Search results for: increase%20heat%20transfer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10450

Search results for: increase%20heat%20transfer

9520 Multifunctional 1D α-Fe2O3/ZnO Core/Shell Semiconductor Nano-Heterostructures: Heterojunction Engineering

Authors: Gobinda Gopal Khan, Ashutosh K. Singh, Debasish Sarkar

Abstract:

This study reports the facile fabrication of 1D ZnO/α-Fe2O3 semiconductor nano-heterostructures (SNHs), and we investigate the strong interfacial interactions at the heterojunction, resulting in novel multifunctionality in the hybrid structure. ZnO-coated α-Fe2O3 nanowires (NWs) have been prepared by combining electrodeposition and wet chemical methods. Significant improvement in electrical conductivity, photoluminescence, and room temperature magnetic properties have been observed for the ZnO/α-Fe2O3 SNHs over the pristine α-Fe2O3 NWs because of the contribution of the ZnO nanolayer. The increase in electrical conductivity in ZnO/α-Fe2O3 SNHs is because of the increase in free electrons in the conduction band of the SNHs due to the formation of type-II n-n band configuration at the heterojunction. The SNHs are found to exhibit enhanced visible green photoluminescence along with the UV emission at room temperature. The band-gap emission of the α-Fe2O3 NWs coupled to the defect emissions of the ZnO in SNHs can be attributed to the profound enhancement of the visible green luminescence. Ferromagnetism of the SNHs is found to be increased nearly five times in magnitude over the primeval α-Fe2O3 NWs, which can be ascribed to the exchange coupling of the interfacial spin at ZnO/α-Fe2O3 interface, the surface spin of ZnO nanolayer, along with the structural defects like the cation vacancies (VZn) and the singly ionized oxygen vacancies (Vo•) present in SNHs.

Keywords: nano-heterostructures, photoluminescence, electrical property, magnetism

Procedia PDF Downloads 247
9519 Analysis of Natural Convection within a Hexagonal Enclosure Full with Nanofluid (Water-Cu) Under Effect of the Position of the Inner Obstacle

Authors: Lakhdar Rahmani, Benhanifia Kada, Brahim Mebarki

Abstract:

The present paper aims to investigate the natural convection of nanofluid (water-cu) inside a hexagonal enclosure shape embedded with a square obstacle in the presence of hot and cold side walls. The governing equations were solved in a non-uniform unstructured grid by employing the Galerkin finite element method using the software COMSOL Multiphysics. The objective of this study is to analyze the influence of Rayleigh number (103 < Ra < 105), the position of the obstacle, which is located in three different positions (center, bottom, and top side ), and the effect of Nanoparticles volume concentration (0 < Ø < 0.2) on the thermal behavior inside the enclosure, The results are reported as contours of isotherms, streamlines, and average Nusselt numbers. The obtained results illustrate that the increase in the Rayleigh number (Ra) and the Nanoparticles concentration ( Ø ) leads to an increase in the Nusselt number (Nu average ) that signifies the rate of heat transfer in the studied enclosure, in addition to the best performance observed with the position of obstacle that is located at the middle of the enclosure, where has a high effect in improving the heat transfer along the enclosure comparatively with the rest different positions.

Keywords: natural convection, nanofluid (water-Cu), hexagonal enclosure, Nusselt numbers, Rayleigh number

Procedia PDF Downloads 85
9518 Experimental Study on the Effect of Storage Conditions on Thermal Hazard of Nitrocellulose

Authors: Hua Chai, Qiangling Duan, Huiqi Cao, Mi Li, Jinhua Sun

Abstract:

Nitrocellulose (NC), a kind of energetic material, has been widely used in the industrial and military fields. However, this material can also cause serious social disasters due to storage conditions. Thermal hazard of nitrocellulose (NC) was experimentally investigated using the CALVET heat flux calorimeter C80, and three kinds of storage conditions were considered in the experiments: (1) drying time, (2) moisture content, (3) cycles. The results showed that the heat flow curves of NC moved to the low-temperature direction firstly and then slightly moved back by increasing the drying hours. Moisture that was responsible for the appearance of small exothermic peaks was proven to be the unfavorable safety factor yet it could increase the onset temperature of the main peak to some extent. And cycles could both lower the onset temperature and the maximum heat flow but enlarged the peak temperature. Besides, relevant kinetic parameters such as the heat of reaction (ΔH) and the activation energy (Ea) were obtained and compared. It was found that all the three conditions could reduce the values of Ea and most of them produced larger reaction heat. In addition, the critical explosion temperature (Tb) of the NC samples were derived. It was clear that not only the drying time but also the cycles would increase the thermal hazard of the NC. Yet, the right amount of water helped to reduce the thermal hazard.

Keywords: C80, nitrocellulose, storage conditions, the critical explosion temperature, thermal hazard

Procedia PDF Downloads 157
9517 Transient Response of Rheological Properties of a CI-Water Based Magnetorheological Fluid under Different Operating Modes

Authors: Chandra Shekhar Maurya, Chiranjit Sarkar

Abstract:

The transient response of rheological properties of a carbonyl iron (CI)-water-based magnetorheological fluid (MRF) was studied under shear rate, shear stress, and shear strain working mode subjected to step-change in an applied magnetic field. MR fluid is a kind of smart material whose rheological properties change under an applied magnetic field. We prepared an MR fluid comprising of CI 65 weight %, water 35 weight %, and OPTIGEL WX used as an additive by changing the weight %. It was found that the MR effect of the CI/water suspension was enhanced by using an additive. A transient shear stress response was observed by switched on and switched off of the magnetic field to see the stability, relaxation behavior, and resulting change in rheological properties. When the magnetic field is on, a sudden increase in the shear stress was observed due to the fast motion of magnetic structures that describe the transition from the liquidlike state to the solid-like state due to an increase in dipole-dipole interaction of magnetic particles. Simultaneously, the complete reverse transition occurs due to instantaneous breakage of the chain structure once the magnetic field is switched off.

