Search results for: erosion rate prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10412

Search results for: erosion rate prediction

9482 Optimization of Leaching Properties of a Low-Grade Copper Ore Using Central Composite Design (CCD)

Authors: Lawrence Koech, Hilary Rutto, Olga Mothibedi

Abstract:

Worldwide demand for copper has led to intensive search for methods of extraction and recovery of copper from different sources. The study investigates the leaching properties of a low-grade copper ore by optimizing the leaching variables using response surface methodology. The effects of key parameters, i.e., temperature, solid to liquid ratio, stirring speed and pH, on the leaching rate constant was investigated using a pH stat apparatus. A Central Composite Design (CCD) of experiments was used to develop a quadratic model which specifically correlates the leaching variables and the rate constant. The results indicated that the model is in good agreement with the experimental data with a correlation coefficient (R2) of 0.93. The temperature and solid to liquid ratio were found to have the most substantial influence on the leaching rate constant. The optimum operating conditions for copper leaching from the ore were identified as temperature at 65C, solid to liquid ratio at 1.625 and stirring speed of 325 rpm which yielded an average leaching efficiency of 93.16%.

Keywords: copper, leaching, CCD, rate constant

Procedia PDF Downloads 242
9481 The Flotation Device Designed to Treat Phosphate Rock

Authors: Z. Q. Zhang, Y. Zhang, D. L. Li

Abstract:

To overcome the some shortcomings associated with traditional flotation machines and columns in collophanite flotation, a flotation device was designed and fabricated in the laboratory. A multi-impeller pump with same function as a mechanical cell was used instead of the injection sparger and circulation pump in column flotation unit. The influence of main operational parameters of the device like feed flow rate, air flow rate and impellers’ speed on collophanite flotation was analyzed. Experiment results indicate that the influence of the operational parameters were significant on flotation recovery and grade of phosphate concentrate. The best operating conditions of the device were: feed flow rate 0.62 L/min, air flow rate 6.67 L/min and impellers speed 900 rpm. At these conditions, a phosphate concentrate assaying about 30.5% P2O5 and 1% MgO with a P2O5 recovery of about 81% was obtained from a Yuan'an phosphate ore sample containing about 22.30% P2O5 and 3.2% MgO.

Keywords: collophanite flotation, flotation columns, flotation machines, multi-impeller pump

Procedia PDF Downloads 265
9480 Development of a Fire Analysis Drone for Smoke Toxicity Measurement for Fire Prediction and Management

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

This research presents the design and creation of a drone gas analyser, aimed at addressing the need for independent data collection and analysis of gas emissions during large-scale fires, particularly wasteland fires. The analyser drone, comprising a lightweight gas analysis system attached to a remote-controlled drone, enables the real-time assessment of smoke toxicity and the monitoring of gases released into the atmosphere during such incidents. The key components of the analyser unit included two gas line inlets connected to glass wool filters, a pump with regulated flow controlled by a mass flow controller, and electrochemical cells for detecting nitrogen oxides, hydrogen cyanide, and oxygen levels. Additionally, a non-dispersive infrared (NDIR) analyser is employed to monitor carbon monoxide (CO), carbon dioxide (CO₂), and hydrocarbon concentrations. Thermocouples can be attached to the analyser to monitor temperature, as well as McCaffrey probes combined with pressure transducers to monitor air velocity and wind direction. These additions allow for monitoring of the large fire and can be used for predictions of fire spread. The innovative system not only provides crucial data for assessing smoke toxicity but also contributes to fire prediction and management. The remote-controlled drone's mobility allows for safe and efficient data collection in proximity to the fire source, reducing the need for human exposure to hazardous conditions. The data obtained from the gas analyser unit facilitates informed decision-making by emergency responders, aiding in the protection of both human health and the environment. This abstract highlights the successful development of a drone gas analyser, illustrating its potential for enhancing smoke toxicity analysis and fire prediction capabilities. The integration of this technology into fire management strategies offers a promising solution for addressing the challenges associated with wildfires and other large-scale fire incidents. The project's methodology and results contribute to the growing body of knowledge in the field of environmental monitoring and safety, emphasizing the practical utility of drones for critical applications.

