Search results for: elemental graph data model (EGDM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 36009

Search results for: elemental graph data model (EGDM)

35079 Wind Wave Modeling Using MIKE 21 SW Spectral Model

Authors: Pouya Molana, Zeinab Alimohammadi

Abstract:

Determining wind wave characteristics is essential for implementing projects related to Coastal and Marine engineering such as designing coastal and marine structures, estimating sediment transport rates and coastal erosion rates in order to predict significant wave height (H_s), this study applies the third generation spectral wave model, Mike 21 SW, along with CEM model. For SW model calibration and verification, two data sets of meteorology and wave spectroscopy are used. The model was exposed to time-varying wind power and the results showed that difference ratio mean, standard deviation of difference ratio and correlation coefficient in SW model for H_s parameter are 1.102, 0.279 and 0.983, respectively. Whereas, the difference ratio mean, standard deviation and correlation coefficient in The Choice Experiment Method (CEM) for the same parameter are 0.869, 1.317 and 0.8359, respectively. Comparing these expected results it is revealed that the Choice Experiment Method CEM has more errors in comparison to MIKE 21 SW third generation spectral wave model and higher correlation coefficient does not necessarily mean higher accuracy.

Keywords: MIKE 21 SW, CEM method, significant wave height, difference ratio

Procedia PDF Downloads 399
35078 Characterization of Aquifer Systems and Identification of Potential Groundwater Recharge Zones Using Geospatial Data and Arc GIS in Kagandi Water Supply System Well Field

Authors: Aijuka Nicholas

Abstract:

A research study was undertaken to characterize the aquifers and identify the potential groundwater recharge zones in the Kagandi district. Quantitative characterization of hydraulic conductivities of aquifers is of fundamental importance to the study of groundwater flow and contaminant transport in aquifers. A conditional approach is used to represent the spatial variability of hydraulic conductivity. Briefly, it involves using qualitative and quantitative geologic borehole-log data to generate a three-dimensional (3D) hydraulic conductivity distribution, which is then adjusted through calibration of a 3D groundwater flow model using pumping-test data and historic hydraulic data. The approach consists of several steps. The study area was divided into five sub-watersheds on the basis of artificial drainage divides. A digital terrain model (DTM) was developed using Arc GIS to determine the general drainage pattern of Kagandi watershed. Hydrologic characterization involved the determination of the various hydraulic properties of the aquifers. Potential groundwater recharge zones were identified by integrating various thematic maps pertaining to the digital elevation model, land use, and drainage pattern in Arc GIS and Sufer golden software. The study demonstrates the potential of GIS in delineating groundwater recharge zones and that the developed methodology will be applicable to other watersheds in Uganda.

Keywords: aquifers, Arc GIS, groundwater recharge, recharge zones

Procedia PDF Downloads 145
35077 Two Quasiparticle Rotor Model for Deformed Nuclei

Authors: Alpana Goel, Kawalpreet Kalra

Abstract:

The study of level structures of deformed nuclei is the most complex topic in nuclear physics. For the description of level structure, a simple model is good enough to bring out the basic features which may then be further refined. The low lying level structures of these nuclei can, therefore, be understood in terms of Two Quasiparticle plus axially symmetric Rotor Model (TQPRM). The formulation of TQPRM for deformed nuclei has been presented. The analysis of available experimental data on two quasiparticle rotational bands of deformed nuclei present unusual features like signature dependence, odd-even staggering, signature inversion and signature reversal in two quasiparticle rotational bands of deformed nuclei. These signature effects are well discussed within the framework of TQPRM. The model is well efficient in reproducing the large odd-even staggering and anomalous features observed in even-even and odd-odd deformed nuclei. The effect of particle-particle and the Coriolis coupling is well established from the model. Detailed description of the model with implications to deformed nuclei is presented in the paper.