Keywords: magnetorheological fluid, rheological properties, shears stress, shears strain, viscosity

Procedia PDF Downloads 168
9516 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models

Authors: Benbiao Song, Yan Gao, Zhuo Liu

Abstract:

Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.

Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram

Procedia PDF Downloads 253
9515 Comparative Demography of Lady Beetle, Coccinella septempunctata Linnaeus (Coleoptera: Coccinellidae) with Respect to Different Aphid Species

Authors: Muhammad Farooq, Muhammad R. Shahid, M. Shakeel, A. Iftikhar, M. Sagheer, Riaz A. Kainth

Abstract:

Comparative demography of Coccinella septempunctata Linnaeus (Coleoptera: Coccinellidae) was studied with respect to four host aphid species viz; Rhopalosiphum padi, Rhopalosiphum maidis, Sitobion avenae, and Shizaphis graminum under laboratory conditions using Two-sex Age-stage life table instead of traditional age specific life table which considers only female. Results revealed that developmental period from egg to adult of C. septempunctata were shorter on R. padi (16.49 days) whereas longer on R. maidis (22.83 days). Net reproductive rate varied from 110.01 offspring on R. maidis to 288.78 offspring on R. padi. Mean generation time (T) ranged from 29.02 d on R. padi to 39.788 d on R. maidis. Highest to lowest values of intrinsic rate of increase (rm) were recorded on R. padi, S. graminum, S. avenae, and R. maidis (0.194, 0.143, 0.140 and 0.117 d⁻¹, respectively). Highest finite rate of increase was observed on R. padi (1.214 d⁻¹) followed by S. graminum (1.154 d⁻¹) whereas lowest values were obtained on R. maidis and S. avenae (1.124 and 1.150 d⁻¹, respectively). In this study, the data on the life table of both predator and prey provide useful information in the mass rearing and practical application of a natural agent to biological control systems.

Keywords: C. septempunctata, two-sex age-stage life table, population parameters, aphid species

Procedia PDF Downloads 189
9514 The Effect of Global Warming on Water Resources

Authors: Ehsan Soltanzadeh, Hassan Zare

Abstract:

This paper introduces examples of the influences of global warming on water resources and means of adaptation. The contributing causes of shortage in water resources are sophisticated and have interactions with each other. The world-scale phenomena like global warming have led to an increase in air and ocean’s mean temperature, and this has already caused adverse effects on water resources. Other factors that exacerbated this situation such as population increase, changes in farming habits, rise in city dwellers, unbalanced request for energy and aquatic resources, improved living standards, new eating habits, increasing economic growth and consequently flourishing industrial activities, and different types of pollution such as air, water, etc., are compelling more pressure on our limited water resources. The report will briefly discuss climate change and its detrimental impacts on the water resources and finally will introduce two effective solutions to mitigate the consequences or even reverse them in the near to mid-term future: utilization of molten salt technology for storing huge amounts of generated electricity in solar power plants to accommodate power grid demands, and implementing fuel cell CHPs to reduce carbon emission, and consequently, mitigate the global warming phenomenon as the major root cause of threatening water resources.

Keywords: climate change, global warming, water resources, GHG emissions, fuel cell-CHP, solar power plant, molten salt storage

Procedia PDF Downloads 104
9513 Review of Correlation between Tacrolimus Pharmacotherapy and Infection after Organ Transplantation

Authors: Zahra Tolou-Ghamari

Abstract:

Introduction: After allogeneic organ transplantation, in order to lower the rate of rejectiontacrolimus is given. In fact, infection is reported as the most complication of tacrolimus that might be associated with higher susceptibility by its’ long term use. Aim: This study aims to review the association between the occurrence of infections after organ transplantation following the administration of tacrolims. Materials and Methods: Scientific literature on the pharmacotherapy of tacrolimus after organ transplantation and infections were searched using PUBMED.Gov (https://pubmed.ncbi.nlm.nih.gov/), Web of Science, and Scopus. Results: In order to prevent acute and chronic rejection, the potent immunosuppressive drug tacrolimus administered as a calcineurin inhibitor after organ transplantation. Its’ most frequent infectious complication is reported as urinary tract infection. Virulent strain of recombinant Literiamonocytogenes, in addition to an increase in bacterial burden in the liver and spleen tissues, was reported in the animal experimental study. The consequence of aggressive events and recipients total area under the cureve exposure to immunosuppressive could be as considered as surrogate markers for individual infection’s risk evaluation. Conclusion: Transplant surgery and duration of hospital stay could determinate the risk of infection during the first month of organ transplantation. Despite administration of antiviral drugs, opportunistic infection such as cytomegalovirus could increase the risk of infection during month 1 to year after transplantation.

Keywords: transplant, infection, tacrolimus, kidney

Procedia PDF Downloads 116
9512 Evaluation Method for Fouling Risk Using Quartz Crystal Microbalance

Authors: Natsuki Kishizawa, Keiko Nakano, Hussam Organji, Amer Shaiban, Mohammad Albeirutty

Abstract:

One of the most important tasks in operating desalination plants using a reverse osmosis (RO) method is preventing RO membrane fouling caused by foulants found in seawater. Optimal design of the pre-treatment process of RO process for plants enables the reduction of foulants. Therefore, a quantitative evaluation of the fouling risk in pre-treated water, which is fed to RO, is required for optimal design. Some measurement methods for water quality such as silt density index (SDI) and total organic carbon (TOC) have been conservatively applied for evaluations. However, these methods have not been effective in some situations for evaluating the fouling risk of RO feed water. Furthermore, stable management of plants will be possible by alerts and appropriate control of the pre-treatment process by using the method if it can be applied to the inline monitoring system for the fouling risk of RO feed water. The purpose of this study is to develop a method to evaluate the fouling risk of RO feed water. We applied a quartz crystal microbalance (QCM) to measure the amount of foulants found in seawater using a sensor whose surface is coated with polyamide thin film, which is the main material of a RO membrane. The increase of the weight of the sensor after a certain length of time in which the sample water passes indicates the fouling risk of the sample directly. We classified the values as “FP: Fouling Potential”. The characteristics of the method are to measure the very small amount of substances in seawater in a short time: < 2h, and from a small volume of the sample water: < 50mL. Using some RO cell filtration units, a higher correlation between the pressure increase given by RO fouling and the FP from the method than SDI and TOC was confirmed in the laboratory-scale test. Then, to establish the correlation in the actual bench-scale RO membrane module, and to confirm the feasibility of the monitoring system as a control tool for the pre-treatment process, we have started a long-term test at an experimental desalination site by the Red Sea in Jeddah, Kingdom of Saudi Arabia. Implementing inline equipment for the method made it possible to measure FP intermittently (4 times per day) and automatically. Moreover, for two 3-month long operations, the RO operation pressure among feed water samples of different qualities was compared. The pressure increase through a RO membrane module was observed at a high FP RO unit in which feed water was treated by a cartridge filter only. On the other hand, the pressure increase was not observed at a low FP RO unit in which feed water was treated by an ultra-filter during the operation. Therefore, the correlation in an actual scale RO membrane was established in two runs of two types of feed water. The result suggested that the FP method enables the evaluation of the fouling risk of RO feed water.

Keywords: fouling, monitoring, QCM, water quality

Procedia PDF Downloads 205
9511 How Openness to Experience Relates to Electoral Behaviour among Senior Non-Teaching Employees of Nnamdi Azikiwe University, Awka

Authors: Nweke Kingsley

Abstract:

From the times of ancient Greece to modern times, democratic elections have been associated with a higher number of participants. Sequel to this, politicians globally and incumbent governments appear concerned with understanding the personality traits that may assure them of unflinching support by electorates. The study examined how openness to experience predicted electoral behaviour among senior non-teaching employees of Nnamdi Azikiwe University Awka. One hundred and thirty-three non-teaching employees who volunteered were randomly selected for the study. Two instruments were used for data collection: The Electoral Behaviour Scale, and the Openness to Experience dimension of the Personality Trait Inventory. A correlational design was adopted for the study, and the data generated were statistically analyzed using Pearson Product Moment and linear regression statistics. Results revealed that Openness to Experience positively and significantly predicted Electoral Behaviour among senior non-teaching employees of Nnamdi Azikiwe University, Awka. It was recommended that politicians and stakeholders hold town hall meetings and seminars to increase awareness of the electoral perception of electorates with the Openness to Experience trait as this will increase their support and yield successive results during elections.

Keywords: electoral-behaviour, employees, non-teaching, openness-to-experience

Procedia PDF Downloads 41
9510 Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory B: Lake Manzala Fish

Authors: Hanaa M. M. El-Khayat, Hanan S. Gaber, Hoda Abdel-Hamid, Kadria M. A. Mahmoud, Hoda M. A. Abu Taleb

Abstract:

This work aimed to examine Oreochromis niloticus fish from Lake Manzala in Port Said, Dakahlya and Damietta governorates, Egypt, as a bio-indicator for the lake water pollution through recording alterations in their hematological, physiological, and histopathological parameters. All fish samples showed a significant increase in levels of alkaline phosphatase (ALP), creatinine and glutathione-S-transferase (GST); only Dakahlya samples showed a significant increase (p<0.01) in aspartate aminotransferase (AST) level and most Dakahlya and Damietta samples showed reversed albumin and globulin ratio and a significant increase in γ-glutamyltransferase (GGT) level. Port-Said and Damietta samples showed a significant decrease of hemoglobin (Hb) while Dakahlya samples showed a significant decrease in white blood cell (WBC) count. Histopathological investigation for different fish organs showed that Port-Said and Dakahlya samples were more altered than Damietta. The muscle and gill followed by intestine were the most affected organs. The muscle sections showed severe edema, neoplasia, necrotic change, fat vacuoles and splitting of muscle fiber. The gill sections showed dilated blood vessels of the filaments, curling of gill lamellae, severe hyperplasia, edema and blood vessels congestion of filaments. The intestine sections revealed degeneration, atrophy, dilation in blood vessels and necrotic changes in sub-mucosa and mucosa with edema in between. The recorded significant alterations, in most of the physiological and histological parameters in O. niloticus samples from Lake Manzala, were alarming for water pollution impacts on lake fish community, which constitutes the main diet and the main source of income for the people inhabiting these areas, and were threatening their public health and economy. Also, results evaluate the use of O. niloticus fish as important bio-indicator for their habitat stressors.

Keywords: Lake Manzala, Oreochromis niloticus fish, water pollution, physiological, hematological and histopathological parameters

Procedia PDF Downloads 305
9509 Research Review: The Mediating Role of Innovation Capability from Year 2010-2016

Authors: Logaiswari Indiran, Noraindah Abdullah Fahim, Zainab Khalifah, Rohaizat Baharun, Kamariah Ismail

Abstract:

Innovation capability is believed to give an important impact on organization’s sustainability and high performance. For instance, innovation capability able to transform technology into a specific organization’s operation, managerial, and transaction which increase organizational performance and economic growth of a country. In fact, research on high level of various antecedents has also shown positive impact on innovation capability. However, there are lacking studies explored on various kinds of antecedents which relate innovation capability’s role as mediator in the relationship. Thus, the purpose of this study is to specifically exhibit the mediation role of innovation capability between variety of antecedents and with different outcomes of an organization across industries. This study reviewed previous literature that has identified 'innovation capability' as mediator between the period of 2010 – 2016 and carries out a literature-based analysis of the findings in each article. From our review, innovation capability has been seen as a key role to mediate the relationship between independent variable and dependent variable in various industry. As the role of innovation capability as mediator is significant, new researchers should focus on varieties of independent variables. The review of this study will be useful for practitioners and researchers to understand and apply innovation capability as mediator to increase organizational success and innovativeness.