Keywords: fire prediction, drone, smoke toxicity, analyser, fire management

Procedia PDF Downloads 90
9479 Efficacy and Safety of Uventa Metallic Stent for Malignant and Benign Ureteral Obstruction

Authors: Deok Hyun Han

Abstract:

Objective: To explore outcomes of UventaTM metallic ureteral stent between malignant and benign ureteral obstruction. Methods: We reviewed the medical records of 90 consecutive patients who underwent Uventa stent placement for benign or malignant ureteral obstruction from December 2009 to June 2013. We evaluated the clinical outcomes, complications, and reasons and results for unexpected stent removals. Results: The median follow-up was 10.7 (0.9 – 41) months. From a total of 125 ureter units, there were 24 units with benign obstructions and 101 units with malignant obstructions. Initial technical successes were achieved in all patients. The overall success rate was 70.8% with benign obstructions and 84.2% with malignant obstructions. The major reasons for treatment failure were stent migration (12.5%) in benign and tumor progression (11.9%) in malignant obstructions. The overall complication rate was similar between benign and malignant obstructions (58.3% and 42.6%), but severe complications, which are Clavien grade 3 or more, occurred in 41.7% of benign and 6.9% of malignant obstructions. The most common complications were stent migration (25.0%) in benign obstructions and persistent pain (14.9%) in malignant obstructions. The stent removal was done in 16 units; nine units that were removed by endoscopy and seven units were by open surgery. Conclusions: In malignant ureteral obstructions, the Uventa stent showed favorable outcomes with high success rate and acceptable complication rate. However, in benign ureteral obstructions, overall success rate and complication rate were less favorable. Malignant ureteral obstruction seems to be appropriate indication of Uventa stent placement. However, in chronic diffuse benign ureteral obstructions the decision of placement of Uventa stent has to be careful.

Keywords: cause, complication, ureteral obstruction, metal stent

Procedia PDF Downloads 203
9478 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 130
9477 A Study on the Conspicuous Consumption, Involvement and Physical and Mental Health of Pet Owners

Authors: Chi-Yueh Hsu, Hsuan-Liang Hsu, Hsiu-Hui Chiang

Abstract:

This study is to explore the relationship between the conspicuous consumption, leisure involvement and physical and mental health, and to understand the prediction of conspicuous consumption and leisure involvement to physical and mental health. The data was collected and analysed by purposive sampling, and the research objects were the dog walkers in Taiwan area. A total of 300 questionnaires were issued and after shaving the invalid questionnaire, a total of 246 valid samples were collected, and the effective rate was 82%.. The data were analyzed by correlation analysis and multiple stepwise regression analysis. The results showed that there was a significant correlation between conspicuous consumption and leisure involvement, and the conspicuous consumption and leisure involvement of dog walkers have a significant impact on physical and mental health, especially in self-expression, attractiveness and centrality of leisure involvement have a significant impact on physical and mental health.

Keywords: walking dog, attractiveness, self-expression, multiple stepwise regression analysis

Procedia PDF Downloads 262
9476 Impacts of Climate Change on Water Resources Management in the Mahi River Basin of India

Authors: Y. B. Sharma, K. B. Biswas

Abstract:

This research project examines a 5000 cal yr BP sediment core record to reveal the consequences of human impact and climate variability on the tropical dry forests of the Mahi river basin, western India. To date there has been little research to assess the impact of climate variability and human impact on the vegetation dynamics of this region. There has also been little work to link changes in vegetation cover to documented changes in the basin hydrology over the past 100 years – although it is assumed that the two are closely linked. The key objective of this research project therefore is to understand the driving mechanisms responsible for the abrupt changes in the Mahi river basin as detailed in historical documentation and its impact on water resource management. The Mahi river basin is located in western India (22° 11’-24° 35’ N 72° 46’-74° 52’ E). Mahi river arises in the Malwa Plateau, Madhya Pradesh near Moripara and flows through the uplands and alluvial plain of Rajasthan and Gujarat provinces before draining into the Gulf of Cambay. Palaeoecological procedures (sedimentology, geochemical analysis, C&N isotopes and fossil pollen evidences) have been applied on sedimentary sequences collected from lakes in the Mahi basin. These techniques then facilitate to reconstruct the soil erosion, nutrient cycling, vegetation changes and climatic variability over the last 5000 years. Historical documentation detailing changes in demography, climate and landscape use over the past 100 years in this region will also be collated to compare with the most recent palaeoecological records. The results of the research work provide a detailed record of vegetation change, soil erosion, changes in aridity, and rainfall patterns in the region over the past 5000 years. This research therefore aims to determine the drivers of change and natural variability in the basin. Such information is essential for its current and future management including restoration.

