Search results for: human skin and hair cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11638

Search results for: human skin and hair cells

10708 Mitochondrial DNA Defect and Mitochondrial Dysfunction in Diabetic Nephropathy: The Role of Hyperglycemia-Induced Reactive Oxygen Species

Authors: Ghada Al-Kafaji, Mohamed Sabry

Abstract:

Mitochondria are the site of cellular respiration and produce energy in the form of adenosine triphosphate (ATP) via oxidative phosphorylation. They are the major source of intracellular reactive oxygen species (ROS) and are also direct target to ROS attack. Oxidative stress and ROS-mediated disruptions of mitochondrial function are major components involved in the pathogenicity of diabetic complications. In this work, the changes in mitochondrial DNA (mtDNA) copy number, biogenesis, gene expression of mtDNA-encoded subunits of electron transport chain (ETC) complexes, and mitochondrial function in response to hyperglycemia-induced ROS and the effect of direct inhibition of ROS on mitochondria were investigated in an in vitro model of diabetic nephropathy using human renal mesangial cells. The cells were exposed to normoglycemic and hyperglycemic conditions in the presence and absence of Mn(III)tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP) or catalase for 1, 4 and 7 days. ROS production was assessed by the confocal microscope and flow cytometry. mtDNA copy number and PGC-1a, NRF-1, and TFAM, as well as ND2, CYTB, COI, and ATPase 6 transcripts, were all analyzed by real-time PCR. PGC-1a, NRF-1, and TFAM, as well as ND2, CYTB, COI, and ATPase 6 proteins, were analyzed by Western blotting. Mitochondrial function was determined by assessing mitochondrial membrane potential and adenosine triphosphate (ATP) levels. Hyperglycemia-induced a significant increase in the production of mitochondrial superoxide and hydrogen peroxide at day 1 (P < 0.05), and this increase remained significantly elevated at days 4 and 7 (P < 0.05). The copy number of mtDNA and expression of PGC-1a, NRF-1, and TFAM as well as ND2, CYTB, CO1 and ATPase 6 increased after one day of hyperglycemia (P < 0.05), with a significant reduction in all those parameters at 4 and 7 days (P < 0.05). The mitochondrial membrane potential decreased progressively at 1 to 7 days of hyperglycemia with the parallel progressive reduction in ATP levels over time (P < 0.05). MnTBAP and catalase treatment of cells cultured under hyperglycemic conditions attenuated ROS production reversed renal mitochondrial oxidative stress and improved mtDNA, mitochondrial biogenesis, and function. These results show that hyperglycemia-induced ROS caused an early increase in mtDNA copy number, mitochondrial biogenesis and mtDNA-encoded gene expression of the ETC subunits in human mesangial cells as a compensatory response to the decline in mitochondrial function, which precede the mtDNA defect and mitochondrial dysfunction with a progressive oxidative response. Protection from ROS-mediated damage to renal mitochondria induced by hyperglycemia may be a novel therapeutic approach for the prevention/treatment of DN.

Keywords: diabetic nephropathy, hyperglycemia, reactive oxygen species, oxidative stress, mtDNA, mitochondrial dysfunction, manganese superoxide dismutase, catalase

Procedia PDF Downloads 245
10707 Effects of Different Types of Perioperative Analgesia on Minimal Residual Disease Development After Colon Cancer Surgery

Authors: Lubomir Vecera, Tomas Gabrhelik, Benjamin Tolmaci, Josef Srovnal, Emil Berta, Petr Prasil, Petr Stourac

Abstract:

Cancer is the second leading cause of death worldwide and colon cancer is the second most common type of cancer. Currently, there are only a few studies evaluating the effect of postoperative analgesia on the prognosis of patients undergoing radical colon cancer surgery. Postoperative analgesia in patients undergoing colon cancer surgery is usually managed in two ways, either with strong opioids (morphine, piritramide) or epidural analgesia. In our prospective study, we evaluated the effect of postoperative analgesia on the presence of circulating tumor cells or minimal residual disease after colon cancer surgery. A total of 60 patients who underwent radical colon cancer surgery were enrolled in this prospective, randomized, two-center study. Patients were randomized into three groups, namely piritramide, morphine and postoperative epidural analgesia. We evaluated the presence of carcinoembryonic antigen (CEA) and cytokeratin 20 (CK-20) mRNA positive circulating tumor cells in peripheral blood before surgery, immediately after surgery, on postoperative day two and one month after surgery. The presence of circulating tumor cells was assessed by quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR). In the priritramide postoperative analgesia group, the presence of CEA mRNA positive cells was significantly lower on a postoperative day two compared to the other groups (p=0.04). The value of CK-20 mRNA positive cells was the same in all groups on all days. In all groups, both types of circulating tumor cells returned to normal levels one month after surgery. Demographic and baseline clinical characteristics were similar in all groups. Compared with morphine and epidural analgesia, piritramide significantly reduces the amount of CEA mRNA positive circulating tumor cells after radical colon cancer surgery.

Keywords: cancer progression, colon cancer, minimal residual disease, perioperative analgesia.

Procedia PDF Downloads 186
10706 The Impact of Human Rights Violation in Modern Society

Authors: Hanania Nasan Shokry Abdelmasih

Abstract:

The interface between improvement and human rights has long been the subject of scholarly debate. As an end result, a hard and fast of principles, starting from the proper improvement to a human rights-based totally technique to development, have been adopted to understand the dynamics among the two concepts. In spite of those attempts, the precise link between development and human rights is not yet fully understood. However, the inevitable interdependence between the two standards and the idea that development efforts must be made while respecting human rights have received prominence in recent years. Then again, the emergence of sustainable development as a widely spread method in development dreams and rules similarly complicates this unresolved convergence. The place of sustainable improvement inside the human rights discourse and its role in ensuring the sustainability of improvement programs require systematic research. The purpose of this newsletter is, therefore, to take a look at the relationship between development and human rights, with particular attention to the area of the standards of sustainable improvement in international human rights regulation. It's going to examine whether it recognizes the proper to achieve sustainable improvement. Hence, the Article states that the principles of sustainable improvement are diagnosed immediately or implicitly in numerous human rights devices, which is an affirmative solution to the question posed above. Therefore, this report scrutinizes worldwide and local human rights gadgets, as well as the case regulation and interpretations of human rights in our bodies, to support this speculation.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.