Keywords: innovation capability, mediator, organization performance, antecedents

Procedia PDF Downloads 281
9508 Gypsum Composites with CDW as Raw Material

Authors: R. Santos Jiménez, A. San-Antonio-González, M. del Río Merino, M. González Cortina, C. Viñas Arrebola

Abstract:

On average, Europe generates around 890 million tons of construction and demolition waste (CDW) per year and only 50% of these CDW are recycled. This is far from the objectives determined in the European Directive for 2020 and aware of this situation, the European Countries are implementing national policies to prevent the waste that can be avoidable and to promote measures to increase recycling and recovering. In Spain, one of these measures has been the development of a CDW recycling guide for the manufacture of mortar, concrete, bricks and lightweight aggregates. However, there is still not enough information on the possibility of incorporating CDW materials in the manufacture of gypsum products. In view of the foregoing, the Universidad Politécnica de Madrid is creating a database with information on the possibility of incorporating CDW materials in the manufacture of gypsum products. The objective of this study is to improve this database by analysing the feasibility of incorporating two different CDW in a gypsum matrix: ceramic waste bricks (perforated brick and double hollow brick), and extruded polystyrene (XPS) waste. Results show that it is possible to incorporate up to 25% of ceramic waste and 4% of XPS waste over the weight of gypsum in a gypsum matrix. Furhtermore, with the addition of ceramic waste an 8% of surface hardness increase and a 25% of capillary water absorption reduction can be obtained. On the other hand, with the addition of XPS, a 26% reduction of density and a 37% improvement of thermal conductivity can be obtained.

Keywords: CDW, waste materials, ceramic waste, XPS, construction materials, gypsum

Procedia PDF Downloads 497
9507 Serum Anti-Oxidation Enzymes Response to L-Carnitine Supplementation

Authors: Farah Nameni, Hamidreza Poursadra, Maasumeh Nurani Pilehrud

Abstract:

Exercise training induced Inflammation and stress. Antioxidant, for example L- Carnitine has beneficial effects in immune system and increased antioxidant enzymes activity. L- Carnitine protects the tissue against the oxidative side effect and helps the body to protect against stress during and after acute exercise. The aim of this study was to determine the effect of L-Carnitine on the blood enzymes: GPX SOD, CAT and GR response. In this study, 20 basketball players girls participated. Subjects were randomly assigned into two groups; placebo and supplementation. Antioxidadision enzymes (Superoxide Dismutase, Catalase, Glutathione Reductase, Glutathione Peroxidase) evaluated. L-Carnitine supplement group orally daily received 3000 mg powder for 14 dys. Then all participates trained basketball exercise acute. Blood samples were drawn vein before and immediately after exercise. Superoxide Dismutase, Catalase, Glutathione Reductase, Glutathione Peroxidase were measured, and data was analyzed using repeated measure ANOVA, Bonferroni and t-test. Our results showed: SOD, GPX and GPX (P < 0.05) have a significant increase. These results suggest L-Carnitine supplementation may increase GPX SOD, CAT, and basal anti oxidative capacity. L-Carnitine can modulate the alterations of exercise oxidative damage in girl basketball players.

Keywords: l-carnitine, GPX, SOD, CAT, exercise, GR, anti-oxidant

Procedia PDF Downloads 184
9506 Assessing the Impacts of Vocational Training System in the Sudan: A Dynamic CGE Application

Authors: Zuhal Mohammed, Khalid Siddig, Harald Grethe

Abstract:

Vocational training (VT) has been identified as a potential engine for achieving economic and social development, particularly in developing countries, while during the last two decades it is deemed as an essential determinant of human capital accumulation. Furthermore, it has a crucial role in reducing inequality, wage gaps and unemployment and in promoting skill decomposition. Government plays an important role in the human capital formulation by providing finance for education. In some countries, a large portion of the public educational investment is devoted to academic education (primary, secondary and tertiary). This is reflected in disproportionately increasing investment in various education sectors other than vocational education and VT. Nevertheless, the finance of VT system is not likely to increase or even remain at its existing level. This paper conducts an in-depth analysis to quantify the impacts of various options for expanding the public expenditure on education as well as vocational training in the Sudan. The study uses a recursive dynamic CGE modelling framework that accommodates VT and allows depicting the impact of various policies targeting the vocational training system with special focus on the agricultural sector. This allows for depicting the potential effects of various resource allocation policies not only among education versus non-education sectors, but also between the various types of education and training. Moreover, the study assesses the role of VT system in the economy through its influence on workers’ skill improvement and their movement across sectors. The results show that an increase in the public educational investment will lead to decrease the supply of low and high educated workers as results of increasing the school participation of the students in the short run. While in the medium to long run, this measure guides to increase the productivity of the labour and thus the growth rate of the gross domestic product (GDP). Therefore, the findings of the study provide Sudanese policymakers with needed information to help to adopt measures to reduce unemployment, enhance workers’ skill and ultimately improve livelihoods.