Keywords: human impact, climate variability, vegetation cover, hydrology, water resource management, Mahi river basin, sedimentology, geochemistry, fossil pollen, nutrient cycling, vegetation changes, palaeoecology, aridity, rainfall, drivers of change

Procedia PDF Downloads 375
9475 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 134
9474 Prediction Modeling of Compression Properties of a Knitted Sportswear Fabric Using Response Surface Method

Authors: Jawairia Umar, Tanveer Hussain, Zulfiqar Ali, Muhammad Maqsood

Abstract:

Different knitted structures and knitted parameters play a vital role in the stretch and recovery management of compression sportswear in addition to the materials use to generate this stretch and recovery behavior of the fabric. The present work was planned to predict the different performance indicators of a compression sportswear fabric with some ground parameters i.e. base yarn stitch length (polyester as base yarn and spandex as plating yarn involve to make a compression fabric) and linear density of the spandex which is a key material of any sportswear fabric. The prediction models were generated by response surface method for performance indicators such as stretch & recovery percentage, compression generated by the garment on body, total elongation on application of high power force and load generated on certain percentage extension in fabric. Certain physical properties of the fabric were also modeled using these two parameters.

Keywords: Compression, sportswear, stretch and recovery, statistical model, kikuhime

Procedia PDF Downloads 379
9473 The Prognostic Prediction Value of Positive Lymph Nodes Numbers for the Hypopharyngeal Squamous Cell Carcinoma

Authors: Wendu Pang, Yaxin Luo, Junhong Li, Yu Zhao, Danni Cheng, Yufang Rao, Minzi Mao, Ke Qiu, Yijun Dong, Fei Chen, Jun Liu, Jian Zou, Haiyang Wang, Wei Xu, Jianjun Ren

Abstract:

We aimed to compare the prognostic prediction value of positive lymph node number (PLNN) to the American Joint Committee on Cancer (AJCC) tumor, lymph node, and metastasis (TNM) staging system for patients with hypopharyngeal squamous cell carcinoma (HPSCC). A total of 826 patients with HPSCC from the Surveillance, Epidemiology, and End Results database (2004–2015) were identified and split into two independent cohorts: training (n=461) and validation (n=365). Univariate and multivariate Cox regression analyses were used to evaluate the prognostic effects of PLNN in patients with HPSCC. We further applied six Cox regression models to compare the survival predictive values of the PLNN and AJCC TNM staging system. PLNN showed a significant association with overall survival (OS) and cancer-specific survival (CSS) (P < 0.001) in both univariate and multivariable analyses, and was divided into three groups (PLNN 0, PLNN 1-5, and PLNN>5). In the training cohort, multivariate analysis revealed that the increased PLNN of HPSCC gave rise to significantly poor OS and CSS after adjusting for age, sex, tumor size, and cancer stage; this trend was also verified by the validation cohort. Additionally, the survival model incorporating a composite of PLNN and TNM classification (C-index, 0.705, 0.734) performed better than the PLNN and AJCC TNM models. PLNN can serve as a powerful survival predictor for patients with HPSCC and is a surrogate supplement for cancer staging systems.

Keywords: hypopharyngeal squamous cell carcinoma, positive lymph nodes number, prognosis, prediction models, survival predictive values

Procedia PDF Downloads 155
9472 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness

Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers

Abstract:

The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).

Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning

Procedia PDF Downloads 286
9471 Model Averaging in a Multiplicative Heteroscedastic Model

Authors: Alan Wan

Abstract:

In recent years, the body of literature on frequentist model averaging in statistics has grown significantly. Most of this work focuses on models with different mean structures but leaves out the variance consideration. In this paper, we consider a regression model with multiplicative heteroscedasticity and develop a model averaging method that combines maximum likelihood estimators of unknown parameters in both the mean and variance functions of the model. Our weight choice criterion is based on a minimisation of a plug-in estimator of the model average estimator's squared prediction risk. We prove that the new estimator possesses an asymptotic optimality property. Our investigation of finite-sample performance by simulations demonstrates that the new estimator frequently exhibits very favourable properties compared to some existing heteroscedasticity-robust model average estimators. The model averaging method hedges against the selection of very bad models and serves as a remedy to variance function misspecification, which often discourages practitioners from modeling heteroscedasticity altogether. The proposed model average estimator is applied to the analysis of two real data sets.