Procedia PDF Downloads 26
10705 Role of Financial Institutions in Promoting Micro Service Enterprises with Special Reference to Hairdressing Salons

Authors: Gururaj Bhajantri

Abstract:

Financial sector is the backbone of any economy and it plays a crucial role in the mobilisation and allocation of resources. One of the main objectives of financial sector is inclusive growth. The constituents of the financial sector are banks, and financial Institutions, which mobilise the resources from the surplus sector and channelize the same to the different needful sectors in the economy. Micro Small and the Medium Enterprises sector in India cover a wide range of economic activities. These enterprises are divided on the basis of investment on equipment. The micro enterprises are divided into manufacturing and services sector. Micro Service enterprises have investment limit up to ten lakhs on equipment. Hairdresser is one who not only cuts and shaves but also provides different types of hair cut, hairstyles, trimming, hair-dye, massage, manicure, pedicure, nail services, colouring, facial, makeup application, waxing, tanning and other beauty treatments etc., hairdressing salons provide these services with the help of equipment. They need investment on equipment not more than ten lakhs. Hence, they can be considered as Micro service enterprises. Hairdressing salons require more than Rs 2.50,000 to start a moderate salon. Moreover, hairdressers are unable to access the organised finance. Still these individuals access finance from money lenders with high rate of interest to lead life. The socio economic conditions of hairdressers are not known properly. Hence, the present study brings a light on the role of financial institutions in promoting hairdressing salons. The study also focuses the socio-economic background of individuals in hairdressings salons, problems faced by them. The present study is based on primary and secondary data. Primary data collected among hairdressing salons in Davangere city. Samples selected with the help of simple random sampling techniques. Collected data analysed and interpreted with the help of simple statistical tools.

Keywords: micro service enterprises, financial institutions, hairdressing salons, financial sector

Procedia PDF Downloads 204
10704 Biocompatible Beta Titanium Alloy Ti36Nb6Ta as a Suitable Material for Bone Regeneration

Authors: Vera Lukasova, Eva Filova, Jana Dankova, Vera Sovkova, Matej Daniel, Michala Rampichova

Abstract:

Proper bone implants should promote fast adhesion of cells, stimulate cell differentiation and support the formation of bone tissue. Nowadays titanium is used as a biocompatible material capable of bone tissue integration. This study was focused on comparison of bioactive properties of two titanium alloys - beta titanium alloy Ti36Nb6Ta and standard medical titanium alloy Ti6A14V. The advantage of beta titanium alloy Ti36Nb6Ta is mainly that this material does not contain adverse elements like vanadium or aluminium. Titanium alloys were sterilized in ethanol, placed into 48 well plates and seeded with porcine mesenchymal stem cells. Cells were cultivated for 14 days in standard growth cultivation media with osteogenic supplements. Cell metabolic activity was quantified using MTS assay (Promega). Cell adhesion on day 1 and cell proliferation on further days were verified immunohistochemically using beta-actin monoclonal antibody and secondary antibody conjugated with AlexaFluor®488. Differentiation of cells was evaluated using alkaline phosphatase assay. Additionally, gene expression of collagen I was measured by qRT-PCR. Porcine mesenchymal stem cells adhered and spread well on beta titanium alloy Ti36Nb6Ta on day 1. During the 14 days’ time period the cells were spread confluently on the surface of the beta titanium alloy Ti36Nb6Ta. The metabolic activity of cells increased during the whole cultivation period. In comparison to standard medical titanium alloy Ti6A14V, we did not observe any differences. Moreover, the expression of collagen I gene revealed no statistical differences between both titanium alloys. Therefore, a beta titanium alloy Ti36Nb6Ta promotes cell adhesion, metabolic activity, proliferation and collagen I expression equally to standard medical titanium alloy Ti6A14V. Thus, beta titanium is a suitable material that provides sufficient biocompatible properties. This project was supported by the Czech Science Foundation: grant No. 16-14758S.

Keywords: beta titanium alloy, biocompatibility, differentiation, mesenchymal stem cells

Procedia PDF Downloads 492
10703 Malignant Ovarian Cancer Ascites Confers Platinum Chemoresistance to Ovarian Cancer Cells: A Combination Treatment with Crizotinib and 2 Hydroxyestradiol Restore Platinum Sensitivity

Authors: Yifat Koren Carmi, Abed Agbarya, Hazem Khamaisi, Raymond Farah, Yelena Shechtman, Roman Korobochka, Jacob Gopas, Jamal Mahajna

Abstract:

Ovarian cancer (OC), the second most common form of gynecological malignancy, has a poor prognosis and is frequently identified in its late stages. The recommended treatment for OC typically includes a platinum-based chemotherapy, like carboplatin. Nonetheless, OC treatment has proven challenging due to toxicity and development of acquired resistance to therapy. Chemoresistance is a significant obstacle to a long-lasting response in OC patients, believed to arise from alterations within the cancer cells as well as within the tumor microenvironments (TME). Malignant ascites is a presenting feature in more than one-third of OC patients. It serves as a reservoir for a complex mixture of soluble factors, metabolites, and cellular components, providing a pro-inflammatory and tumor-promoting microenvironment for the OC cells. Malignant ascites is also associated with metastasis and chemoresistance. In an attempt to elucidate the role of TME in chemoresistance of OC, we monitored the ability of soluble factors derived from ascites fluids to affect platinum sensitivity of OC cells. This research, compared ascites fluids from non-malignant cirrhotic patients to those from OC patients in terms of their ability to alter the platinum sensitivity of OC cells. Our findings indicated that exposure to OC ascites induces platinum chemoresistance on OC cells in 11 out of 13 cases (85%). In contrast, 75% of cirrhosis ascites (3 out of 4) failed to confer platinum chemoresistance to OC cells. Cytokine array analysis revealed that IL-6, and to a lesser extent HGF were enriched in OC ascites, whereas IL-22 was enriched in cirrhosis ascites. Pharmaceutical inhibitors that target the IL-6/JAK signaling pathway were mildly effective in overcoming the platinum chemoresistance induced by malignant ascites. In contrast, Crizotinib an HGF/c-MET inhibitor, and 2-hydroxyestradiol (2HE2) were effective in restoring platinum chemoresistance to OC. Our findings demonstrate the importance of OC ascites in supporting platinum chemoresistance as well as the potential of a combination therapy with Crizotinib and the estradiol metabolite 2HE2 to regain OC cells chemosensitivity.