Keywords: vocational training, recursive dynamic CGE, skill level, labour market, economic growth, Sudan

Procedia PDF Downloads 187
9505 Energy Saving Potential with Improved Concrete in Ice Rink Floor Designs

Authors: Ehsan B. Haghighi, Pavel Makhnatch, Jörgen Rogstam

Abstract:

The ice rink floor is the largest heat exchanger in an ice rink. The important part of the floor consists of concrete, and the thermophysical properties of this concrete have strong influence on the energy usage of the ice rink. The thermal conductivity of concrete can be increased by using iron ore as ballast. In this study the Transient Plane Source (TPS) method showed an increase up to 58.2% of thermal conductivity comparing the improved concrete to standard concrete. Moreover, two alternative ice rink floor designs are suggested to incorporate the improved concrete. A 2D simulation was developed to investigate the temperature distribution in the conventional and the suggested designs. The results show that the suggested designs reduce the temperature difference between the ice surface and the brine by 1-4 ˚C, when comparing with convectional designs at equal heat flux. This primarily leads to an increased coefficient of performance (COP) in the primary refrigeration cycle and secondly to a decrease in the secondary refrigerant pumping power. The suggested designs have great potential to reduce the energy usage of ice rinks. Depending on the load scenario in the ice rink, the saving potential lies in the range of 3-10% of the refrigeration system energy usage. This calculation is based on steady state conditions and the potential with improved dynamic behavior is expected to increase the potential saving.

Keywords: Concrete, iron ore, ice rink, energy saving

Procedia PDF Downloads 327
9504 Olive Leaf Extract as Natural Corrosion Inhibitor for Pure Copper in 0.5 M NaCl Solution: A Study by Voltammetry around OCP

Authors: Chahla Rahal, Philippe Refait

Abstract:

Oleuropein-rich extract from olive leaf and acid hydrolysates, rich in hydroxytyrosol and elenolic acid was prepared under different experimental conditions. These phenolic compounds may be used as a corrosion inhibitor. The inhibitive action of these extracts and its major constituents on the corrosion of copper in 0.5 M NaCl solution has been evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The product of extraction was analyzed with high performance liquid chromatography (HPLC), whose analysis shows that olive leaf extract are greatly rich in phenolic compounds, mainly Oleuropeine (OLE), Hydroxytyrosol (HT) and elenolic acid (EA). After the acid hydrolysis and high temperature of extraction, an increase in hydroxytyrosol concentration was detected, coupled with relatively low oleuropeine content and high concentration of elenolic acid. The potentiodynamic measurements have shown that this extract acts as a mixed-type corrosion inhibitor, and good inhibition efficiency is observed with the increase in HT and EA concentration. These results suggest that the inhibitive effect of olive leaf extract might be due to the adsorption of the various phenolic compounds onto the copper surface.

Keywords: Olive leaf extract, Oleuropein, hydroxytyrosol, elenolic acid , Copper, Corrosion, HPLC/DAD, Polarisation, EIS

Procedia PDF Downloads 249
9503 Experimental Investigation on Variable Compression Ratio of Single Cylinder Four Stroke SI Engine Working under Ethanol – Gasoline Blend

Authors: B. V. Lande, Suhas Kongare

Abstract:

Fuel blend of alcohol and conventional hydrocarbon fuels for a spark ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. The greatest advantage of ethanol as a fuel in SI Engines is its high octane number. The efficiency of an SI engine that is the ability to convert fuel energy to mechanical energy, mainly depends on the compression ratio. It is, therefore, an advantage to increase this as much as possible. The major restraint is the fuel octane number – high octane fuels can be used with high compression ratios, thus yielding higher energy efficiency. This work investigates to suggest suitable ethanol gasoline blend and compression ratio for single cylinder four strokes SI Engine on the basis of performance and exhaust emissions. A single cylinder four stroke SI Engine was tested with different blend of ethanol – gasoline like E5 (5% ethanol +95% gasoline), E10 (10% ethanol + 90% gasoline) E15 (15% ethanol + 85% petrol) and E20 ( 20% + 80% gasoline) with Variable compression ratio. The performance parameter evaluated BSFC, Brake thermal efficiency and also exhaust emission CO2, Co & HC%. The result showed that higher compression ratio improved engine Performance and reduction in exhaust emission.

Keywords: blend, compression ratio, ethanol, performance, blend

Procedia PDF Downloads 389
9502 Characterization Study of Aluminium 6061 Hybrid Composite

Authors: U. Achutha Kini, S. S. Sharma, K. Jagannath, P. R. Prabhu, M. C. Gowri Shankar

Abstract:

Aluminium matrix composites with alumina reinforcements give superior mechanical & physical properties. Their applications in several fields like automobile, aerospace, defense, sports, electronics, bio-medical and other industrial purposes are becoming essential for the last several decades. In the present work, fabrication of hybrid composite was done by Stir casting technique using Al 6061 as a matrix with alumina and silicon carbide (SiC) as reinforcement materials. The weight percentage of alumina is varied from 2 to 4% and the silicon carbide weight percentage is maintained constant at 2%. Hardness and wear tests are performed in the as cast and heat treated conditions. Age hardening treatment was performed on the specimen with solutionizing at 550°C, aging at two temperatures (150 and 200°C) for different time durations. Hardness distribution curves are drawn and peak hardness values are recorded. Hardness increase was very sensitive with respect to the decrease in aging temperature. There was an improvement in wear resistance of the peak aged material when aged at lower temperature. Also increase in weight percent of alumina, increases wear resistance at lower temperature but opposite behavior was seen when aged at higher temperature.