Keywords: deformed nuclei, signature effects, signature inversion, signature reversal

Procedia PDF Downloads 157
35076 A Model for Predicting Organic Compounds Concentration Change in Water Associated with Horizontal Hydraulic Fracturing

Authors: Ma Lanting, S. Eguilior, A. Hurtado, Juan F. Llamas Borrajo

Abstract:

Horizontal hydraulic fracturing is a technology to increase natural gas flow and improve productivity in the low permeability formation. During this drilling operation tons of flowback and produced water which contains many organic compounds return to the surface with a potential risk of influencing the surrounding environment and human health. A mathematical model is urgently needed to represent organic compounds in water transportation process behavior and the concentration change with time throughout the hydraulic fracturing operation life cycle. A comprehensive model combined Organic Matter Transport Dynamic Model with Two-Compartment First-order Model Constant (TFRC) Model has been established to quantify the organic compounds concentration. This algorithm model is composed of two transportation parts based on time factor. For the fast part, the curve fitting technique is applied using flowback water data from the Marcellus shale gas site fracturing and the coefficients of determination (R2) from all analyzed compounds demonstrate a high experimental feasibility of this numerical model. Furthermore, along a decade of drilling the concentration ratio curves have been estimated by the slow part of this model. The result shows that the larger value of Koc in chemicals, the later maximum concentration in water will reach, as well as all the maximum concentrations percentage would reach up to 90% of initial concentration from shale formation within a long sufficient period.

Keywords: model, shale gas, concentration, organic compounds

Procedia PDF Downloads 224
35075 Prediction of Permeability of Frozen Unsaturated Soil Using Van Genuchten Model and Fredlund-Xing Model in Soil Vision

Authors: Bhavita S. Dave, Jaimin Vaidya, Chandresh H. Solanki, Atul K.

Abstract:

To measure the permeability of a soil specimen, one of the basic assumptions of Darcy's law is that the soil sample should be saturated. Unlike saturated soils, the permeability of unsaturated soils cannot be found using conventional methods as it does not follow Darcy's law. Many empirical models, such as the Van Genuchten Model and Fredlund-Xing Model were suggested to predict permeability value for unsaturated soil. Such models use data from the soil-freezing characteristic curve to find fitting parameters for frozen unsaturated soils. In this study, soil specimens were subjected to 0, 1, 3, and 5 freezing-thawing (F-T) cycles for different degrees of saturation to have a wide range of suction, and its soil freezing characteristic curves were formulated for all F-T cycles. Changes in fitting parameters and relative permeability with subsequent F-T cycles are presented in this paper for both models.

Keywords: frozen unsaturated soil, Fredlund Xing model, soil-freezing characteristic curve, Van Genuchten model

Procedia PDF Downloads 187
35074 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children

Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco

Abstract:

Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.

Keywords: evolutionary computation, feature selection, classification, clustering

Procedia PDF Downloads 369
35073 An Improved Atmospheric Correction Method with Diurnal Temperature Cycle Model for MSG-SEVIRI TIR Data under Clear Sky Condition

Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yonggang Qian, Ning Wang

Abstract:

Knowledge of land surface temperature (LST) is of crucial important in energy balance studies and environment modeling. Satellite thermal infrared (TIR) imagery is the primary source for retrieving LST at the regional and global scales. Due to the combination of atmosphere and land surface of received radiance by TIR sensors, atmospheric effect correction has to be performed to remove the atmospheric transmittance and upwelling radiance. Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) provides measurements every 15 minutes in 12 spectral channels covering from visible to infrared spectrum at fixed view angles with 3km pixel size at nadir, offering new and unique capabilities for LST, LSE measurements. However, due to its high temporal resolution, the atmosphere correction could not be performed with radiosonde profiles or reanalysis data since these profiles are not available at all SEVIRI TIR image acquisition times. To solve this problem, a two-part six-parameter semi-empirical diurnal temperature cycle (DTC) model has been applied to the temporal interpolation of ECMWF reanalysis data. Due to the fact that the DTC model is underdetermined with ECMWF data at four synoptic times (UTC times: 00:00, 06:00, 12:00, 18:00) in one day for each location, some approaches are adopted in this study. It is well known that the atmospheric transmittance and upwelling radiance has a relationship with water vapour content (WVC). With the aid of simulated data, the relationship could be determined under each viewing zenith angle for each SEVIRI TIR channel. Thus, the atmospheric transmittance and upwelling radiance are preliminary removed with the aid of instantaneous WVC, which is retrieved from the brightness temperature in the SEVIRI channels 5, 9 and 10, and a group of the brightness temperatures for surface leaving radiance (Tg) are acquired. Subsequently, a group of the six parameters of the DTC model is fitted with these Tg by a Levenberg-Marquardt least squares algorithm (denoted as DTC model 1). Although the retrieval error of WVC and the approximate relationships between WVC and atmospheric parameters would induce some uncertainties, this would not significantly affect the determination of the three parameters, td, ts and β (β is the angular frequency, td is the time where the Tg reaches its maximum, ts is the starting time of attenuation) in DTC model. Furthermore, due to the large fluctuation in temperature and the inaccuracy of the DTC model around sunrise, SEVIRI measurements from two hours before sunrise to two hours after sunrise are excluded. With the knowledge of td , ts, and β, a new DTC model (denoted as DTC model 2) is accurately fitted again with these Tg at UTC times: 05:57, 11:57, 17:57 and 23:57, which is atmospherically corrected with ECMWF data. And then a new group of the six parameters of the DTC model is generated and subsequently, the Tg at any given times are acquired. Finally, this method is applied to SEVIRI data in channel 9 successfully. The result shows that the proposed method could be performed reasonably without assumption and the Tg derived with the improved method is much more consistent with that from radiosonde measurements.