Keywords: ovarian cancer, platinum chemoresistance, malignant ascites, tumor microenvironment, IL-6, 2-hydroxyestradiol, HGF, crizotinib

Procedia PDF Downloads 63
10702 Humoral and Cellular Immune Responses to Major Human Cytomegalovirus Antigens in Mice Model

Authors: S. Essa, H. Safar, R. Raghupathy

Abstract:

Human cytomegalovirus (CMV) continues to be a source of severe complications to immunologically immature and immune-compromised hosts. Effective CMV vaccine that diminishes CMV disease in transplant patients and avoids congenital infection remains of high importance as no approved vaccines exist. Though the exact links of defense mechanisms are unidentified, viral-specific antibodies and Th1/Th2 cytokine responses have been involved in controlling viral infections. CMV envelope glycoprotein B (UL55/gB), the matrix proteins (UL83/pp65, UL99/pp28, UL32/pp150), and the assembly protein UL80a/pp38 are known to be targets of antiviral immune responses. In this study, mice were immunized with five HCMV antigens (UL32/pp150, UL80a/pp38, UL99/pp28, and UL83/pp65), and serum samples were collected and evaluated for eliciting viral-specific antibody responses. Moreover, Splenocytes were collected, stimulated, and assessed for cytokine responses. The results demonstrated a CMV-antigen-specific antibody response to pp38 and pp65 (E/C >2.0). The highest titers were detected with pp38 (average E/C 16.275) followed by pp65 (average E/C 7.72). Compared to control cells, splenocytes from PP38 antigen immunized mice gave a significantly higher concentration of GM-CSF, IFN-γ, IL-2 IL-4, IL-5, and IL-17A (P<0.05). Also, splenocytes from pp65 antigen immunized mice resulted in a significantly higher concentration of GM-CSF, IFN-γ, IL-2 IL-4, IL-10, IL-12, IL-17A, and TNF- α. The designation of target CMV peptides by identifying viral-specific antibodies and cytokine responses is vital for understanding the protective immune mechanisms during CMV infection and identifying appropriate viral antigens to develop novel vaccines.

Keywords: hepatitis C virus, peripheral blood mononuclear cells, neutrophils, cytokines

Procedia PDF Downloads 138
10701 Mutational and Evolutionary Analysis of Interleukin-2 Gene in Four Pakistani Goat Breeds

Authors: Tanveer Hussain, Misbah Hussain, Masroor Ellahi Babar, Muhammad Traiq Pervez, Fiaz Hussain, Sana Zahoor, Rashid Saif

Abstract:

Interleukin 2 (IL-2) is a cytokine which is produced by activated T cells, play important role in immune response against antigen. It act in both autocrine and paracrine manner. It can stimulate B cells and various other phagocytic cells like monocytes, lymphokine-activated killer cells and natural killer cells. Acting in autocrine fashion, IL-2 protein plays a crucial role in proliferation of T cells. IL-2 triggers the release of pro and anti- inflammatory cytokines by activating several pathways. In present study, exon 1 of IL-2 gene of four local Pakistani breeds (Dera Din Panah, Beetal, Nachi and Kamori) from two provinces was amplified by using reported Ovine IL-2 primers, yielding PCR product of 501 bp. The sequencing of all samples was done to identify the polymorphisms in amplified region of IL-2 gene. Analysis of sequencing data resulted in identification of one novel nucleotide substitution (T→A) in amplified non-coding region of IL-2 gene. Comparison of IL-2 gene sequence of all four breeds with other goat breeds showed high similarity in sequence. While phylogenetic analysis of our local breeds with other mammals showed that IL-2 is a variable gene which has undergone many substitutions. This high substitution rate can be due to the decreased or increased changed selective pressure. These rapid changes can also lead to the change in function of immune system. This pioneering study of Pakistani goat breeds urge for further studies on immune system of each targeted breed for fully understanding the functional role of IL-2 in goat immunity.

Keywords: interleukin 2, mutational analysis, phylogeny, goat breeds, Pakistan

Procedia PDF Downloads 608
10700 Determining Cellular Biomarkers Sensitive to Low Damaging Exposure

Authors: Svetlana Guryeva, Inna Kornienko, Elena Petersen

Abstract:

At present, translational medicine is a rapidly developing branch of biomedicine. The main idea of translational medicine is a practical application of fundamental research. One of the possible applications for translational medicine is researching therapies that improve human age-related organism condition. To fill the gap between experiments and clinical practice, it is necessary to create the standardized system for the investigation of different effects on cellular aging models. In this study, primary human fibroblasts derived from patients of different ages were used as a cellular aging model. The senescence-associated β-galactosidase activity, lipofuscin, γ-H2AX, the reactive oxygen species level, and cell death markers (annexin V/propidium iodide) were used as biomarkers of the cell functional state. The effects of damaging exposures (oxidative stress and heat shock), potential positive factors (metformin and acetaminophen), and their combinations were investigated using the described biomarkers. Oxidative stress and heat shock caused the increase in the levels of all biomarkers, and only the cells from young patients partly coped with stress 3 days after the exposures. Metformin improved the state of pretreatment cells from young and old patients. The acetaminophen did not show significant changes in the biomarker levels compare to the action of metformin. This study proved the opportunity to develop a standardized screening system based on biomarkers of the cell functional state to identify potential positive or negative effects of some physical and chemical exposures. Moreover, such a system can be useful for the aims of regenerative medicine to determine the effect of cell pretreatment before transplantation.

Keywords: biomarkers, primary fibroblasts, regenerative medicine, senescence, test system, translational medicine

Procedia PDF Downloads 401
10699 3D Scaffolds Fabricated by Microfluidic Device for Rat Cardiomyocytes Observation

Authors: Chih-Wei Chao, Jiashing Yu

Abstract:

Microfluidic devices have recently emerged as promising tools for the fabrication of scaffolds for cell culture. To mimic the natural circumstances of organism for cells to grow, here we present three-dimensional (3D) scaffolds fabricated by microfluidics for cells cultivation. This work aims at investigating the behavior in terms of the viability and the proliferation capability of rat H9c2 cardiomyocytes in the gelatin 3D scaffolds by fluorescent images.

Keywords: microfluidic device, H9c2, tissue engineering, 3D scaffolds

Procedia PDF Downloads 421
10698 Steps of the Pancreatic Differentiation in the Grass Snake (Natrix natrix) Embryos

Authors: Magdalena Kowalska, Weronika Rupik

Abstract:

The pancreas is an important organ present in all vertebrate species. It contains two different tissues, exocrine and endocrine, that act as two glands in one. The development and differentiation of the pancreas in reptiles is poorly known in comparison to other vertebrates. Therefore, the aim of this study was to investigate the particular steps concerning the differentiation of the pancreas in the grass snake (Natrix natrix) embryos. For this, histological methods (including hematoxylin and eosin, and Heidenhain's AZAN staining), transmission electron microscopy and three-dimensional (3D) reconstructions from serial paraffin sections were used. The results of this study indicated that the first step of pancreas development in Natrix was the connection of the two pancreatic buds: dorsal and ventral one. Then, duct walls in both buds started to be remodeled from the multilayered to single-layered epithelium. This remodeling started in the dorsal bud and was simultaneously with the differentiation of the duct lumens which occurred by the cavition. During this process, the cells that had no contact with the mesenchyme underwent cell death named anoikis. These findings indicated that the walls of ducts in the embryonic pancreas of the grass snake were initially formed by the abundant principal and single endocrine cells. Later the basal and goblet cells differentiated. Among the endocrine cells, as the first the B and A cells differentiated, then the D and PP cells. The next step of the pancreatic development was the withdrawing of the endocrine cells from the duct walls to form the pancreatic islets. The endocrine cells and islets were found only in the dorsal part of the pancreas in Natrix embryos what is different than in other vertebrate species. The islets were formed mainly by the A cells. Simultaneously, with the differentiation of the endocrine pancreas, the acinar tissue started to differentiate. The source of the acinar cells were pancreatic ducts similar as in other vertebrates. The acini formation began at the proximal part of the pancreas and went towards the caudal direction. Differentiating pancreatic ducts developed into the branched system that can be divided into extralobular, intralobular, and intercalated ducts, similarly as in other vertebrate species. However, the pattern of branching was different. In conclusions, particular steps of the pancreas differentiation in the grass snake were different than in other vertebrates. It can be supposed that these differences are related to the specific topography of the snake’s internal organs and their taxonomy position. All specimens used in the study were captured according to the Polish regulations concerning the protection of wild species. Permission was granted by the Local Ethics Commission in Katowice (41/2010; 87/2015) and the Regional Directorate for Environmental Protection in Katowice (WPN.6401.257.2015.DC).

Keywords: embryogenesis, organogenesis, pancreas, Squamata

Procedia PDF Downloads 169
10697 We Have Never Seen a Dermatologist. Reaching the Unreachable Through Teledermatology

Authors: Innocent Atuhe, Babra Nalwadda, Grace Mulyowa Kitunzi, Annabella Haninka Ejiri

Abstract:

Background: Atopic Dermatitis (AD) is one of the most prevalent and growing chronic inflammatory skin diseases in African prisons. AD care is limited in African due to lack of information about the disease amongst primary care workers, limited access to dermatologists, lack of proper training of healthcare workers, and shortage of appropriate treatments. We designed and implemented the Prisons Telederma project based on the recommendations of the International Society of Atopic Dermatitis. Our overall goal was to increase access to dermatologist-led care for prisoners with AD through teledermatology in Uganda. We aimed to; i) to increase awareness and understanding of teledermatology among prison health workers; and ii) to improve treatment outcomes of prisoners with atopic dermatitis through increased access to and utilization of consultant dermatologists through teledermatology in Uganda prisons: Approach: We used Store-and-forward Teledermatology (SAF-TD) to increase access to dermatologist-led care for prisoners and prisons staff with AD. We conducted a five days training for prison health workers using an adapted WHO training guide on recognizing neglected tropical diseases through changes on the skin together with an adapted American Academy of Dermatology (AAD) Childhood AD Basic Dermatology Curriculum designed to help trainees develop a clinical approach to the evaluation and initial management of patients with AD. This training was followed by blended e-learning, webinars facilitated by consultant Dermatologists with local knowledge of medication and local practices, apps adjusted for pigmented skin, WhatsApp group discussions, and sharing pigmented skin AD pictures and treatment via zoom meetings. We hired a team of Ugandan Senior Consultant dermatologists to draft an iconographic atlas of the main dermatoses in pigmented African skin and shared this atlas with prison health staff for use as a job aid. We had planned to use MySkinSelfie mobile phone application to take and share skin pictures of prisoners with AD with Consultant Dermatologists, who would review the pictures and prescribe appropriate treatment. Unfortunately, the National Health Service withdrew the app from the market due to technical issues. We monitored and evaluated treatment outcomes using the Patient Oriented Eczema Measure (POEM) tool. We held four advocacy meetings to persuade relevant stakeholders to increase supplies and availability of first-line AD treatments such as emollients in prison health facilities. Results: Draft iconographic atlas of the main dermatoses in pigmented African skin Increased proportion of prison health staff with adequate knowledge of AD and teledermatology from 20% to 80% Increased proportion of prisoners with AD reporting improvement in disease severity (POEM scores) from 25% to 35% in one year. Increased proportion of prisoners with AD seen by consultant dermatologist through teledermatology from 0% to 20% in one year. Increased the availability of AD recommended treatments in prisons health facilities from 5% to 10% in one year

Keywords: teledermatology, prisoners, reaching, un-reachable

Procedia PDF Downloads 116
10696 No Histological and Biochemical Changes Following Administration of Tenofovir Nanoparticles: Animal Model Study

Authors: Aniekan Peter, ECS Naidu, Edidiong Akang, U. Offor, R. Kalhapure, A. A. Chuturgoon, T. Govender, O. O. Azu

Abstract:

Introduction: Nano-drugs are novel innovations in the management of human immunodeficiency virus (HIV) pandemic, especially resistant strains of the virus in their sanctuary sites: testis and the brain. There are safety concerns to be addressed to achieve the full potential of this new drug delivery system. Aim of study: Our study was designed to investigate toxicity profile of Tenofovir Nanoparticle (TDF-N) synthesized by University of Kwazulu-Natal (UKZN) Nano-team for prevention and treatment of HIV infection. Methodology: Ten adult male Sprague-Dawley rats maintained at the Animal House of the Biomedical Resources Unit UKZN were used for the study. The animals were weighed and divided into two groups of 5 animal each. Control animals (A) were administered with normal saline. Therapeutic dose (4.3 mg/kg) of TDF-N was administered to group B. At the end of four weeks, animals were weighed and sacrificed. Liver and kidney were removed fixed in formal saline, processed and stained using H/E, PAS and MT stains for light microscopy. Serum was obtained for renal function test (RFT), liver function test (LFT) and full blood count (FBC) using appropriate analysers. Cellular measurements were done using ImageJ and Leica software 2.0. Data were analysed using graph pad 6, values < 0.05 were significant. Results: We reported no histological alterations in the liver, kidney, FBC, LFT and RFT between the TDF-N animals and saline control. There were no significant differences in weight, organo-somatic index and histological measurements in the treatment group when compared with saline control. Conclusion/recommendations: TDF-N is not toxic to the liver, kidney and blood cells in our study. More studies using human subjects is recommended.