Keywords: hybrid composite, hardness test, wear test, heat treatment, pin on disc wear testing machine

Procedia PDF Downloads 316
9501 Value Chain with the Participation of Urban Agriculture Development by Social Enterprises

Authors: Kuo-Wei Hsu, Wei-Chin Lo

Abstract:

In these years, urban agriculture development has been wide spreading all over the world. The development of urban agriculture is an evolution process of highly urbanization, as well as an agricultural phenomenon closely related to the development of economy, society and culture in urban areas. It provides densely populated areas with multi-functional uses of land, impacting strategic development of both large and small towns in the area. In addition, the participation of social enterprises keeps industrial competitiveness and makes gains when facing rapid transformation of industrial structures and new patterns of lifestyles in urban areas. They create better living conditions as well as protect the environment with innovative business beliefs, which give new ways for development of urban agriculture. Also, through building up the value chain, these social enterprises are capable of creating value for urban agriculture. Most of research regarding to social enterprises currently explore the relationship between corporate responsibilities and its role play, operational mode and performance and organizational patterns. Merely some of them discuss the function of social entrepreneurship in the development of urban agriculture. Moreover, none of them have explored the value creation for development of urban agriculture processed by social enterprises, as well as how social enterprises operate to increase competitive advantages, which make it possible to achieve industrial innovation, increase corporate value and even provide services with value creation. Therefore, this research mainly reviews current business patterns and operational conditions of social enterprises. This research endowed social responsibilities, and discusses current development process of urban agriculture. This research adopts Value Chain perspective to discuss key factors for value creation with respect to the development of urban agriculture processed by social enterprises. Thereby after organization and integration this research develops the prospect of value creation referring to urban agriculture processed by social enterprises and builds the value chain for urban agriculture. In conclusion, this research explored the relationship between value chain and value creation, which relates to values of customer, enterprise, society and economy referring to the development of urban agriculture uniquely, in consideration of the participation of social enterprises, and hence built the connection between value chain and value creation in the development of urban agriculture by social enterprises. The research found, social enterprises help to enhance the connection between the enterprise value and society value, mold corporate image with social responsibility and create brand value, and therefore impact the increase of economic value.

Keywords: urban agriculture development, value chain, social enterprise, urban systems

Procedia PDF Downloads 470
9500 In vivo Evidence of Protective Effect of Hyparrhenia Hirta against Nitrate-Induced Genotoxicity

Authors: H. Bouaziz-Ketata, G. Ben Salah, Z. Aidi, C. Kallel, H. Kammoun, F. Fakhfakh, N. Zeghal

Abstract:

The present study was performed to evaluate the potential protective effect of Hyparrhenia hirta methanolic extract in NaNO3-induced genotoxic and hematotoxic effects. Male Wistar rats were randomly divided into three groups: a control group and two treated groups during 50 days with NaNO3 administered at a dose of 400 mg kg-1 bw either alone in drinking water or co-administered with Hyparrhenia hirta at a dose of 200 mg kg-1 bw. NaNO3 treatment showed a significant increase in the frequencies of total chromosomal aberrations, aberrant metaphases and micronucleus in bone-marrow cells. In parallel, the NaNO3-treated group showed a significant decrease in red blood cell count, hemoglobin and hematocrit and a significant increase in total white blood cell, in neutrophil and eosinophil counts. Platelet count, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration remained unchanged in treated groups compared to those of controls. Hyparrhenia hirta methanolic extract appeared to be effective against genotoxic and hematotoxic changes induced by nitrate, as evidenced by the improvement of the markers cited above.

Keywords: Hyparrhenia hirta, sodium nitrate, erythrocytes, genotoxicity

Procedia PDF Downloads 251
9499 Artificial Intelligence in Penetration Testing of a Connected and Autonomous Vehicle Network

Authors: Phillip Garrad, Saritha Unnikrishnan

Abstract:

The recent popularity of connected and autonomous vehicles (CAV) corresponds with an increase in the risk of cyber-attacks. These cyber-attacks have been instigated by both researchers or white-coat hackers and cyber-criminals. As Connected Vehicles move towards full autonomy, the impact of these cyber-attacks also grows. The current research details challenges faced in cybersecurity testing of CAV, including access and cost of the representative test setup. Other challenges faced are lack of experts in the field. Possible solutions to how these challenges can be overcome are reviewed and discussed. From these findings, a software simulated CAV network is established as a cost-effective representative testbed. Penetration tests are then performed on this simulation, demonstrating a cyber-attack in CAV. Studies have shown Artificial Intelligence (AI) to improve runtime, increase efficiency and comprehensively cover all the typical test aspects in penetration testing in other industries. There is an attempt to introduce similar AI models to the software simulation. The expectation from this implementation is to see similar improvements in runtime and efficiency for the CAV model. If proven to be an effective means of penetration test for CAV, this methodology may be used on a full CAV test network.

Keywords: cybersecurity, connected vehicles, software simulation, artificial intelligence, penetration testing

Procedia PDF Downloads 96
9498 The Elastic Field of a Nano-Pore, and the Effective Modulus of Composites with Nano-Pores

Authors: Xin Chen, Moxiao Li, Xuechao Sun, Fei Ti, Shaobao Liu, Feng Xu, Tian Jian Lu

Abstract:

The composite materials with pores have the characteristics of light weight, sound insulation, and heat insulation, and have broad prospects in many fields, including aerospace. In general, the stiffness of such composite is less than the stiffness of the matrix material, limiting their applications. In this paper, we establish a theoretical model to analyze the deformation mechanism of a nano-pore. The interface between the pores and matrix material is described by the Gurtin-Murdoch model. By considering scale effect related with current deformation, we estimate the effective mechanical properties (e.g., effective shear modulus and bulk modulus) of a composite with nano-pores. Due to the scale effect, the elastic field in the composite was changed and local hardening was observed around the nano-pore, and the effective shear modulus and effective bulk modulus were found to be a function of the surface energy. The effective shear modulus increase with the surface energy and decrease with the size of the nano-pores, and the effective bulk modulus decrease with the surface energy and increase with the size of the nano-pores. These results have potential applications in the nanocomposite mechanics and aerospace field.

