Search results for: fault detection and recovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5625

Search results for: fault detection and recovery

4695 Recovery of Heavy Metals by Ion Exchange on the Zeolite Materials

Authors: K. Menad, A. Faddeg

Abstract:

Zeolites are a family of mineral compounds. With special properties that have led to several important industrial applications. Ion exchange has enabled the first industrial application in the field of water treatment. The exchange by aqueous pathway is the method most used in the case of such microporous materials and this technique will be used in this work. The objective of this work is to find performance materials for the recovery of heavy metals such as cadmium. The study is to compare the properties of different ion exchange zeolite Na-X, Na-A, their physical mixture and the composite A (LTA) / X (FAU). After the synthesis of various zeolites X and A, it was designed a model Core-Shell to form a composite zeolite A on zeolite X. Finally, ion exchange studies were performed on these zeolite materials. The cation is exclusively tested for cadmium, a toxic element and is harmful to health and the environment.

Keywords: zeolite A, zeolite X, ion exchange, water treatment

Procedia PDF Downloads 435
4694 Intrusion Detection Systems in Autonomous Vehicles Using Machine Learning

Authors: Hashim Babat, Nirangan Dangi, Anish Dabhane

Abstract:

As autonomous vehicles (AVs) and the Internet of Vehicles (IoV) transform transportation, ensuring the security of vehicular networks is crucial. Increased connectivity through Vehicle-to-Everything (V2X) technology exposes both intra-vehicle (CAN) and external networks to cyber-attacks. This survey examines state-of-the-art Intrusion Detection Systems (IDS) designed to counter threats like DoS, message injection, spoofing, and sniffing attacks. We focus on key IDS frameworks—Multi-Tiered Hybrid IDS (MTH-IDS), Tree-Based IDS, and Leader Class Confidence Decision Ensemble (LCCDE)—that leverage machine learning models such as decision trees, ensemble learning, XGBoost, and LightGBM. Their performance on datasets like CICIDS2017 and CAN-Intrusion is compared based on detection accuracy, false alarms, and real-time feasibility. We also discuss challenges such as computational limits and propose future directions, including advanced ML and blockchain, to enhance AV and IoV security.

Keywords: autonomous vehicles, internet of vehicles, V2X, CAN, intrusion detection systems, cyber-attacks, decision trees, ensemble learning, gradient-boosting, XGBoost, LightGBM, CAN-intrusion, zero-day attacks

Procedia PDF Downloads 4
4693 Review of Suitable Advanced Oxidation Processes for Degradation of Organic Compounds in Produced Water during Enhanced Oil Recovery

Authors: Smita Krishnan, Krittika Chandran, Chandra Mohan Sinnathambi

Abstract:

Produced water and its treatment and management are growing challenges in all producing regions. This water is generally considered as a nonrevenue product, but it can have significant value in enhanced oil recovery techniques if it meets the required quality standards. There is also an interest in the beneficial uses of produced water for agricultural and industrial applications. Advanced Oxidation Process is a chemical technology that has been growing recently in the wastewater treatment industry, and it is highly recommended for non-easily removal of organic compounds. The efficiency of AOPs is compound specific, therefore, the optimization of each process should be done based on different aspects.

Keywords: advanced oxidation process, photochemical processes, degradation, organic contaminants

Procedia PDF Downloads 509
4692 Recovery in Serious Mental Illness: Perception of Health Care Trainees in Morocco

Authors: Sophia El Ouazzani, Amer M. Burhan, Mary Wickenden

Abstract:

Background: Despite improvements in recent years, the Moroccan mental healthcare system still face disparity between available resources and the current population’sneeds. The societal stigma, and limited economic, political, and human resources are all factors in shaping the psychiatric system, exacerbating the discontinuity of services for users after discharged from the hospital. As a result, limited opportunities for social inclusion and meaningful community engagement undermines human rights and recovery potential for people with mental health problems, especially those with psychiatric disabilities from serious mental illness (SMI). Recovery-oriented practice, such as mental health rehabilitation, addresses the complex needs of patients with SMI and support their community inclusion. The cultural acceptability of recovery-oriented practice is an important notion to consider for a successful implementation. Exploring the extent to which recovery-oriented practices are used in Morocco is a necessary first step to assess the cultural relevance of such a practice model. Aims: This study aims to explore understanding and knowledge, perception, and perspective about core concepts in mental health rehabilitation, including psychiatric disability, recovery, and engagement in meaningful occupations for people with SMI in Morocco. Methods: A pilot qualitative study was undertaken. Data was collected via semi-structured interviews and focusgroup discussions with healthcare professional students. Questions were organised around the following themes: 1) students’ perceptions, understanding, and expectations around concepts such as SMI, mental health disability, and recovery, and 2) changes in their views and expectations after starting their professional training. Further analysis of students’ perspectives on the concept of ‘meaningful occupation’ and how is this viewed within the context of the research questions was done. The data was extracted using an inductive thematic analysis approach. This is a pilot stage of a doctoral project, further data will be collected and analysed until saturation is reached. Results: A total of eight students were included in this study which included occupational therapy and mental health nursing students receiving training in Morocco. The following themes emerged as influencing students’ perceptions and views around the main concepts: 1) Stigma and discrimination, 2) Fatalism and low expectations, 3) Gendered perceptions, 4) Religious causation, 5) Family involvement, 6) Professional background, 7) Inaccessibility of services and treatment. Discussion/Contribution: Preliminary analysis of the data suggests that students’ perceptions changed after gaining more clinical experiences and being exposed to people with psychiatric disabilities. Prior to their training, stigma shaped greatly how they viewed people with SMI. The fear, misunderstanding, and shame around SMI and their functional capacities may contribute to people with SMI being stigmatizedand marginalised from their family and their community. Religious causations associated to SMIsare understood as further deepening the social stigma around psychiatric disability. Perceptions are influenced by gender, with women being doubly discriminated against in relation to recovery opportunities. Therapeutic pessimism seems to persist amongst students and within the mental healthcare system in general and regarding the recovery potential and opportunities for people with SMI. The limited resources, fatalism, and stigma all contribute to the low expectations for recovery and community inclusion. Implications and future directions will be discussed.

Keywords: disability, mental health rehabilitation, recovery, serious mental illness, transcultural psychiatry

Procedia PDF Downloads 147
4691 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth

Authors: Hatem Hajri, Mohamed-Cherif Rahal

Abstract:

Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.

Keywords: ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter

Procedia PDF Downloads 176
4690 Simulation of Polymeric Precursors Production from Wine Industrial Organic Wastes

Authors: Tanapoom Phuncharoen, Tawiwat Sriwongsa, Kanita Boonruang, Apichit Svang-Ariyaskul

Abstract:

The production of dimethyl acetal, isovaleradehyde, and pyridine were simulated using Aspen Plus simulation. Upgrading cleaning water from wine industrial production is the main objective of the project. The winery waste composes of acetaldehyde, methanol, ethyl acetate, 1-propanol, water, isoamyl alcohol, and isobutanol. The project is separated into three parts; separation, reaction, and purification. Various processes were considered to maximize the profit along with obtaining high purity and recovery of each component with optimum heat duty. The results show a significant value of the product with purity more than 75% and recovery over 98%.

Keywords: dimethyl acetal, pyridine, wine, aspen plus, isovaleradehyde, polymeric precursors

Procedia PDF Downloads 329
4689 System Identification in Presence of Outliers

Authors: Chao Yu, Qing-Guo Wang, Dan Zhang

Abstract:

The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.

Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising

Procedia PDF Downloads 311
4688 Extractive Bioconversion of Polyhydroxyalkanoates (PHAs) from Ralstonia Eutropha Via Aqueous Two-Phase System-An Integrated Approach

Authors: Y. K. Leong, J. C. W. Lan, H. S. Loh, P. L. Show

Abstract:

Being biodegradable, non-toxic, renewable and have similar or better properties as commercial plastics, polyhydroxy alkanoates (PHAs) can be a potential game changer in the polymer industry. PHAs are the biodegradable polymer produced by bacteria, which are in interest as a sustainable alternative to petrochemical-derived plastics; however, its commercial value has significantly limited by high production and recovery cost of PHA. Aqueous two-phase system (ATPS) offers different chemical and physical environments, which contains about 80-90% water delivers an excellent environment for partitioning of cells, cell organelles and biologically active substances. Extractive bioconversion via ATPS allows the integration of PHA upstream fermentation and downstream purification process, which reduces production steps and time, thus lead to cost reduction. The ability of Ralstonia eutropha to grow under different ATPS conditions was investigated for its potential to be used in a bioconversion system. Changes in tie-line length (TLL) and a volume ratio (Vr) were shown to have an effect on PHA partition coefficient. High PHA recovery yield of 65% with a relatively high purity of 73% was obtained in PEG 6000/Sodium sulphate system with 42.6 wt/wt % TLL and 1.25 Vr. Extractive bioconversion via ATPS is an attractive approach for the combination of PHA production and recovery process.

Keywords: aqueous two-phase system, extractive bioconversion, polyhydroxy alkanoates, purification

Procedia PDF Downloads 313
4687 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography

Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz

Abstract:

Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.

Keywords: ring recognition, edge detection, X-ray computed tomography, dendrochronology

Procedia PDF Downloads 224
4686 Kernel Parallelization Equation for Identifying Structures under Unknown and Periodic Loads

Authors: Seyed Sadegh Naseralavi

Abstract:

This paper presents a Kernel parallelization equation for damage identification in structures under unknown periodic excitations. Herein, the dynamic differential equation of the motion of structure is viewed as a mapping from displacements to external forces. Utilizing this viewpoint, a new method for damage detection in structures under periodic loads is presented. The developed method requires only two periods of load. The method detects the damages without finding the input loads. The method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering the concept, kernel parallelization equation (KPE) is derived for damage detection under unknown periodic loads. The method is verified for a case study under periodic loads.

Keywords: Kernel, unknown periodic load, damage detection, Kernel parallelization equation

Procedia PDF Downloads 290
4685 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study

Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis

Abstract:

An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electromechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.

Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT

Procedia PDF Downloads 258
4684 Study on the Seismic Response of Slope under Pulse-Like Ground Motion

Authors: Peter Antwi Buah, Yingbin Zhang, Jianxian He, Chenlin Xiang, Delali Atsu Y. Bakah

Abstract:

Near-fault ground motions with velocity pulses are considered to cause significant damage to structures or slopes compared to ordinary ground motions without velocity pulses. The double pulsed pulse-like ground motion is as well known to be stronger than the single pulse. This study has numerically justified this perspective by studying the dynamic response of a homogeneous rock slope subjected to four pulse-like and two non-pulse-like ground motions using the Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) software. Two of the pulse-like ground motions just have a single pulse. The results show that near-fault ground motions with velocity pulses can cause a higher dynamic response than regular ground motions. The amplification of the peak ground acceleration (PGA) in horizontal direction increases with the increase of the slope elevation. The seismic response of the slope under double pulse ground motion is stronger than that of the single pulse ground motion. The PGV amplification factor under the effect of the non-pulse-like records is also smaller than those under the pulse-like records. The velocity pulse strengthens the earthquake damage to the slope, which results in producing a more strong dynamic response.

Keywords: velocity pulses, dynamic response, PGV magnification effect, elevation effect, double pulse

Procedia PDF Downloads 180
4683 Housing Recovery in Heavily Damaged Communities in New Jersey after Hurricane Sandy

Authors: Chenyi Ma

Abstract:

Background: The second costliest hurricane in U.S. history, Sandy landed in southern New Jersey on October 29, 2012, and struck the entire state with high winds and torrential rains. The disaster killed more than 100 people, left more than 8.5 million households without power, and damaged or destroyed more than 200,000 homes across the state. Immediately after the disaster, public policy support was provided in nine coastal counties that constituted 98% of the major and severely damaged housing units in NJ overall. The programs include Individuals and Households Assistance Program, Small Business Loan Program, National Flood Insurance Program, and the Federal Emergency Management Administration (FEMA) Public Assistance Grant Program. In the most severely affected counties, additional funding was provided through Community Development Block Grant: Reconstruction, Rehabilitation, Elevation, and Mitigation Program, and Homeowner Resettlement Program. How these policies individually and as a whole impacted housing recovery across communities with different socioeconomic and demographic profiles has not yet been studied, particularly in relation to damage levels. The concept of community social vulnerability has been widely used to explain many aspects of natural disasters. Nevertheless, how communities are vulnerable has been less fully examined. Community resilience has been conceptualized as a protective factor against negative impacts from disasters, however, how community resilience buffers the effects of vulnerability is not yet known. Because housing recovery is a dynamic social and economic process that varies according to context, this study examined the path from community vulnerability and resilience to housing recovery looking at both community characteristics and policy interventions. Sample/Methods: This retrospective longitudinal case study compared a literature-identified set of pre-disaster community characteristics, the effects of multiple public policy programs, and a set of time-variant community resilience indicators to changes in housing stock (operationally defined by percent of building permits to total occupied housing units/households) between 2010 and 2014, two years before and after Hurricane Sandy. The sample consisted of 51 municipalities in the nine counties in which between 4% and 58% of housing units suffered either major or severe damage. Structural equation modeling (SEM) was used to determine the path from vulnerability to the housing recovery, via multiple public programs, separately and as a whole, and via the community resilience indicators. The spatial analytical tool ArcGIS 10.2 was used to show the spatial relations between housing recovery patterns and community vulnerability and resilience. Findings: Holding damage levels constant, communities with higher proportions of Hispanic households had significantly lower levels of housing recovery while communities with households with an adult >age 65 had significantly higher levels of the housing recovery. The contrast was partly due to the different levels of total public support the two types of the community received. Further, while the public policy programs individually mediated the negative associations between African American and female-headed households and housing recovery, communities with larger proportions of African American, female-headed and Hispanic households were “vulnerable” to lower levels of housing recovery because they lacked sufficient public program support. Even so, higher employment rates and incomes buffered vulnerability to lower housing recovery. Because housing is the "wobbly pillar" of the welfare state, the housing needs of these particular groups should be more fully addressed by disaster policy.

Keywords: community social vulnerability, community resilience, hurricane, public policy

Procedia PDF Downloads 376
4682 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study

Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis

Abstract:

An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electro-mechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.

Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT

Procedia PDF Downloads 295
4681 Scope of Public Policies in Promoting Resource-Recovery Sanitation Systems to Answer the Open Defecation Challenges of Indian Cities: Case of Ahmedabad

Authors: Isalyne Gennaro

Abstract:

The lack of access to basic sanitation services and improper water infrastructure pollute the environment and expose people to water-borne diseases. In 2014, to address these concerns, the central government of India launched five-years urban development and sanitation programs. The national vision seemed to encourage the use of technologies which recycle and reuse wastewater for achieving open defecation free cities. As we approach 2019, it is time to reflect on these objectives. This research critically looked at the actual scope and limitations of policies and regulations to promote resource-recovery sanitation systems. This study was based on the case of the fast-growing city of Ahmedabad, Gujarat. The analysis examined the actions and priorities, financial and institutional arrangements and technologies promoted at the national, sub-national and local levels. The research work concluded that a paradigm shift is required, from providing infrastructures in a supply-driven manner to creating inclusive planning framework which focuses on local challenges and generates a demand-responsiveness from the potential users targeted.

Keywords: India, public policy, resource-recovery, urban sanitation

Procedia PDF Downloads 147
4680 Automated Feature Detection and Matching Algorithms for Breast IR Sequence Images

Authors: Chia-Yen Lee, Hao-Jen Wang, Jhih-Hao Lai

Abstract:

In recent years, infrared (IR) imaging has been considered as a potential tool to assess the efficacy of chemotherapy and early detection of breast cancer. Regions of tumor growth with high metabolic rate and angiogenesis phenomenon lead to the high temperatures. Observation of differences between the heat maps in long term is useful to help assess the growth of breast cancer cells and detect breast cancer earlier, wherein the multi-time infrared image alignment technology is a necessary step. Representative feature points detection and matching are essential steps toward the good performance of image registration and quantitative analysis. However, there is no clear boundary on the infrared images and the subject's posture are different for each shot. It cannot adhesive markers on a body surface for a very long period, and it is hard to find anatomic fiducial markers on a body surface. In other words, it’s difficult to detect and match features in an IR sequence images. In this study, automated feature detection and matching algorithms with two type of automatic feature points (i.e., vascular branch points and modified Harris corner) are developed respectively. The preliminary results show that the proposed method could identify the representative feature points on the IR breast images successfully of 98% accuracy and the matching results of 93% accuracy.

