Banking Network – Systemic Risk Approach
Authors: Farhad Reyazat, Richard Werner
Abstract:
This paper contributes to the existent literature by developing a framework that explains how to monitor potential threats to banking sector stability. The study explores structural vulnerabilities at the country level, but also look at bilateral exposures within a network context. The study contributes in analysing of the European banking systemic risk at aggregated level, which integrates the characteristics of bank size, and interconnectedness relative to the size of the economy which ultimate risk belong to, taking to account the concentration ratio of the banking industry within the whole economy. The nature of the systemic risk depends on the interplay of the network topology with the nature of financial transactions over the network, assets and buffer stemming from bank size, correlations, and the nature of the shocks to the financial system. The study’s results illustrate the contribution of banks’ size, size of economy and concentration of counterparty exposures to a given country’s banks in explaining its systemic importance, how much the banking network depends on a few traditional hubs activities and the changes of this dependencies over the last 9 years. The role of few of traditional hubs such as Swiss banks and British Banks and also Irish banks- where the financial sector is fairly new and grew strongly between 1990s till 2008- take the fourth position on 2014 reducing the relative size since 2006 where they had the first position. In-degree concentration index analysis in the study shows concentration index of banking network was not changed since financial crisis 2007-8. In-degree concentration index on first quarter of 2014 indicates that US, UK and Germany together, getting over 70% of the network exposures. The result of comparing the in-degree concentration index with 2007-4Q, shows the same group having over 70% of the network exposure, however the UK getting more important role in the hub and the market share of US and Germany are slightly diminished.Keywords: systemic risk, counterparty risk, financial stability, interconnectedness, banking concentration, european banks risk, network effect on systemic risk, concentration risk
Procedia PDF Downloads 4906743 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network
Authors: Yuntao Liu, Lei Wang, Haoran Xia
Abstract:
Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability
Procedia PDF Downloads 66