Keywords: composite mechanics, nano-inhomogeneity, nano-pores, scale effect

Procedia PDF Downloads 127
9497 Antigastritic Effect of Starch from Manihot utilissima on Male Wistar Rats Induced Aspirin

Authors: Naela Nabiela, Ahmad Hilmi Fahmi, M. Sukron, Ayu Elita Sari, Yusran, Suparmi

Abstract:

Aspirin is one of NSAIDs (non-steroid inflammatory drugs), can cause gastric ulcer as an side effect of prolonged consumption. The effort to prevent the increase of gastric HCl level can by treating with amylopectin was reported that can cover the gastric mucose. However, the effect of amylopectin in starch from Manihot utilissima which is believed as traditional treatment gastric ulcer have not been clear yet. This study was conducted to determine the effect of starch formed as syrup to HCl level and gastric histopatology. This experiment post test only control group design used 42 male wistar rats divided into 7 groups. All groups, except first group, were induced by 60 mg/100gBW/day aspirin for 3 days. The following day for 2 days each group was treated by starch syrup at dosed 0.45% w/v, 0.9% w/v, 1.8% w/v, 0% w/v, and sucralfate. Respectively, HCl level were measured by acidi-alkalimetri titration method, while the gastric histopathology were prepared by hematoxylin-eosin staining. The result shows that aspirin induction can increase the HCl level as 0,00767 N. Starch syrup at dose 1.8% w/v was effective to reduce HCl level and the grade of second gastric necrosis. It can be conclude that starch syrup is potention as a treatment to cure gastric ulcer caused by NSAIDs side effect.

Keywords: concentration of HCl stomach, gastric histopathology, gastritis, starch

Procedia PDF Downloads 453
9496 Mechanical Properties and Durability of Concretes Manufactured Using Pre-Coated Recycled Fine Aggregate

Authors: An Cheng, Hui-Mi Hsu, Sao-Jeng Chao, Wei-Ting Lin

Abstract:

This study investigated the mechanical properties and durability of concrete produced using recycled fine aggregate (RFA) pre-coated with fly ash, slag, and a polymer solution (PVA). We investigated the physical and microscopic properties of fresh concrete while adjusting several of the fabrication parameters, such as the constituent makeup and thickness of RFA pre-coatings. The study is divided into two parts. The first part involves mortar testing in which the RFA used for coating had a water/cement ratio of 0.5 and fly ash, slag, and PVA viscosity of 5~6cps, 21~26cps, 25~30cps, or 44~50cps. In these tests, 100% of the natural fine aggregate was replaced by RCA. The second part of the study involved the mixing of concrete with 25% FRA, which was respectively coated with fly ash, slag, or PVA at a viscosity of 44~50cps. In these tests, the water/cement ratio was either .4 or 0.6. The major findings in this study are summarized as follows: Coating RFA coated with fly ash and PVA was shown to increase flow in the fresh concrete; however, the coating of FRA with slag resulted in a slight decrease in flow. Coating FRA with slag was shown to improve the compressive and splitting strength to a greater degree than that achieved by coating FRA with fly ash and PVA. The mechanical properties of concrete mixed with slag were shown to increase with the thickness of the coating. Coating FRA with slag was also shown to enhance the durability of the concrete, regardless of the water/cement ratio.

Keywords: recycled fine aggregates, pre-coated, fly ash, slag, pre-coated thickness

Procedia PDF Downloads 317
9495 Roads and Agriculture: Impacts of Connectivity in Peru

Authors: Julio Aguirre, Yohnny Campana, Elmer Guerrero, Daniel De La Torre Ugarte

Abstract:

A well-developed transportation network is a necessary condition for a country to derive full benefits from good trade and macroeconomic policies. Road infrastructure plays a key role in the economic development of rural areas of developing countries; where agriculture is the main economic activity. The ability to move agricultural production from the place of production to the market, and then to the place of consumption, greatly influence the economic value of farming activities, and of the resources involved in the production process, i.e., labor and land. Consequently, investment in transportation networks contributes to enhance or overcome the natural advantages or disadvantages that topography and location have imposed over the agricultural sector. This is of particular importance when dealing with countries, like Peru, with a great topographic diversity. The objective of this research is to estimate the impacts of road infrastructure on the performance of the agricultural sector. Specific variables of interest are changes in travel time, shifts of production for self-consumption to production for the market, changes in farmers income, and impacts on the diversification of the agricultural sector. In the study, a cross-section model with instrumental variables is the central methodological instrument. The data is obtained from agricultural and transport geo-referenced databases, and the instrumental variable specification utilized is based on the Kruskal algorithm. The results show that the expansion of road connectivity reduced farmers' travel time by an average of 3.1 hours and the proportion of output sold in the market increases by up to 40 percentage points. The increase in connectivity has an unexpected increase in the districts index of diversification of agricultural production. The results are robust to the inclusion of year and region fixed-effects, and to control for geography (i.e., slope and altitude), population variables, and mining activity. Other results are also very eloquent. For example, a clear positive impact can be seen in access to local markets, but this does not necessarily correlate with an increase in the production of the sector. This can be explained by the fact that agricultural development not only requires provision of roads but additional complementary infrastructure and investments intended to provide the necessary conditions so that producers can offer quality products (improved management practices, timely maintenance of irrigation infrastructure, transparent management of water rights, among other factors). Therefore, complementary public goods are needed to enhance the effects of roads on the welfare of the population, beyond enabling them to increase their access to markets.