Keywords: Harris corner, infrared image, feature detection, registration, matching

Procedia PDF Downloads 306
4679 NSBS: Design of a Network Storage Backup System

Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan

Abstract:

The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and we realize the snapshot and hierarchical index in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving the efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.

Keywords: agent, network backup system, three architecture model, NSBS

Procedia PDF Downloads 463
4678 Introduce a New Model of Anomaly Detection in Computer Networks Using Artificial Immune Systems

Authors: Mehrshad Khosraviani, Faramarz Abbaspour Leyl Abadi

Abstract:

The fundamental component of the computer network of modern information society will be considered. These networks are connected to the network of the internet generally. Due to the fact that the primary purpose of the Internet is not designed for, in recent decades, none of these networks in many of the attacks has been very important. Today, for the provision of security, different security tools and systems, including intrusion detection systems are used in the network. A common diagnosis system based on artificial immunity, the designer, the Adhasaz Foundation has been evaluated. The idea of using artificial safety methods in the diagnosis of abnormalities in computer networks it has been stimulated in the direction of their specificity, there are safety systems are similar to the common needs of m, that is non-diagnostic. For example, such methods can be used to detect any abnormalities, a variety of attacks, being memory, learning ability, and Khodtnzimi method of artificial immune algorithm pointed out. Diagnosis of the common system of education offered in this paper using only the normal samples is required for network and any additional data about the type of attacks is not. In the proposed system of positive selection and negative selection processes, selection of samples to create a distinction between the colony of normal attack is used. Copa real data collection on the evaluation of ij indicates the proposed system in the false alarm rate is often low compared to other ir methods and the detection rate is in the variations.

Keywords: artificial immune system, abnormality detection, intrusion detection, computer networks

Procedia PDF Downloads 359
4677 Reservoir-Triggered Seismicity of Water Level Variation in the Lake Aswan

Authors: Abdel-Monem Sayed Mohamed

Abstract:

Lake Aswan is one of the largest man-made reservoirs in the world. The reservoir began to fill in 1964 and the level rose gradually, with annual irrigation cycles, until it reached a maximum water level of 181.5 m in November 1999, with a capacity of 160 km3. The filling of such large reservoir changes the stress system either through increasing vertical compressional stress by loading and/or increased pore pressure through the decrease of the effective normal stress. The resulted effect on fault zones changes stability depending strongly on the orientation of pre-existing stress and geometry of the reservoir/fault system. The main earthquake occurred on November 14, 1981, with magnitude 5.5. This event occurred after 17 years of the reservoir began to fill, along the active part of the Kalabsha fault and located not far from the High Dam. Numerous of small earthquakes follow this earthquake and continue till now. For this reason, 13 seismograph stations (radio-telemetry network short-period seismometers) were installed around the northern part of Lake Aswan. The main purpose of the network is to monitor the earthquake activity continuously within Aswan region. The data described here are obtained from the continuous record of earthquake activity and lake-water level variation through the period from 1982 to 2015. The seismicity is concentrated in the Kalabsha area, where there is an intersection of the easterly trending Kalabsha fault with the northerly trending faults. The earthquake foci are distributed in two seismic zones, shallow and deep in the crust. Shallow events have focal depths of less than 12 km while deep events extend from 12 to 28 km. Correlation between the seismicity and the water level variation in the lake provides great suggestion to distinguish the micro-earthquakes, particularly, those in shallow seismic zone in the reservoir–triggered seismicity category. The water loading is one factor from several factors, as an activating medium in triggering earthquakes. The common factors for all cases of induced seismicity seem to be the presence of specific geological conditions, the tectonic setting and water loading. The role of the water loading is as a supplementary source of earthquake events. So, the earthquake activity in the area originated tectonically (ML ≥ 4) and the water factor works as an activating medium in triggering small earthquakes (ML ≤ 3). Study of the inducing seismicity from the water level variation in Aswan Lake is of great importance and play great roles necessity for the safety of the High Dam body and its economic resources.