Keywords: heteroscedasticity-robust, model averaging, multiplicative heteroscedasticity, plug-in, squared prediction risk

Procedia PDF Downloads 387
9470 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis

Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu

Abstract:

In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.

Keywords: supervised, functional principal component analysis, functional response, functional linear regression

Procedia PDF Downloads 77
9469 Fecundity and Egg Laying in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): Model Development and Field Validation

Authors: Muhammad Noor Ul Ane, Dong-Soon Kim, Myron P. Zalucki

Abstract:

Models can be useful to help understand population dynamics of insects under diverse environmental conditions and in developing strategies to manage pest species better. Adult longevity and fecundity of Helicoverpa armigera (Hübner) were evaluated against a wide range of constant temperatures (15, 20, 25, 30, 35 and 37.5ᵒC). The modified Sharpe and DeMichele model described adult aging rate and was used to estimate adult physiological age. Maximum fecundity of H. armigera was 973 egg/female at 25ᵒC decreasing to 72 eggs/female at 37.5ᵒC. The relationship between adult fecundity and temperature was well described by an extreme value function. Age-specific cumulative oviposition rate and age-specific survival rate were well described by a two-parameter Weibull function and sigmoid function, respectively. An oviposition model was developed using three temperature-dependent components: total fecundity, age-specific oviposition rate, and age-specific survival rate. The oviposition model was validated against independent field data and described the field occurrence pattern of egg population of H. armigera very well. Our model should be a useful component for population modeling of H. armigera and can be independently used for the timing of sprays in management programs of this key pest species.

Keywords: cotton bollworm, life table, temperature-dependent adult development, temperature-dependent fecundity

Procedia PDF Downloads 153
9468 Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer

Authors: Yilei Song, Linlin Tian, Ning Zhao

Abstract:

Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL.

Keywords: large-eddy simulation, stably-stratified atmospheric boundary layer, wake model, wind turbine wake

Procedia PDF Downloads 174
9467 Uncertainty Evaluation of Erosion Volume Measurement Using Coordinate Measuring Machine

Authors: Mohamed Dhouibi, Bogdan Stirbu, Chabotier André, Marc Pirlot

Abstract:

Internal barrel wear is a major factor affecting the performance of small caliber guns in their different life phases. Wear analysis is, therefore, a very important process for understanding how wear occurs, where it takes place, and how it spreads with the aim on improving the accuracy and effectiveness of small caliber weapons. This paper discusses the measurement and analysis of combustion chamber wear for a small-caliber gun using a Coordinate Measuring Machine (CMM). Initially, two different NATO small caliber guns: 5.56x45mm and 7.62x51mm, are considered. A Micura Zeiss Coordinate Measuring Machine (CMM) equipped with the VAST XTR gold high-end sensor is used to measure the inner profile of the two guns every 300-shot cycle. The CMM parameters, such us (i) the measuring force, (ii) the measured points, (iii) the time of masking, and (iv) the scanning velocity, are investigated. In order to ensure minimum measurement error, a statistical analysis is adopted to select the reliable CMM parameters combination. Next, two measurement strategies are developed to capture the shape and the volume of each gun chamber. Thus, a task-specific measurement uncertainty (TSMU) analysis is carried out for each measurement plan. Different approaches of TSMU evaluation have been proposed in the literature. This paper discusses two different techniques. The first is the substitution method described in ISO 15530 part 3. This approach is based on the use of calibrated workpieces with similar shape and size as the measured part. The second is the Monte Carlo simulation method presented in ISO 15530 part 4. Uncertainty evaluation software (UES), also known as the Virtual Coordinate Measuring Machine (VCMM), is utilized in this technique to perform a point-by-point simulation of the measurements. To conclude, a comparison between both approaches is performed. Finally, the results of the measurements are verified through calibrated gauges of several dimensions specially designed for the two barrels. On this basis, an experimental database is developed for further analysis aiming to quantify the relationship between the volume of wear and the muzzle velocity of small caliber guns.