Keywords: agriculture devolepment, market access, road connectivity, regional development

Procedia PDF Downloads 194
9494 Increased Nitrogen Removal in Cold Deammonification Biofilm Reactor (9-15°C) by Smooth Temperature Decreasing

Authors: Ivar Zekker, Ergo Rikmann, Anni Mandel, Markus Raudkivi, Kristel Kroon, Liis Loorits, Andrus Seiman, Hannu Fritze, Priit Vabamäe, Toomas Tenno, Taavo Tenno

Abstract:

The anaerobic ammonium oxidation (anammox) and nitritation-anammox (deammonification) processes are widely used for N-rich wastewater treatment nowadays. A deammonification moving bed biofilm reactor (MBBR) with a high maximum total nitrogen removal rate (TNRR) of 1.5 g N m-2 d-1 was started up and similarly high TNRR was sustained at low temperature of 15°C. During biofilm cultivation, temperature in MBBR was lowered by 0.5° C week-1 sustaining the high TNRR. To study the short-term effect of temperature on the TNRR, a series of batch-scale experiments performed showed sufficient TNRRs even at 9-15° C (4.3-5.4 mg N L-1 h-1, respectively). After biomass was adapted to lower temperature (15°C), the TNRR increase at lower temperature (15°C) was relatively higher (15-20%) than with biomass adapted to higher temperatures (17-18°C). Anammox qPCR showed increase of Candidatus Brocadia quantities from 5×103 to 1×107 anammox gene copies g-1 TSS despite temperature lowered to 15°C. Modeling confirmed causes of stable and unstable periods in the reactor and in batch test high Arrhenius constant of 29.7 kJ mol-1 of the process as high as at 100 mg NO2--N L-1 were determined. 

Keywords: deammonification, reject water, intermittent aeration, nitrite inhibition

Procedia PDF Downloads 404
9493 Development of Potato Starch Based Active Packaging Films Loaded with Antioxidants and Its Effect on Shelf Life of Beef

Authors: Bilal Ahmad Ashwar, Inam u nisa, Asima Shah, Adil Gani, Farooq Ahmad Masoodi

Abstract:

The effects of 5% BHT and green tea extracts (GTE) on the physical, barrier, mechanical, thermal and antioxidant properties of potato starch films were investigated. Results showed both BHT and GTE significantly lowered solubility of films. Addition of BHT significantly decreased water vapour transmission rate. Both BHT and GTE promoted significant increase in the elastic modulus but a decrease in % EAB, however BHT was more effective in increasing elastic modulus. Increase in glass transition temperature (Tg) and enthalpy of transition (ΔH) of films was observed with the incorporation of GTE and BHT. Scanning electron microscopy (SEM) revealed smooth surface of the films. The DPPH radical scavenging ability of both BHT and GTE films were stronger in fatty food stimulant (95% ethanol. The GTE and BHT films were individually applied to fresh beef samples and were stored at 4 0C and room temperature for 10 days. Metmyoglobin formation and lipid oxidation (TBARS) were monitored periodically. The addition of GTE extracts and BHT resulted in decreases in metmyoglobin and TBARS values. We conclude that extracts of GTE and BHT have potential as preservatives for fresh beef.

Keywords: starch film, WVTR, tensile properties, SEM, thermal analysis, DPPH scavenging activity, TBARS, metmyoglobin

Procedia PDF Downloads 581
9492 Novel IPN Hydrogel Beads as pH Sensitive Drug Delivery System for an Anti-Ulcer Drug

Authors: Vishal Kumar Gupta

Abstract:

Purpose: This study has been undertaken to develop novel pH sensitive interpenetrating network hydrogel beads. Methods: The pH sensitive PAAM-g-Guar gum copolymer was synthesized by free radical polymerization followed by alkaline hydrolysis. Beads of guar gum-grafted-polyacrylamide and sodium Carboxy methyl cellulose (Na CMC) loaded with Pantoprazole sodium were prepared and evaluated for pH sensitivity, swelling properties, drug entrapment efficiency and in vitro drug release characteristics. Seven formulations were prepared for the drug with varying polymer and cross linker concentrations. Results: The grafting and alkaline hydrolysis reactions were confirmed by FT-IR spectroscopy. Differential scanning calorimetry was carried out to know the compatibility of encapsulated drug with the polymers. Scanning electron microscopic study revealed that the IPN beads were spherical. The entrapment efficiency was found to be in the range of 85-92%. Particle size analysis was carried out by optical microscopy. As the pH of the medium was changed from 1.2 to 7.4, a considerable increase in swelling was observed for all beads. Increase in the copolymer concentration showed sustained the drug release up to 12 hrs. Drug release from the beads followed super case II transport mechanism. Conclusion: It was concluded that guar gum-acrylamide beads, cross-linked with aluminum chloride offer an opportunity for controlled drug release of pantoprazole sodium.

Keywords: IPN, hydrogels, DSC, SEM

Procedia PDF Downloads 263
9491 Size Dependent Magnetic Properties of CoFe2-xGdxO4 (x = 0.1) Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

In this work, the effect of particle size on the structural and magnetic properties of CoFe2-xGdxO4 (x =0.1) spinel ferrite nanoparticles synthesized by starch-assisted sol-gel auto combustion method was investigated. The different sized CoFe2-xGdxO4 (x =0.1) spinel ferrite nanoparticles were achieved after annealing at different temperature 500, 700 and 900 oC. The structural phases, crystallite size and lattice parameter of synthesized ferrite nanoparticles were estimated from X-ray diffraction studies. The field emission scanning electron microscopy study demonstrated increase in particle size with increase of annealing temperature. Raman spectroscopy study indicated the change in octahedral and tetrahedral site related Raman modes in Gd3+ ions doped cobalt ferrite nanoparticles. An infrared spectroscopy study showed the presence of two absorption bands in the frequency range around 580 cm-1 (ν1) and around 340 cm-1 (ν2); which indicated the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Vibrating Sample magnetometer study showed that the saturation magnetization and coercivity changes with particle size of CoFe2-xGdxO4 (x =0.1) spinel ferrite.

Keywords: magnetic properties, spinel ferrite, nanoparticles, sol-gel synthesis

Procedia PDF Downloads 482