Keywords: Aswan lake, Aswan seismic network, seismicity, water level variation

Procedia PDF Downloads 374
4676 A Supervised Approach for Detection of Singleton Spam Reviews

Authors: Atefeh Heydari, Mohammadali Tavakoli, Naomie Salim

Abstract:

In recent years, we have witnessed that online reviews are the most important source of customers’ opinion. They are progressively more used by individuals and organisations to make purchase and business decisions. Unfortunately, for the reason of profit or fame, frauds produce deceptive reviews to hoodwink potential customers. Their activities mislead not only potential customers to make appropriate purchasing decisions and organisations to reshape their business, but also opinion mining techniques by preventing them from reaching accurate results. Spam reviews could be divided into two main groups, i.e. multiple and singleton spam reviews. Detecting a singleton spam review that is the only review written by a user ID is extremely challenging due to lack of clue for detection purposes. Singleton spam reviews are very harmful and various features and proofs used in multiple spam reviews detection are not applicable in this case. Current research aims to propose a novel supervised technique to detect singleton spam reviews. To achieve this, various features are proposed in this study and are to be combined with the most appropriate features extracted from literature and employed in a classifier. In order to compare the performance of different classifiers, SVM and naive Bayes classification algorithms were used for model building. The results revealed that SVM was more accurate than naive Bayes and our proposed technique is capable to detect singleton spam reviews effectively.

Keywords: classification algorithms, Naïve Bayes, opinion review spam detection, singleton review spam detection, support vector machine

Procedia PDF Downloads 312
4675 Signal Processing of the Blood Pressure and Characterization

Authors: Hadj Abd El Kader Benghenia, Fethi Bereksi Reguig

Abstract:

In clinical medicine, blood pressure, raised blood hemodynamic monitoring is rich pathophysiological information of cardiovascular system, of course described through factors such as: blood volume, arterial compliance and peripheral resistance. In this work, we are interested in analyzing these signals to propose a detection algorithm to delineate the different sequences and especially systolic blood pressure (SBP), diastolic blood pressure (DBP), and the wave and dicrotic to do their analysis in order to extract the cardiovascular parameters.

Keywords: blood pressure, SBP, DBP, detection algorithm

Procedia PDF Downloads 442
4674 Automating 2D CAD to 3D Model Generation Process: Wall pop-ups

Authors: Mohit Gupta, Chialing Wei, Thomas Czerniawski

Abstract:

In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money.

Keywords: neural networks, Yolo, 2D to 3D transformation, CAD object detection

Procedia PDF Downloads 148
4673 The Convergence of IoT and Machine Learning: A Survey of Real-time Stress Detection System

Authors: Shreyas Gambhirrao, Aditya Vichare, Aniket Tembhurne, Shahuraj Bhosale

Abstract:

In today's rapidly evolving environment, stress has emerged as a significant health concern across different age groups. Stress that isn't controlled, whether it comes from job responsibilities, health issues, or the never-ending news cycle, can have a negative effect on our well-being. The problem is further aggravated by the ongoing connection to technology. In this high-tech age, identifying and controlling stress is vital. In order to solve this health issue, the study focuses on three key metrics for stress detection: body temperature, heart rate, and galvanic skin response (GSR). These parameters along with the Support Vector Machine classifier assist the system to categorize stress into three groups: 1) Stressed, 2) Not stressed, and 3) Moderate stress. Proposed training model, a NodeMCU combined with particular sensors collects data in real-time and rapidly categorizes individuals based on their stress levels. Real-time stress detection is made possible by this creative combination of hardware and software.