Keywords: atmosphere correction, diurnal temperature cycle model, land surface temperature, SEVIRI

Procedia PDF Downloads 267
35072 Aerodynamic Investigation of Baseline-IV Bird-Inspired BWB Aircraft Design: Improvements over Baseline-III BWB

Authors: C. M. Nur Syazwani, M. K. Ahmad Imran, Rizal E. M. Nasir

Abstract:

The study on BWB UV begins in UiTM since 2005 and three designs have been studied and published. The latest designs are Baseline-III and inspired by birds that have features and aerodynamics behaviour of cruising birds without flapping capability. The aircraft featuring planform and configuration are similar to the bird. Baseline-III has major flaws particularly in its low lift-to-drag ratio, stability and issues regarding limited controllability. New design known as Baseline-IV replaces straight, swept wing to delta wing and have a broader tail compares to the Baseline-III’s. The objective of the study is to investigate aerodynamics of Baseline-IV bird-inspired BWB aircraft. This will be achieved by theoretical calculation and wind tunnel experiments. The result shows that both theoretical and wind tunnel experiments of Baseline-IV graph of CL and CD versus alpha are quite similar to each other in term of pattern of graph slopes and values. Baseline-IV has higher lift coefficient values at wide range of angle of attack compares to Baseline-III. Baseline-IV also has higher maximum lift coefficient, higher maximum lift-to-drag and lower parasite drag. It has stable pitch moment versus lift slope but negative moment at zero lift for zero angle-of-attack tail setting. At high angle of attack, Baseline-IV does not have stability reversal as shown in Baseline-III. Baseline-IV is proven to have improvements over Baseline-III in terms of lift, lift-to-drag ratio and pitch moment stability at high angle-of-attack.

Keywords: blended wing-body, bird-inspired blended wing-body, aerodynamic, stability

Procedia PDF Downloads 507
35071 Diesel Fault Prediction Based on Optimized Gray Neural Network

Authors: Han Bing, Yin Zhenjie

Abstract:

In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.

Keywords: fault prediction, neural network, GM(1, 5) genetic algorithm, GBPGA

Procedia PDF Downloads 302
35070 Microstructural Study of Mechanically Alloyed Powders and the Thin Films of Cufe Alloys

Authors: Mechri hanane, Azzaz Mohammed

Abstract:

Polycrystalline CuFe thin film was prepared by thermal evaporation process (Physical vapor deposition), using the nanocrystalline CuFe powder obtained by mechanical alloying After 24 h of milling elemental powders. The microscopic study of nanocrystalline powder and the thin film of Cu70Fe30 binary alloy were examined using transmission electron microscopy (TEM) and scanning electron microscope (SEM). The cross-sectional TEM images showed that the obtained CuFe layer was polycrystalline film of about 20 nm thick and composed of grains of different size ranging from 4 nm to 18 nm.