Keywords: tenofovir nanoparticles, liver, kidney, blood cells

Procedia PDF Downloads 182
10695 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels

Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge

Abstract:

An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally, it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore, it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three-dimensional finite element models in assessing debonding damage in composite sandwich panels

Keywords: debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling

Procedia PDF Downloads 312
10694 Design of 3D Bioprinted Scaffolds for Cartilage Regeneration

Authors: Gloria Pinilla, Jose Manuel Baena, Patricia Gálvez-Martín, Juan Antonio Marchad

Abstract:

Cartilage is a dense connective tissue with limited self-repair properties. Currently, the therapeutic use of autologous or allogenic chondrocytes makes up an alternative therapy to the pharmacological treatment. The design of a bioprinted 3D cartilage with chondrocytes and biodegradable biomaterials offers a new therapeutic alternative able of bridging the limitations of current therapies in the field. We have developed an enhanced printing processes-Injection Volume Filling (IVF) to increase the viability and survival of the cells when working with high-temperature thermoplastics without the limitation of the scaffold geometry in contact with cells. We have demonstrated the viability of the printing process using chondrocytes for cartilage regeneration. This development will accelerate the clinical uptake of the technology and overcomes the current limitation when using thermoplastics as scaffolds. An alginate-based hydrogel combined with human chondrocytes (isolated from osteoarthritis patients) was formulated as bioink-A and the polylactic acid as bioink-B. The bioprinting process was carried out with the REGEMAT V1 bioprinter (Regemat 3D, Granada-Spain) through a IVF. The printing capacity of the bioprinting plus the viability and cell proliferation of bioprinted chondrociytes was evaluated after five weeks by confocal microscopy and Alamar Blue Assay (Biorad). Results showed that the IVF process does not decrease the cell viability of the chondrocytes during the printing process as the cells do not have contact with the thermoplastic at elevated temperatures. The viability and cellular proliferation of the bioprinted artificial 3D cartilage increased after 5 weeks. In conclusion, this study demonstrates the potential use of Regemat V1 for 3D bioprinting of cartilage and the viability of bioprinted chondrocytes in the scaffolds for application in regenerative medicine.

Keywords: cartilage regeneration, bioprinting, bioink, scaffold, chondrocyte

Procedia PDF Downloads 311
10693 Development of 3D Printed, Conductive, Biodegradable Nerve Conduits for Neural Regeneration

Authors: Wei-Chia Huang, Jane Wang

Abstract:

Damage to nerves is considered one of the most irreversible injuries. The regeneration of nerves has always been an important topic in regenerative medicine. In general, damage to human tissue will naturally repair overtime. However, when the nerves are damaged, healed flesh wound cannot guarantee full restoration to its original function, as truncated nerves are often irreversible. Therefore, the development of treatment methods to successfully guide and accelerate the regeneration of nerves has been highly sought after. In order to induce nerve tissue growth, nerve conduits are commonly used to help reconnect broken nerve bundles to provide protection to the location of the fracture while guiding the growth of the nerve bundles. To prevent the protected tissue from becoming necrotic and to ensure the growth rate, the conduits used are often modified with microstructures or blended with neuron growth factors that may facilitate nerve regeneration. Electrical stimulation is another attempted treatment for medical rehabilitation. With appropriate range of voltages and stimulation frequencies, it has been demonstrated to promote cell proliferation and migration. Biodegradability are critical for medical devices like nerve conduits, while conductive polymers pose great potential toward the differentiation and growth of nerve cells. In this work, biodegradability and conductivity were combined into a novel biodegradable, photocurable, conductive polymer composite materials by embedding conductive nanoparticles in poly(glycerol sebacate) acrylate (PGSA) and 3D-printed into nerve conduits. Rat pheochromocytoma cells and rat neuronal Schwann cells were chosen for the in vitro tests of the conduits and had demonstrate selective growth upon culture in the conductive conduits with built-in microchannels and electrical stimulation.

Keywords: biodegradable polymer, 3d printing, neural regeneration, electrical stimulation

Procedia PDF Downloads 103
10692 Smart Coating for Enhanced Corneal Healing via Delivering Progranulin

Authors: Dan Yan, Yunuo Zhang, Yuhan Huang, Weijie Ouyang

Abstract:

The cornea serves as a vital protective barrier for the eye; however, it is prone to injury and damage that can disrupt corneal epithelium and nerves, triggering inflammation. Therefore, understanding the biological effects and molecular mechanisms involved in corneal wound healing and identifying drugs targeting these pathways is crucial for researchers in this field. This study aimed to investigate the therapeutic potential of progranulin (PGRN) in treating corneal injuries. Our findings demonstrated that PGRN significantly enhanced corneal wound repair by accelerating corneal re-epithelialization and re-innervation. In vitro experiments with cultured epithelial cells and trigeminal ganglion cells further revealed that PGRN stimulated corneal epithelial cell proliferation and promoted axon growth in trigeminal ganglion cells. Through RNA-sequencing (RNA-seq) analysis and other experimental techniques, we discovered that PGRN exerted its healing effects by modulating the Wnt signaling pathway, which played a critical role in repairing epithelial cells and promoting axon regeneration in trigeminal neurons. Importantly, our study highlighted the anti-inflammatory properties of PGRN by inhibiting the NF-κB signaling pathway, leading to decreased infiltration of macrophages. In conclusion, our findings underscored the potential of PGRN in facilitating corneal wound healing by promoting corneal epithelial cell proliferation, trigeminal ganglion cell axon regeneration, and suppressing ocular inflammation. These results suggest that PGRN could potentially expedite the healing process and improve visual outcomes in patients with corneal injuries.

Keywords: cornea, wound healing, progranulin, corneal epithelial cells, trigeminal ganglion cells

Procedia PDF Downloads 55
10691 Transmission Dynamics of Lumpy Skin Disease in Ethiopia

Authors: Wassie Molla, Klaas Frankena, Mart De Jong

Abstract:

Lumpy skin disease (LSD) is a severe viral disease of cattle, which often occurs in epidemic form. It is caused by lumpy skin disease virus of the genus capripoxvirus of family poxviridae. Mathematical models play important role in the study of infectious diseases epidemiology. They help to explain the dynamics and understand the transmission of an infectious disease within a population. Understanding the transmission dynamics of lumpy skin disease between animals is important for the implementation of effective prevention and control measures against the disease. This study was carried out in central and north-western part of Ethiopia with the objectives to understand LSD outbreak dynamics, quantify the transmission between animals and herds, and estimate the disease reproduction ratio in dominantly crop-livestock mixed and commercial herd types. Field observation and follow-up study were undertaken, and the transmission parameters were estimated based on a SIR epidemic model in which individuals are susceptible (S), infected and infectious (I), and recovered and immune or dead (R) using the final size and generalized linear model methods. The result showed that a higher morbidity was recorded in infected crop-livestock (24.1%) mixed production system herds than infected commercial production (17.5%) system herds whereas mortality was higher in intensive (4.0%) than crop-livestock (1.5%) system and the differences were statistically significant. The transmission rate among animals and between herds were 0.75 and 0.68 per week, respectively in dominantly crop-livestock production system. The transmission study undertaken in dominantly crop-livestock production system highlighted the presence of statistically significant seasonal difference in LSD transmission among animals. The reproduction numbers of LSD in dominantly crop-livestock production system were 1.06 among animals and 1.28 between herds whereas it varies from 1.03 to 1.31 among animals in commercial production system. Though the R estimated for LSD in different production systems at different localities is greater than 1, its magnitude is low implying that the disease can be easily controlled by implementing the appropriate control measures.