Keywords: real time stress detection, NodeMCU, sensors, heart-rate, body temperature, galvanic skin response (GSR), support vector machine

Procedia PDF Downloads 77
4672 Facial Recognition and Landmark Detection in Fitness Assessment and Performance Improvement

Authors: Brittany Richardson, Ying Wang

Abstract:

For physical therapy, exercise prescription, athlete training, and regular fitness training, it is crucial to perform health assessments or fitness assessments periodically. An accurate assessment is propitious for tracking recovery progress, preventing potential injury and making long-range training plans. Assessments include necessary measurements, height, weight, blood pressure, heart rate, body fat, etc. and advanced evaluation, muscle group strength, stability-mobility, and movement evaluation, etc. In the current standard assessment procedures, the accuracy of assessments, especially advanced evaluations, largely depends on the experience of physicians, coaches, and personal trainers. And it is challenging to track clients’ progress in the current assessment. Unlike the tradition assessment, in this paper, we present a deep learning based face recognition algorithm for accurate, comprehensive and trackable assessment. Based on the result from our assessment, physicians, coaches, and personal trainers are able to adjust the training targets and methods. The system categorizes the difficulty levels of the current activity for the client or user, furthermore make more comprehensive assessments based on tracking muscle group over time using a designed landmark detection method. The system also includes the function of grading and correcting the form of the clients during exercise. Experienced coaches and personal trainer can tell the clients' limit based on their facial expression and muscle group movements, even during the first several sessions. Similar to this, using a convolution neural network, the system is trained with people’s facial expression to differentiate challenge levels for clients. It uses landmark detection for subtle changes in muscle groups movements. It measures the proximal mobility of the hips and thoracic spine, the proximal stability of the scapulothoracic region and distal mobility of the glenohumeral joint, as well as distal mobility, and its effect on the kinetic chain. This system integrates data from other fitness assistant devices, including but not limited to Apple Watch, Fitbit, etc. for a improved training and testing performance. The system itself doesn’t require history data for an individual client, but the history data of a client can be used to create a more effective exercise plan. In order to validate the performance of the proposed work, an experimental design is presented. The results show that the proposed work contributes towards improving the quality of exercise plan, execution, progress tracking, and performance.

Keywords: exercise prescription, facial recognition, landmark detection, fitness assessments

Procedia PDF Downloads 136
4671 How Do Crisis Affect Economic Policy?

Authors: Eva Kotlánová

Abstract:

After recession that began in 2007 in the United States and subsequently spilled over the Europe we could expect recovery of economic growth. According to the last estimation of economic progress of European countries, this recovery is not strong enough. Among others, it will depend on economic policy, where and in which way, the economic indicators will proceed. Economic theories postulate that the economic subjects prefer stably, continual economic policy without repeated and strong fluctuations. This policy is perceived as support of economic growth. Mostly in crises period, when the government must cope with consequences of recession, the economic policy becomes unpredictable for many subjects and economic policy uncertainty grows, which have negative influence on economic growth. The aim of this paper is to use panel regression to prove or disprove this hypothesis on the example of five largest European economies in the period 2008–2012.

Keywords: economic crises in Europe, economic policy, uncertainty, panel analysis regression

Procedia PDF Downloads 390
4670 Predictive Factors of Nasal Continuous Positive Airway Pressure (NCPAP) Therapy Success in Preterm Neonates with Hyaline Membrane Disease (HMD)

Authors: Novutry Siregar, Afdal, Emilzon Taslim

Abstract:

Hyaline Membrane Disease (HMD) is the main cause of respiratory failure in preterm neonates caused by surfactant deficiency. Nasal Continuous Positive Airway Pressure (NCPAP) is the therapy for HMD. The success of therapy is determined by gestational age, birth weight, HMD grade, time of NCAP administration, and time of breathing frequency recovery. The aim of this research is to identify the predictive factor of NCPAP therapy success in preterm neonates with HMD. This study used a cross-sectional design by using medical records of patients who were treated in the Perinatology of the Pediatric Department of Dr. M. Djamil Padang Central Hospital from January 2015 to December 2017. The samples were eighty-two neonates that were selected by using the total sampling technique. Data analysis was done by using the Chi-Square Test and the Multiple Logistic Regression Prediction Model. The results showed the success rate of NCPAP therapy reached 53.7%. Birth weight (p = 0.048, OR = 3.34 95% CI 1.01-11.07), HMD grade I (p = 0.018, OR = 4.95 CI 95% 1.31-18.68), HMD grade II (p = 0.044, OR = 5.52 95% CI 1.04-29.15), and time of breathing frequency recovery (p = 0,000, OR = 13.50 95% CI 3.58-50, 83) are the predictive factors of NCPAP therapy success in preterm neonates with HMD. The most significant predictive factor is the time of breathing frequency recovery.