Keywords: nanomaterials, thin films, TEM, SEM

Procedia PDF Downloads 408
35069 Modelling Water Vapor Sorption and Diffusion in Hydrocolloid Particles

Authors: Andrew Terhemen Tyowua, Zhibing Zhang, Michael J. Adams

Abstract:

Water vapor sorption data at a range of temperatures (25–70 °C) have been obtained for starch (corn and wheat) and non-starch (carrageenan and xanthan gum) hydrocolloid particles in the form of a thin slab. The results reveal that the data may be more accurately described by an existing sigmoidal rather than a Fickian model. The sigmoidal model accounts for the initial surface sorption before the onset of bulk diffusion. At relatively small water activities (≤ 0.3), the absorption of the moisture caused the particles to be plasticized, but at greater activity values (> 0.3), anti-plasticization was induced. However, it was found that for the whole range of water activities and temperatures studied, the data could be characterized by a single non-dimensional number, which was termed the non-Fickian diffusion number where τ is the characteristic time of surface sorption, D is the bulk diffusion coefficient and L is the thickness of the layer of particles. The activation energy suggested that the anti-plasticization mechanism was the result of a reduction in the molecular free volume or an increase in crystallinity.

Keywords: anti-plasticization, arrhenius behavior, diffusion coefficient, hygroscopic polymers, moisture migration, non-fickian sigmoidal model

Procedia PDF Downloads 28
35068 Combining ASTER Thermal Data and Spatial-Based Insolation Model for Identification of Geothermal Active Areas

Authors: Khalid Hussein, Waleed Abdalati, Pakorn Petchprayoon, Khaula Alkaabi

Abstract:

In this study, we integrated ASTER thermal data with an area-based spatial insolation model to identify and delineate geothermally active areas in Yellowstone National Park (YNP). Two pairs of L1B ASTER day- and nighttime scenes were used to calculate land surface temperature. We employed the Emissivity Normalization Algorithm which separates temperature from emissivity to calculate surface temperature. We calculated the incoming solar radiation for the area covered by each of the four ASTER scenes using an insolation model and used this information to compute temperature due to solar radiation. We then identified the statistical thermal anomalies using land surface temperature and the residuals calculated from modeled temperatures and ASTER-derived surface temperatures. Areas that had temperatures or temperature residuals greater than 2σ and between 1σ and 2σ were considered ASTER-modeled thermal anomalies. The areas identified as thermal anomalies were in strong agreement with the thermal areas obtained from the YNP GIS database. Also the YNP hot springs and geysers were located within areas identified as anomalous thermal areas. The consistency between our results and known geothermally active areas indicate that thermal remote sensing data, integrated with a spatial-based insolation model, provides an effective means for identifying and locating areas of geothermal activities over large areas and rough terrain.

Keywords: thermal remote sensing, insolation model, land surface temperature, geothermal anomalies

Procedia PDF Downloads 370
35067 Prototyping the Problem Oriented Medical Record for Connected Health Based on TypeGraphQL

Authors: Sabah Mohammed, Jinan Fiaidhi, Darien Sawyer

Abstract:

Data integration of health through connected services can save lives in the event of a medical emergency or provide efficient and effective interventions for the benefit of the patients through the integration of bedside and bench side clinical research. Such integration will support all wind of change in healthcare by being predictive, pre-emptive, personalized, problem-oriented and participatory. Prototyping a healthcare system that enables data integration has been a big challenge for healthcare for a long time. However, an innovative solution started to emerge by focusing on problem lists where everything can connect the problem list forming a growing graph. This notion was introduced by Dr. Lawrence Weed in early 70’s, but the enabling technologies weren’t mature enough to provide a successful implementation prototype. In this article, we are describing our efforts in prototyping Dr. Lawrence Weed's problem-oriented medical record (POMR) and his patient case schema (SOAP) to shape a prototype for connected health. For this, we are using the TypeGraphQL API and our enterprise-based QL4POMR to describe a Web-Based gateway for healthcare services connectivity. Our prototype has reported success in connecting to the HL7 FHIR medical record and the OpenTarget biomedical repositories.