Keywords: commercial, crop-livestock, Ethiopia, LSD, reproduction number, transmission

Procedia PDF Downloads 296
10690 Multi-Channel Charge-Coupled Device Sensors Real-Time Cell Growth Monitor System

Authors: Han-Wei Shih, Yao-Nan Wang, Ko-Tung Chang, Lung-Ming Fu

Abstract:

A multi-channel cell growth real-time monitor and evaluation system using charge-coupled device (CCD) sensors with 40X lens integrating a NI LabVIEW image processing program is proposed and demonstrated. The LED light source control of monitor system is utilizing 8051 microprocessor integrated with NI LabVIEW software. In this study, the same concentration RAW264.7 cells growth rate and morphology in four different culture conditions (DMEM, LPS, G1, G2) were demonstrated. The real-time cells growth image was captured and analyzed by NI Vision Assistant every 10 minutes in the incubator. The image binarization technique was applied for calculating cell doubling time and cell division index. The cells doubling time and cells division index of four group with DMEM, LPS, LPS+G1, LPS+G2 are 12.3 hr,10.8 hr,14.0 hr,15.2 hr and 74.20%, 78.63%, 69.53%, 66.49%. The image magnification of multi-channel CCDs cell real-time monitoring system is about 100X~200X which compares with the traditional microscope.

Keywords: charge-coupled device (CCD), RAW264.7, doubling time, division index

Procedia PDF Downloads 357
10689 Influence of La on Increasing the ORR Activity of LaNi Supported with N and S Co-doped Carbon Black Electrocatalyst for Fuel Cells and Batteries

Authors: Maryam Kiani

Abstract:

Non-precious electrocatalysts play a crucial role in the oxygen reduction reaction (ORR) for regenerative fuel cells and rechargeable metal-air batteries. To enhance ORR activity, La (a less active element) is added to modify the activity of Ni. This addition increases the surface contents of Ni2+, N, and S species in LaNi/N-S-C, while still maintaining a substantial specific surface area and hierarchical porosity. Therefore, the additional La is essential for the successful ORR process.In addition, the presence of extra La in the LaNi/N-S-C electrocatalyst enhances the efficiency of charge transfer and improves the surface acid-base characteristics, facilitating the adsorption of oxygen molecules during the ORR process. As a result, this superior and desirable electrocatalyst exhibits significantly enhanced ORR bifunctional activity. In fact, its ORR activity is comparable to that of the 20 wt% Pt/C.

Keywords: fuel cells, batteries, dual-doped carbon black, ORR

Procedia PDF Downloads 101
10688 Human Resource Development Strategy in Automotive Industry (Eco-Car) for ASEAN Hub

Authors: Phichak Phutrakhul

Abstract:

The purposes of this research were to study concepts and strategies of human resource development in the automotive manufacturers and to articulate the proposals against the government about the human resource development for automotive industry. In the present study, qualitative study was an in-depth interview in which the qualitative data were collected from the executive or the executive of human resource division from five automotive companies - Toyota Motor (Thailand) Co., Ltd., Nissan Motor (Thailand) Co., Ltd., Mitsubishi Motors (Thailand) Co., Ltd., Honda Automobile (Thailand) Co., Ltd., and Suzuki Motor (Thailand) Co., Ltd. Qualitative data analysis was performed by using inter-coder agreement technique. The research findings were as follows: The external factors included the current conditions of the automotive industry, government’s policy related to the automotive industry, technology, labor market and human resource development systems of the country. The internal factors included management, productive management, organizational strategies, leadership, organizational culture and philosophy of human resource development. These factors were affected to the different concept of human resources development -the traditional human resource development and the strategies of human resource development. The organization focuses on human resources as intellectual capital and uses the strategies of human resource development in all development processes. The strategies of human resource development will enhance the ability of human resources in the organization and the country.

Keywords: human resource development strategy, automotive industry, eco-cars, ASEAN

Procedia PDF Downloads 466
10687 Brain Atrophy in Alzheimer's Patients

Authors: Tansa Nisan Gunerhan

Abstract:

Dementia comes in different forms, including Alzheimer's disease. The most common dementia diagnosis among elderly individuals is Alzheimer's disease. On average, for patients with Alzheimer’s, life expectancy is around 4-8 years after the diagnosis; however, expectancy can go as high as twenty years or more, depending on the shrinkage of the brain. Normally, along with aging, the brain shrinks at some level but doesn’t lose a vast amount of neurons. However, Alzheimer's patients' neurons are destroyed rapidly; hence problems with loss of memory, communication, and other metabolic activities begin. The toxic changes in the brain affect the stability of the neurons. Beta-amyloid and tau are two proteins that are believed to play a role in the development of Alzheimer's disease through their toxic changes. Beta-amyloid is a protein that is produced in the brain and is normally broken down and removed from the body. However, in people with Alzheimer's disease, the production of beta-amyloid increases, and it begins to accumulate in the brain. These plaques are thought to disrupt communication between nerve cells and may contribute to the death of brain cells. Tau is a protein that helps to stabilize microtubules, which are essential for the transportation of nutrients and other substances within brain cells. In people with Alzheimer's disease, tau becomes abnormal and begins to accumulate inside brain cells, forming neurofibrillary tangles. These tangles disrupt the normal functioning of brain cells and may contribute to their death, forming amyloid plaques which are deposits of a protein called amyloid-beta that build up between nerve cells in the brain. The accumulation of amyloid plaques and neurofibrillary tangles in the brain is thought to contribute to the shrinkage of brain tissue. As the brain shrinks, the size of the brain may decrease, leading to a reduction in brain volume. Brain atrophy in Alzheimer's disease is often accompanied by changes in the structure and function of brain cells and the connections between them, leading to a decline in brain function. These toxic changes that accumulate can cause symptoms such as memory loss, difficulty with thinking and problem-solving, and changes in behavior and personality.