Keywords: predictive factors, the success of therapy, NCPAP, preterm neonates, HMD

Procedia PDF Downloads 71
4669 Apatite Flotation Using Fruits' Oil as Collector and Sorghum as Depressant

Authors: Elenice Maria Schons Silva, Andre Carlos Silva

Abstract:

The crescent demand for raw material has increased mining activities. Mineral industry faces the challenge of process more complexes ores, with very small particles and low grade, together with constant pressure to reduce production costs and environment impacts. Froth flotation deserves special attention among the concentration methods for mineral processing. Besides its great selectivity for different minerals, flotation is a high efficient method to process fine particles. The process is based on the minerals surficial physicochemical properties and the separation is only possible with the aid of chemicals such as collectors, frothers, modifiers, and depressants. In order to use sustainable and eco-friendly reagents, oils extracted from three different vegetable species (pequi’s pulp, macauba’s nut and pulp, and Jatropha curcas) were studied and tested as apatite collectors. Since the oils are not soluble in water, an alkaline hydrolysis (or saponification), was necessary before their contact with the minerals. The saponification was performed at room temperature. The tests with the new collectors were carried out at pH 9 and Flotigam 5806, a synthetic mix of fatty acids industrially adopted as apatite collector manufactured by Clariant, was used as benchmark. In order to find a feasible replacement for cornstarch the flour and starch of a graniferous variety of sorghum was tested as depressant. Apatite samples were used in the flotation tests. XRF (X-ray fluorescence), XRD (X-ray diffraction), and SEM/EDS (Scanning Electron Microscopy with Energy Dispersive Spectroscopy) were used to characterize the apatite samples. Zeta potential measurements were performed in the pH range from 3.5 to 12.5. A commercial cornstarch was used as depressant benchmark. Four depressants dosages and pH values were tested. A statistical test was used to verify the pH, dosage, and starch type influence on the minerals recoveries. For dosages equal or higher than 7.5 mg/L, pequi oil recovered almost all apatite particles. In one hand, macauba’s pulp oil showed excellent results for all dosages, with more than 90% of apatite recovery, but in the other hand, with the nut oil, the higher recovery found was around 84%. Jatropha curcas oil was the second best oil tested and more than 90% of the apatite particles were recovered for the dosage of 7.5 mg/L. Regarding the depressant, the lower apatite recovery with sorghum starch were found for a dosage of 1,200 g/t and pH 11, resulting in a recovery of 1.99%. The apatite recovery for the same conditions as 1.40% for sorghum flour (approximately 30% lower). When comparing with cornstarch at the same conditions sorghum flour produced an apatite recovery 91% lower.

Keywords: collectors, depressants, flotation, mineral processing

Procedia PDF Downloads 157
4668 A Comparison of YOLO Family for Apple Detection and Counting in Orchards

Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long

Abstract:

In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.

Keywords: agricultural object detection, deep learning, machine vision, YOLO family

Procedia PDF Downloads 203
4667 Sampling and Characterization of Fines Created during the Shredding of Non Hazardous Waste

Authors: Soukaina Oujana, Peggy Zwolinski

Abstract:

Fines are heterogeneous residues created during the shredding of non-hazardous waste. They are one of the most challenging issues faced by recyclers, because they are at the present time considered as non-sortable and non-reusable mixtures destined to landfill. However, fines contain a large amount of recoverable materials that could be recycled or reused for the production of solid recovered fuel. This research is conducted in relation to a project named ValoRABES. The aim is to characterize fines and establish a suitable sorting process in order to extract the materials contained in the mixture and define their suitable recovery paths. This paper will highlight the importance of a good sampling and will propose a sampling methodology for fines characterization. First results about the characterization will be also presented.

Keywords: fines, non-hazardous waste, recovery, shredding residues, waste characterization, waste sampling

Procedia PDF Downloads 193
4666 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8

Authors: Aysun Sezer

Abstract:

Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.

Keywords: YOLOv8, object detection, humerus, scapula, IRM

Procedia PDF Downloads 70