Keywords: connected health, problem-oriented healthcare record, SOAP, QL4POMR, typegraphQL

Procedia PDF Downloads 97
35066 Designing a Model for Preparing Reports on the Automatic Earned Value Management Progress by the Integration of Primavera P6, SQL Database, and Power BI: A Case Study of a Six-Storey Concrete Building in Mashhad, Iran

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

Project planners and controllers are frequently faced with the challenge of inadequate software for the preparation of automatic project progress reports based on actual project information updates. They usually make dashboards in Microsoft Excel, which is local and not applicable online. Another shortcoming is that it is not linked to planning software such as Microsoft Project, which lacks the database required for data storage. This study aimed to propose a model for the preparation of reports on automatic online project progress based on actual project information updates by the integration of Primavera P6, SQL database, and Power BI for a construction project. The designed model could be applicable to project planners and controller agents by enabling them to prepare project reports automatically and immediately after updating the project schedule using actual information. To develop the model, the data were entered into P6, and the information was stored on the SQL database. The proposed model could prepare a wide range of reports, such as earned value management, HR reports, and financial, physical, and risk reports automatically on the Power BI application. Furthermore, the reports could be published and shared online.

Keywords: primavera P6, SQL, Power BI, EVM, integration management

Procedia PDF Downloads 106
35065 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors

Authors: Yaxin Bi

Abstract:

Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.

Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors

Procedia PDF Downloads 31
35064 Socioterritorial Inequalities in a Region of Chile. Beyond the Geography

Authors: Javier Donoso-Bravo, Camila Cortés-Zambrano

Abstract:

In this paper, we analyze socioterritorial inequalities in the region of Valparaiso (Chile) using secondary data to account for these inequalities drawing on economic, social, educational, and environmental dimensions regarding the thirty-six municipalities of the region. We looked over a wide-ranging set of secondary data from public sources regarding economic activities, poverty, employment, income, years of education, post-secondary education access, green areas, access to potable water, and others. We found sharp socioterritorial inequalities especially based on the economic performance in each territory. Analysis show, on the one hand, the existence of a dual and unorganized development model in some territories with a strong economic activity -especially in the areas of finance, real estate, mining, and vineyards- but, at the same time, with poor social indicators. On the other hand, most of the territories show a dispersed model with very little dynamic economic activities and very poor social development. Finally, we discuss how socioterritorial inequalities in the region of Valparaiso reflect the level of globalization of the economic activities carried on in every territory.

Keywords: socioterritorial inequalities, development model, Chile, secondary data, Region of Valparaiso

Procedia PDF Downloads 100
35063 X-Ray Photoelectron Spectroscopy Analyses of Candidate Materials for Advanced Nuclear Reactors

Authors: Marie Kudrnová, Jana Rejková

Abstract:

The samples of supplied INCONEL 601, 617, 625, and HASTELLOY C-22 alloys and experimental nickel alloy MoNiCr were examined by XPS (X-ray photoelectron spectroscopy) before and after exposure. The experiment was performed in a mixture of LiCl-KCl salt (58.2-41.8 wt. %). The exposure conditions were 440°C, pressure 0.2 MPa, 500 hours in an inert argon atmosphere. The XPS analysis shows that a thin oxide layer composed of metal oxides such as NiO, Cr₂O₃, and Nb₂O₅ was formed. After sputtering the exposed surface with Ar ions, metals were also detected in the elemental state, indicating a very thin protective oxide layer with a thickness in units of up to tens of nanometers.

Keywords: XPS, MSR, nickel alloy, metal oxides

Procedia PDF Downloads 75
35062 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model

Authors: Youngjae Jin, Daeshik Kim

Abstract:

This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in Verilog HDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.

Keywords: auto-encoder, behavior model simulation, digital hardware design, pre-route simulation, Unsupervised feature learning

Procedia PDF Downloads 445
35061 A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads

Authors: Nuo Duan, Yi Pik Cheng

Abstract:

This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.