Keywords: Alzheimer, amyloid-beta, brain atrophy, neuron, shrinkage

Procedia PDF Downloads 93
10686 The Influence of Mycelium Species and Incubation Protocols on Heat and Moisture Transfer Properties of Mycelium-Based Composites

Authors: Daniel Monsalve, Takafumi Noguchi

Abstract:

Mycelium-based composites (MBC) are made by growing living mycelium on lignocellulosic fibres to create a porous composite material which can be lightweight, and biodegradable, making them suitable as a sustainable thermal insulation. Thus, they can help to reduce material extraction while improving the energy efficiency of buildings, especially when agricultural by-products are used. However, as MBC are hygroscopic materials, moisture can reduce their thermal insulation efficiency. It is known that surface growth, or “mycelium skin”, can form a natural coating due to the hydrophobic properties in the mycelium cell wall. Therefore, this research aims to biofabricate a homogeneous mycelium skin and measure its influence on the final composite material by testing material properties such as thermal conductivity, vapour permeability and water absorption by partial immersion over 24 hours. In addition, porosity, surface morphology and chemical composition were also analyzed. The white-rot fungi species Pleurotus ostreatus, Ganoderma lucidum, and Trametes versicolor were grown on 10 mm hemp fibres (Cannabis sativa), and three different biofabrication protocols were used during incubation, varying the time and surface treatment, including the addition of pre-colonised sawdust. The results indicate that density can be reduced by colonisation time, which will favourably impact thermal conductivity but will negatively affect vapour and liquid water control. Additionally, different fungi can exhibit different resistance to prolonged water absorption, and due to osmotic sensitivity, mycelium skin may also diminish moisture control. Finally, a collapse in the mycelium network after water immersion was observed through SEM, indicating how the microstructure is affected, which is also dependent on fungi species and the type of skin achieved. These results help to comprehend the differences and limitations of three of the most common species used for MBC fabrication and how precise engineering is needed to effectively control the material output.

Keywords: mycelium, thermal conductivity, vapor permeability, water absorption

Procedia PDF Downloads 41
10685 Analyses of Defects in Flexible Silicon Photovoltaic Modules via Thermal Imaging and Electroluminescence

Authors: S. Maleczek, K. Drabczyk, L. Bogdan, A. Iwan

Abstract:

It is known that for industrial applications using solar panel constructed from silicon solar cells require high-efficiency performance. One of the main problems in solar panels is different mechanical and structural defects, causing the decrease of generated power. To analyse defects in solar cells, various techniques are used. However, the thermal imaging is fast and simple method for locating defects. The main goal of this work was to analyze defects in constructed flexible silicon photovoltaic modules via thermal imaging and electroluminescence method. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management. Thermal behavior was observed using thermographic camera (VIGOcam v50, VIGO System S.A, Poland) using a DC conventional source. Electroluminescence was observed by Steinbeis Center Photovoltaics (Stuttgart, Germany) equipped with a camera, in which there is a Si-CCD, 16 Mpix detector Kodak KAF-16803type. The camera has a typical spectral response in the range 350 - 1100 nm with a maximum QE of 60 % at 550 nm. In our work commercial silicon solar cells with the size 156 × 156 mm were cut for nine parts (called single solar cells) and used to create photovoltaic modules with the size of 160 × 70 cm (containing about 80 single solar cells). Flexible silicon photovoltaic modules on polyamides or polyester fabric were constructed and investigated taking into consideration anomalies on the surface of modules. Thermal imaging provided evidence of visible voltage-activated conduction. In electro-luminescence images, two regions are noticeable: darker, where solar cell is inactive and brighter corresponding with correctly working photovoltaic cells. The electroluminescence method is non-destructive and gives greater resolution of images thereby allowing a more precise evaluation of microcracks of solar cell after lamination process. Our study showed good correlations between defects observed by thermal imaging and electroluminescence. Finally, we can conclude that the thermographic examination of large scale photovoltaic modules allows us the fast, simple and inexpensive localization of defects at the single solar cells and modules. Moreover, thermographic camera was also useful to detection electrical interconnection between single solar cells.

Keywords: electro-luminescence, flexible devices, silicon solar cells, thermal imaging

Procedia PDF Downloads 314
10684 Human Tracking across Heterogeneous Systems Based on Mobile Agent Technologies

Authors: Tappei Yotsumoto, Atsushi Nomura, Kozo Tanigawa, Kenichi Takahashi, Takao Kawamura, Kazunori Sugahara

Abstract:

In a human tracking system, expanding a monitoring range of one system is complicating the management of devices and increasing its cost. Therefore, we propose a method to realize a wide-range human tracking by connecting small systems. In this paper, we examined an agent deploy method and information contents across the heterogeneous human tracking systems. By implementing the proposed method, we can construct a human tracking system across heterogeneous systems, and the system can track a target continuously between systems.

Keywords: human tracking system, mobile agent, monitoring, heterogeneous systems

Procedia PDF Downloads 534
10683 Modelling High Strain Rate Tear Open Behavior of a Bilaminate Consisting of Foam and Plastic Skin Considering Tensile Failure and Compression

Authors: Laura Pytel, Georg Baumann, Gregor Gstrein, Corina Klug

Abstract:

Premium cars often coat the instrument panels with a bilaminate consisting of a soft foam and a plastic skin. The coating is torn open during the passenger airbag deployment under high strain rates. Characterizing and simulating the top coat layer is crucial for predicting the attenuation that delays the airbag deployment, effecting the design of the restrain system and to reduce the demand of simulation adjustments through expensive physical component testing.Up to now, bilaminates used within cars either have been modelled by using a two-dimensional shell formulation for the whole coating system as one which misses out the interaction of the two layers or by combining a three-dimensional formulation foam layer with a two-dimensional skin layer but omitting the foam in the significant parts like the expected tear line area and the hinge where high compression is expected. In both cases, the properties of the coating causing the attenuation are not considered. Further, at present, the availability of material information, as there are failure dependencies of the two layers, as well as the strain rate of up to 200 1/s, are insufficient. The velocity of the passenger airbag flap during an airbag shot has been measured with about 11.5 m/s during first ripping; the digital image correlation evaluation showed resulting strain rates of above 1500 1/s. This paper provides a high strain rate material characterization of a bilaminate consisting of a thin polypropylene foam and a thermoplasctic olefins (TPO) skin and the creation of validated material models. With the help of a Split Hopkinson tension bar, strain rates of 1500 1/s were within reach. The experimental data was used to calibrate and validate a more physical modelling approach of the forced ripping of the bilaminate. In the presented model, the three-dimensional foam layer is continuously tied to the two-dimensional skin layer, allowing failure in both layers at any possible position. The simulation results show a higher agreement in terms of the trajectory of the flaps and its velocity during ripping. The resulting attenuation of the airbag deployment measured by the contact force between airbag and flaps increases and serves usable data for dimensioning modules of an airbag system.