Keywords: coordinate measuring machine, measurement uncertainty, erosion and wear volume, small caliber guns

Procedia PDF Downloads 152
9466 Valorization of Sawdust for the Treatment of Purified Water for Irrigation

Authors: Dalila Oulhaci, Mohammed Zahaf

Abstract:

The watering technique is essential to maintain a moist perimeter around the roots of the crop. This is the case with topical watering, where the soil around the root system can be kept permanently moist between the two extremes of water content. Moreover, one of the oldest methods used since Roman times throughout North Africa and the Near East was based on the repeated pouring of water into porous earthen vessels buried in the ground. In this context, these two techniques have been combined by replacing the earthen vase with plastic bottles filled with sand which release water through their perforated walls into the surrounding soil. The objective of this work is to first determine the purifying power of the activated sludge treatment plant of Toggourt and then that of the bottled Sawdust filter. For the station, the BOD purification rate was (96.5%), the COD purification rate was (87%) and suspended solids (90%). For the bottle, the BOD removal rate was (35%), and COD removal rate was (12.58%). This work falls within the framework of water saving, sustainable development and environmental protection, and also within the framework of agriculture.

Keywords: wasterwater, sawdust, purification, irrigation, touggourt (Algeria)

Procedia PDF Downloads 86
9465 Do Industry Expert Audit Engagement Partners Earn Fee Premiums? Evidence from Labor Usage and the Hourly Charge Rate

Authors: Gil Bae, Seung Uk Choi, Jae Eun Lee, Joon Hwa Rho

Abstract:

Using proprietary engagement partner identity information for the Big 4 audit firms in Korea over the 2001-2011 period, we find that expert engagement partners obtain significantly higher total compensation than do non-expert partners. Importantly, we also find that expert partners increase the number of audit hours compared to their non-expert counterparts. The hourly billing rate, calculated as total fees divided by total audit hours, of expert partners is not higher than that of non-expert partners, indicating that there is no expert partner premium reflected in the hourly rate. This finding suggests that the increase in total audit fees is attributable mainly to the increase in the quantity of audit hours that expert partners work, not from the higher fee per hour. The results are not attributable to auditor selection bias.

Keywords: industry expert partners, expert premiums, audit hours, hourly charge rate

Procedia PDF Downloads 308
9464 A Statistical Energy Analysis Model of an Automobile for the Prediction of the Internal Sound Pressure Level

Authors: El Korchi Ayoub, Cherif Raef

Abstract:

Interior noise in vehicles is an essential factor affecting occupant comfort. Over recent decades, much work has been done to develop simulation tools for vehicle NVH. At the medium high-frequency range, the statistical energy analysis method (SEA) shows significant effectiveness in predicting noise and vibration responses of mechanical systems. In this paper, the evaluation of the sound pressure level (SPL) inside an automobile cabin has been performed numerically using the statistical energy analysis (SEA) method. A test car cabin was performed using a monopole source as a sound source. The decay rate method was employed to obtain the damping loss factor (DLF) of each subsystem of the developed SEA model. These parameters were then used to predict the sound pressure level in the interior cabin. The results show satisfactory agreement with the directly measured SPL. The developed SEA vehicle model can be used in early design phases and allows the engineer to identify sources contributing to the total noise and transmission paths.

Keywords: SEA, SPL, DLF, NVH

Procedia PDF Downloads 91
9463 Increase Daily Production Rate of Methane Through Pasteurization Cow Dung

Authors: Khalid Elbadawi Elshafea, Mahmoud Hassan Onsa

Abstract:

This paper presents the results of the experiments to measure the impact of pasteurization cows dung on important parameter of anaerobic digestion (retention time) and measure the effect in daily production rate of biogas, were used local materials in these experiments, two experiments were carried out in two bio-digesters (1 and 2) (18.0 L), volume of the mixture 16.0-litre and the mass of dry matter in the mixture 4.0 Kg of cow dung. Pasteurization process has been conducted on the mixture into the digester 2, and put two digesters under room temperature. Digester (1) produced 268.5 liter of methane in period of 49 days with daily methane production rate 1.37L/Kg/day, and digester (2) produced 302.7-liter of methane in period of 26 days with daily methane production rate 2.91 L/Kg/day. This study concluded that the use of system pasteurization cows dung speed up hydrolysis in anaerobic process, because heat to certain temperature in certain time lead to speed up chemical reactions (transfer Protein to Amino acids, Carbohydrate to Sugars and Fat to Long chain fatty acids), this lead to reduce the retention time an therefore increase the daily methane production rate with 212%.