Keywords: cyclic loading, DEM, numerical modelling, sands

Procedia PDF Downloads 319
35060 Development of a Wind Resource Assessment Framework Using Weather Research and Forecasting (WRF) Model, Python Scripting and Geographic Information Systems

Authors: Jerome T. Tolentino, Ma. Victoria Rejuso, Jara Kaye Villanueva, Loureal Camille Inocencio, Ma. Rosario Concepcion O. Ang

Abstract:

Wind energy is rapidly emerging as the primary source of electricity in the Philippines, although developing an accurate wind resource model is difficult. In this study, Weather Research and Forecasting (WRF) Model, an open source mesoscale Numerical Weather Prediction (NWP) model, was used to produce a 1-year atmospheric simulation with 4 km resolution on the Ilocos Region of the Philippines. The WRF output (netCDF) extracts the annual mean wind speed data using a Python-based Graphical User Interface. Lastly, wind resource assessment was produced using a GIS software. Results of the study showed that it is more flexible to use Python scripts than using other post-processing tools in dealing with netCDF files. Using WRF Model, Python, and Geographic Information Systems, a reliable wind resource map is produced.

Keywords: wind resource assessment, weather research and forecasting (WRF) model, python, GIS software

Procedia PDF Downloads 440
35059 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process

Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum

Abstract:

Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.

Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact

Procedia PDF Downloads 196
35058 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes

Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini

Abstract:

Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.

Keywords: modelling, Monte Carlo simulations, probabilistic models, data clustering, reinforced concrete members, structural design

Procedia PDF Downloads 471
35057 An Agent-Based Model of Innovation Diffusion Using Heterogeneous Social Interaction and Preference

Authors: Jang kyun Cho, Jeong-dong Lee

Abstract:

The advent of the Internet, mobile communications, and social network services has stimulated social interactions among consumers, allowing people to affect one another’s innovation adoptions by exchanging information more frequently and more quickly. Previous diffusion models, such as the Bass model, however, face limitations in reflecting such recent phenomena in society. These models are weak in their ability to model interactions between agents; they model aggregated-level behaviors only. The agent based model, which is an alternative to the aggregate model, is good for individual modeling, but it is still not based on an economic perspective of social interactions so far. This study assumes the presence of social utility from other consumers in the adoption of innovation and investigates the effect of individual interactions on innovation diffusion by developing a new model called the interaction-based diffusion model. By comparing this model with previous diffusion models, the study also examines how the proposed model explains innovation diffusion from the perspective of economics. In addition, the study recommends the use of a small-world network topology instead of cellular automata to describe innovation diffusion. This study develops a model based on individual preference and heterogeneous social interactions using utility specification, which is expandable and, thus, able to encompass various issues in diffusion research, such as reservation price. Furthermore, the study proposes a new framework to forecast aggregated-level market demand from individual level modeling. The model also exhibits a good fit to real market data. It is expected that the study will contribute to our understanding of the innovation diffusion process through its microeconomic theoretical approach.

Keywords: innovation diffusion, agent based model, small-world network, demand forecasting

Procedia PDF Downloads 339
35056 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning

Procedia PDF Downloads 549
35055 Detailed Quantum Circuit Design and Evaluation of Grover's Algorithm for the Bounded Degree Traveling Salesman Problem Using the Q# Language

Authors: Wenjun Hou, Marek Perkowski

Abstract:

The Traveling Salesman problem is famous in computing and graph theory. In short, it asks for the Hamiltonian cycle of the least total weight in a given graph with N nodes. All variations on this problem, such as those with K-bounded-degree nodes, are classified as NP-complete in classical computing. Although several papers propose theoretical high-level designs of quantum algorithms for the Traveling Salesman Problem, no quantum circuit implementation of these algorithms has been created up to our best knowledge. In contrast to previous papers, the goal of this paper is not to optimize some abstract complexity measures based on the number of oracle iterations, but to be able to evaluate the real circuit and time costs of the quantum computer. Using the emerging quantum programming language Q# developed by Microsoft, which runs quantum circuits in a quantum computer simulation, an implementation of the bounded-degree problem and its respective quantum circuit were created. To apply Grover’s algorithm to this problem, a quantum oracle was designed, evaluating the cost of a particular set of edges in the graph as well as its validity as a Hamiltonian cycle. Repeating the Grover algorithm with an oracle that finds successively lower cost each time allows to transform the decision problem to an optimization problem, finding the minimum cost of Hamiltonian cycles. N log₂ K qubits are put into an equiprobablistic superposition by applying the Hadamard gate on each qubit. Within these N log₂ K qubits, the method uses an encoding in which every node is mapped to a set of its encoded edges. The oracle consists of several blocks of circuits: a custom-written edge weight adder, node index calculator, uniqueness checker, and comparator, which were all created using only quantum Toffoli gates, including its special forms, which are Feynman and Pauli X. The oracle begins by using the edge encodings specified by the qubits to calculate each node that this path visits and adding up the edge weights along the way. Next, the oracle uses the calculated nodes from the previous step and check that all the nodes are unique. Finally, the oracle checks that the calculated cost is less than the previously-calculated cost. By performing the oracle an optimal number of times, a correct answer can be generated with very high probability. The oracle of the Grover Algorithm is modified using the recalculated minimum cost value, and this procedure is repeated until the cost cannot be further reduced. This algorithm and circuit design have been verified, using several datasets, to generate correct outputs.