Keywords: bilaminate ripping behavior, High strain rate material characterization and modelling, induced material failure, TPO and foam

Procedia PDF Downloads 67
10682 Computational Approaches to Study Lineage Plasticity in Human Pancreatic Ductal Adenocarcinoma

Authors: Almudena Espin Perez, Tyler Risom, Carl Pelz, Isabel English, Robert M. Angelo, Rosalie Sears, Andrew J. Gentles

Abstract:

Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly malignancies. The role of the tumor microenvironment (TME) is gaining significant attention in cancer research. Despite ongoing efforts, the nature of the interactions between tumors, immune cells, and stromal cells remains poorly understood. The cell-intrinsic properties that govern cell lineage plasticity in PDAC and extrinsic influences of immune populations require technically challenging approaches due to the inherently heterogeneous nature of PDAC. Understanding the cell lineage plasticity of PDAC will improve the development of novel strategies that could be translated to the clinic. Members of the team have demonstrated that the acquisition of ductal to neuroendocrine lineage plasticity in PDAC confers therapeutic resistance and is a biomarker of poor outcomes in patients. Our approach combines computational methods for deconvolving bulk transcriptomic cancer data using CIBERSORTx and high-throughput single-cell imaging using Multiplexed Ion Beam Imaging (MIBI) to study lineage plasticity in PDAC and its relationship to the infiltrating immune system. The CIBERSORTx algorithm uses signature matrices from immune cells and stroma from sorted and single-cell data in order to 1) infer the fractions of different immune cell types and stromal cells in bulked gene expression data and 2) impute a representative transcriptome profile for each cell type. We studied a unique set of 300 genomically well-characterized primary PDAC samples with rich clinical annotation. We deconvolved the PDAC transcriptome profiles using CIBERSORTx, leveraging publicly available single-cell RNA-seq data from normal pancreatic tissue and PDAC to estimate cell type proportions in PDAC, and digitally reconstruct cell-specific transcriptional profiles from our study dataset. We built signature matrices and optimized by simulations and comparison to ground truth data. We identified cell-type-specific transcriptional programs that contribute to cancer cell lineage plasticity, especially in the ductal compartment. We also studied cell differentiation hierarchies using CytoTRACE and predict cell lineage trajectories for acinar and ductal cells that we believe are pinpointing relevant information on PDAC progression. Collaborators (Angelo lab, Stanford University) has led the development of the Multiplexed Ion Beam Imaging (MIBI) platform for spatial proteomics. We will use in the very near future MIBI from tissue microarray of 40 PDAC samples to understand the spatial relationship between cancer cell lineage plasticity and stromal cells focused on infiltrating immune cells, using the relevant markers of PDAC plasticity identified from the RNA-seq analysis.

Keywords: deconvolution, imaging, microenvironment, PDAC

Procedia PDF Downloads 126
10681 Preparation and in vivo Assessment of Nystatin-Loaded Solid Lipid Nanoparticles for Topical Delivery against Cutaneous Candidiasis

Authors: Rawia M. Khalil, Ahmed A. Abd El Rahman, Mahfouz A. Kassem, Mohamed S. El Ridi, Mona M. Abou Samra, Ghada E. A. Awad, Soheir S. Mansy

Abstract:

Solid lipid nanoparticles (SLNs) have gained great attention for the topical treatment of skin associated fungal infection as they facilitate the skin penetration of loaded drugs. Our work deals with the preparation of nystatin loaded solid lipid nanoparticles (NystSLNs) using the hot homogenization and ultrasonication method. The prepared NystSLNs were characterized in terms of entrapment efficiency, particle size, zeta potential, transmission electron microscopy, differential scanning calorimetry, rheological behavior and in vitro drug release. A stability study for 6 months was performed. A microbiological study was conducted in male rats infected with Candida albicans, by counting the colonies and examining the histopathological changes induced on the skin of infected rats. The results showed that SLNs dispersions are spherical in shape with particle size ranging from 83.26±11.33 to 955.04±1.09 nm. The entrapment efficiencies are ranging from 19.73±1.21 to 72.46±0.66% with zeta potential ranging from -18.9 to -38.8 mV and shear-thinning rheological Behavior. The stability studies done for 6 months showed that nystatin (Nyst) is a good candidate for topical SLN formulations. A least number of colony forming unit/ ml (cfu/ml) was recorded for the selected NystSLN compared to the drug solution and the commercial Nystatin® cream present in the market. It can be fulfilled from this work that SLNs provide a good skin targeting effect and may represent promising carrier for topical delivery of Nyst offering the sustained release and maintaining the localized effect, resulting in an effective treatment of cutaneous fungal infection.

Keywords: candida infections, hot homogenization, nystatin, solid lipid nanoparticles, stability, topical delivery

Procedia PDF Downloads 390
10680 Implementation of Tissue Engineering Technique to Nursing of Unhealed Diabetic Foot Lesion

Authors: Basuki Supartono

Abstract:

Introduction: Diabetic wound risks limb amputation, and the healing remains challenging. Chronic Hyperglycemia caused the insufficient inflammatory response and impaired ability of the cells to regenerate. Tissue Engineering Technique is mandatory. Methods: Tissue engineering (TE)-based therapy Utilizing mononuclear cells, plasma rich platelets, and collagen applied on the damaged tissue Results: TE technique resulting in acceptable outcomes. The wound healed completely in 2 months. No adverse effects. No allergic reaction. No morbidity and mortality Discussion: TE-based therapy utilizing mononuclear cells, plasma rich platelets, and collagen are safe and comfortable to fix damaged tissues. These components stop the chronic inflammatory process and increase cells' ability for regeneration and restoration of damaged tissues. Both of these allow the wound to regenerate and heal. Conclusion: TE-based therapy is safe and effectively treats unhealed diabetic lesion.

Keywords: diabetic foot lesion, tissue engineering technique, wound healing, stemcells

Procedia PDF Downloads 77
10679 Evaluation of Tumor Microenvironment Using Molecular Imaging

Authors: Fakhrosadat Sajjadian, Ramin Ghasemi Shayan

Abstract:

The tumor microenvironment plays an fundamental part in tumor start, movement, metastasis, and treatment resistance. It varies from ordinary tissue in terms of its extracellular network, vascular and lymphatic arrange, as well as physiological conditions. The clinical application of atomic cancer imaging is regularly prevented by the tall commercialization costs of focused on imaging operators as well as the constrained clinical applications and little showcase measure of a few operators. . Since numerous cancer types share comparable characteristics of the tumor microenvironment, the capacity to target these biomarkers has the potential to supply clinically translatable atomic imaging advances for numerous types encompassing cancer and broad clinical applications. Noteworthy advance has been made in focusing on the tumor microenvironment for atomic cancer imaging. In this survey, we summarize the standards and methodologies of later progresses in atomic imaging of the tumor microenvironment, utilizing distinctive imaging modalities for early discovery and conclusion of cancer. To conclude, The tumor microenvironment (TME) encompassing tumor cells could be a profoundly energetic and heterogeneous composition of safe cells, fibroblasts, forerunner cells, endothelial cells, flagging atoms and extracellular network (ECM) components.

Keywords: molecular, imaging, TME, medicine

Procedia PDF Downloads 44