Keywords: methane, cow dung, daily production, pasteurization, increase

Procedia PDF Downloads 311
9462 Prediction of Compressive Strength Using Artificial Neural Network

Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal

Abstract:

Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.

Keywords: rebound, ultra-sonic pulse, penetration, ANN, NDT, regression

Procedia PDF Downloads 428
9461 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods

Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian

Abstract:

In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.

Keywords: ensembles, false positives, feature selection, one side class algorithm

Procedia PDF Downloads 292
9460 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method

Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya

Abstract:

Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.

Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms

Procedia PDF Downloads 94
9459 Predicting Food Waste and Losses Reduction for Fresh Products in Modified Atmosphere Packaging

Authors: Matar Celine, Gaucel Sebastien, Gontard Nathalie, Guilbert Stephane, Guillard Valerie

Abstract:

To increase the very short shelf life of fresh fruits and vegetable, Modified Atmosphere Packaging (MAP) allows an optimal atmosphere composition to be maintained around the product and thus prevent its decay. This technology relies on the modification of internal packaging atmosphere due to equilibrium between production/consumption of gases by the respiring product and gas permeation through the packaging material. While, to the best of our knowledge, benefit of MAP for fresh fruits and vegetable has been widely demonstrated in the literature, its effect on shelf life increase has never been quantified and formalized in a clear and simple manner leading difficult to anticipate its economic and environmental benefit, notably through the decrease of food losses. Mathematical modelling of mass transfers in the food/packaging system is the basis for a better design and dimensioning of the food packaging system. But up to now, existing models did not permit to estimate food quality nor shelf life gain reached by using MAP. However, shelf life prediction is an indispensable prerequisite for quantifying the effect of MAP on food losses reduction. The objective of this work is to propose an innovative approach to predict shelf life of MAP food product and then to link it to a reduction of food losses and wastes. In this purpose, a ‘Virtual MAP modeling tool’ was developed by coupling a new predictive deterioration model (based on visual surface prediction of deterioration encompassing colour, texture and spoilage development) with models of the literature for respiration and permeation. A major input of this modelling tool is the maximal percentage of deterioration (MAD) which was assessed from dedicated consumers’ studies. Strawberries of the variety Charlotte were selected as the model food for its high perishability, high respiration rate; 50-100 ml CO₂/h/kg produced at 20°C, allowing it to be a good representative of challenging post-harvest storage. A value of 13% was determined as a limit of acceptability for the consumers, permitting to define products’ shelf life. The ‘Virtual MAP modeling tool’ was validated in isothermal conditions (5, 10 and 20°C) and in dynamic temperature conditions mimicking commercial post-harvest storage of strawberries. RMSE values were systematically lower than 3% for respectively, O₂, CO₂ and deterioration profiles as a function of time confirming the goodness of model fitting. For the investigated temperature profile, a shelf life gain of 0.33 days was obtained in MAP compared to the conventional storage situation (no MAP condition). Shelf life gain of more than 1 day could be obtained for optimized post-harvest conditions as numerically investigated. Such shelf life gain permitted to anticipate a significant reduction of food losses at the distribution and consumer steps. This food losses' reduction as a function of shelf life gain has been quantified using a dedicated mathematical equation that has been developed for this purpose.

Keywords: food losses and wastes, modified atmosphere packaging, mathematical modeling, shelf life prediction

Procedia PDF Downloads 183
9458 Forecasting Cancers Cases in Algeria Using Double Exponential Smoothing Method

Authors: Messis A., Adjebli A., Ayeche R., Talbi M., Tighilet K., Louardiane M.

Abstract:

Cancers are the second cause of death worldwide. Prevalence and incidence of cancers is getting increased by aging and population growth. This study aims to predict and modeling the evolution of breast, Colorectal, Lung, Bladder and Prostate cancers over the period of 2014-2019. In this study, data were analyzed using time series analysis with double exponential smoothing method to forecast the future pattern. To describe and fit the appropriate models, Minitab statistical software version 17 was used. Between 2014 and 2019, the overall trend in the raw number of new cancer cases registered has been increasing over time; the change in observations over time has been increasing. Our forecast model is validated since we have good prediction for the period 2020 and data not available for 2021 and 2022. Time series analysis showed that the double exponential smoothing is an efficient tool to model the future data on the raw number of new cancer cases.

Keywords: cancer, time series, prediction, double exponential smoothing

Procedia PDF Downloads 89
9457 Role of Process Parameters on Pocket Milling with Abrasive Water Jet Machining Technique

Authors: T. V. K. Gupta, J. Ramkumar, Puneet Tandon, N. S. Vyas

Abstract:

Abrasive Water Jet Machining (AWJM) is an unconventional machining process well known for machining hard to cut materials. The primary research focus on the process was for through cutting and a very limited literature is available on pocket milling using AWJM. The present work is an attempt to use this process for milling applications considering a set of various process parameters. Four different input parameters, which were considered by researchers for part separation, are selected for the above application i.e. abrasive size, flow rate, standoff distance, and traverse speed. Pockets of definite size are machined to investigate surface roughness, material removal rate, and pocket depth. Based on the data available through experiments on SS304 material, it is observed that higher traverse speeds gives a better finish because of reduction in the particle energy density and lower depth is also observed. Increase in the standoff distance and abrasive flow rate reduces the rate of material removal as the jet loses its focus and occurrence of collisions within the particles. ANOVA for individual output parameter has been studied to know the significant process parameters.

Keywords: abrasive flow rate, surface finish, abrasive size, standoff distance, traverse speed

Procedia PDF Downloads 306
9456 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock

Authors: Hadi Farhadian, Homayoon Katibeh

Abstract:

Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.

Keywords: water inflow, tunnel, discontinues rock, numerical simulation

Procedia PDF Downloads 524
9455 Optimization of Multistage Extractor for the Butanol Separation from Aqueous Solution Using Ionic Liquids

Authors: Dharamashi Rabari, Anand Patel

Abstract:

n-Butanol can be regarded as a potential biofuel. Being resistive to corrosion and having high calorific value, butanol is a very attractive energy source as opposed to ethanol. By fermentation process called ABE (acetone, butanol, ethanol), bio-butanol can be produced. ABE carried out mostly by bacteria Clostridium acetobutylicum. The major drawback of the process is the butanol concentration higher than 10 g/L, delays the growth of microbes resulting in a low yield. It indicates the simultaneous separation of butanol from the fermentation broth. Two hydrophobic Ionic Liquids (ILs) 1-butyl-1-methylpiperidinium bis (trifluoromethylsulfonyl)imide [bmPIP][Tf₂N] and 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [hmim][Tf₂N] were chosen. The binary interaction parameters for both ternary systems i.e. [bmPIP][Tf₂N] + water + n-butanol and [hmim][Tf₂N] + water +n-butanol were taken from the literature that was generated by NRTL model. Particle swarm optimization (PSO) with the isothermal sum rate (ISR) method was used to optimize the cost of liquid-liquid extractor. For [hmim][Tf₂N] + water +n-butanol system, PSO shows 84% success rate with the number of stages equal to eight and solvent flow rate equal to 461 kmol/hr. The number of stages was three with 269.95 kmol/hr solvent flow rate for [bmPIP][Tf₂N] + water + n-butanol system. Moreover, both ILs were very efficient as the loss of ILs in raffinate phase was negligible.

Keywords: particle swarm optimization, isothermal sum rate method, success rate, extraction

Procedia PDF Downloads 125
9454 Canine Neonatal Mortality at the São Paulo State University Veterinary Hospital, Botucatu, São Paulo, Brazil – Preliminary Data

Authors: Maria L. G. Lourenço, Keylla H. N. P. Pereira, Viviane Y. Hibaru, Fabiana F. Souza, João C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado

Abstract:

The neonatal mortality rates in dogs are considered high, varying between 5.7 and 21.2% around the world, and the causes of the deaths are often unknown. Data regarding canine neonatal mortality are scarce in Brazil. This study aims at describing the neonatal mortality rates in dogs, as well as the main causes of death. The study included 152 litters and 669 neonates admitted to the São Paulo State University (UNESP) Veterinary Hospital, Botucatu, São Paulo, Brazil between January 2018 and September 2019. The overall mortality rate was 16.7% (112/669), with 40% (61/152) of the litters presenting at least one case of stillbirth or neonatal mortality. The rate of stillbirths was 7.7% (51/669), while the neonatal mortality rate was 9% (61/669). The early mortality rate (0 to 2 days) was 13.7% (92/669), accounting for 82.1% (92/112) of all deaths. The late mortality rate (3 to 30 days) was 2.7% (18/669), accounting for 16% (18/112) of all deaths. Infection was the causa mortis in 51.8% (58/112) of the newborns, of which 30.3% (34/112) were caused by bacterial sepsis, and 21.4% (24/112) were caused by other bacterial, viral or parasite infections. Other causes of death included congenital malformations (15.2%, 17/112), of which 5.3% (6/112) happened through euthanasia due to malformations incompatible with life; asphyxia/hypoxia by dystocia (9.8%, 11/112); wasting syndrome in debilitated newborns (6.2%, 7/112); aspiration pneumonia (3.6%, 4/112); agalactia (2.7%, 3/112); trauma (1.8%, 2/112); administration of contraceptives to the mother (1.8%, 2/112) and unknown causes (7.1%, 8/112). The neonatal mortality rate was considered high, but they may be even higher in locations without adequate care for the mothers and neonates. Therefore, prenatal examinations and early neonatal care are of utmost importance for the survival of these patients.

Keywords: neonate dogs, puppies, mortality rate, neonatal death

Procedia PDF Downloads 205
9453 Outcome of Using Penpat Pinyowattanasilp Equation for Prediction of 24-Hour Uptake, First and Second Therapeutic Doses Calculation in Graves’ Disease Patient

Authors: Piyarat Parklug, Busaba Supawattanaobodee, Penpat Pinyowattanasilp

Abstract:

The radioactive iodine thyroid uptake (RAIU) has been widely used to differentiate the cause of thyrotoxicosis and treatment. Twenty-four hours RAIU is routinely used to calculate the dose of radioactive iodine (RAI) therapy; however, 2 days protocol is required. This study aims to evaluate the modification of Penpat Pinyowattanasilp equation application by the exclusion of outlier data, 3 hours RAIU less than 20% and more than 80%, to improve prediction of 24-hour uptake. The equation is predicted 24 hours RAIU (P24RAIU) = 32.5+0.702 (3 hours RAIU). Then calculating separation first and second therapeutic doses in Graves’ disease patients. Methods; This study was a retrospective study at Faculty of Medicine Vajira Hospital in Bangkok, Thailand. Inclusion were Graves’ disease patients who visited RAI clinic between January 2014-March 2019. We divided subjects into 2 groups according to first and second therapeutic doses. Results; Our study had a total of 151 patients. The study was done in 115 patients with first RAI dose and 36 patients with second RAI dose. The P24RAIU are highly correlated with actual 24-hour RAIU in first and second therapeutic doses (r = 0.913, 95% CI = 0.876 to 0.939 and r = 0.806, 95% CI = 0.649 to 0.897). Bland-Altman plot shows that mean differences between predictive and actual 24 hours RAI in the first dose and second dose were 2.14% (95%CI 0.83-3.46) and 1.37% (95%CI -1.41-4.14). The mean first actual and predictive therapeutic doses are 8.33 ± 4.93 and 7.38 ± 3.43 milliCuries (mCi) respectively. The mean second actual and predictive therapeutic doses are 6.51 ± 3.96 and 6.01 ± 3.11 mCi respectively. The predictive therapeutic doses are highly correlated with the actual dose in first and second therapeutic doses (r = 0.907, 95% CI = 0.868 to 0.935 and r = 0.953, 95% CI = 0.909 to 0.976). Bland-Altman plot shows that mean difference between predictive and actual P24RAIU in the first dose and second dose were less than 1 mCi (-0.94 and -0.5 mCi). This modification equation application is simply used in clinical practice especially patient with 3 hours RAIU in range of 20-80% in a Thai population. Before use, this equation for other population should be tested for the correlation.

Keywords: equation, Graves’disease, prediction, 24-hour uptake

Procedia PDF Downloads 139