Keywords: quantum computing, quantum circuit optimization, quantum algorithms, hybrid quantum algorithms, quantum programming, Grover’s algorithm, traveling salesman problem, bounded-degree TSP, minimal cost, Q# language

Procedia PDF Downloads 189
35054 Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure

Authors: Han-Taw Chen, Chung-Hou Lai, Tzu-Hsiang Lin, Ge-Jang He

Abstract:

This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a closed rectangular enclosure for various values of fin height. The inverse method with the finite difference method and the experimental temperature data is applied to determine the heat transfer coefficient. The k-ε turbulence model is used to obtain the heat transfer and fluid flow characteristics within the fins. To validate the accuracy of the results obtained, the comparison of the average heat transfer coefficient is made. The calculated temperature at selected measurement locations on the plate-fin is also compared with experimental data.

Keywords: inverse method, FLUENT, k-ε model, heat transfer characteristics, plate-fin heat sink

Procedia PDF Downloads 458
35053 Financial Fraud Prediction for Russian Non-Public Firms Using Relational Data

Authors: Natalia Feruleva

Abstract:

The goal of this paper is to develop the fraud risk assessment model basing on both relational and financial data and test the impact of the relationships between Russian non-public companies on the likelihood of financial fraud commitment. Relationships mean various linkages between companies such as parent-subsidiary relationship and person-related relationships. These linkages may provide additional opportunities for committing fraud. Person-related relationships appear when firms share a director, or the director owns another firm. The number of companies belongs to CEO and managed by CEO, the number of subsidiaries was calculated to measure the relationships. Moreover, the dummy variable describing the existence of parent company was also included in model. Control variables such as financial leverage and return on assets were also implemented because they describe the motivating factors of fraud. To check the hypotheses about the influence of the chosen parameters on the likelihood of financial fraud, information about person-related relationships between companies, existence of parent company and subsidiaries, profitability and the level of debt was collected. The resulting sample consists of 160 Russian non-public firms. The sample includes 80 fraudsters and 80 non-fraudsters operating in 2006-2017. The dependent variable is dichotomous, and it takes the value 1 if the firm is engaged in financial crime, otherwise 0. Employing probit model, it was revealed that the number of companies which belong to CEO of the firm or managed by CEO has significant impact on the likelihood of financial fraud. The results obtained indicate that the more companies are affiliated with the CEO, the higher the likelihood that the company will be involved in financial crime. The forecast accuracy of the model is about is 80%. Thus, the model basing on both relational and financial data gives high level of forecast accuracy.

Keywords: financial fraud, fraud prediction, non-public companies, regression analysis, relational data

Procedia PDF Downloads 119
35052 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: computational social science, movie preference, machine learning, SVM

Procedia PDF Downloads 257
35051 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory, synthetic data generation, traffic management

Procedia PDF Downloads 23
35050 The Effect That the Data Assimilation of Qinghai-Tibet Plateau Has on a Precipitation Forecast

Authors: Ruixia Liu

Abstract:

Qinghai-Tibet Plateau has an important influence on the precipitation of its lower reaches. Data from remote sensing has itself advantage and numerical prediction model which assimilates RS data will be better than other. We got the assimilation data of MHS and terrestrial and sounding from GSI, and introduced the result into WRF, then got the result of RH and precipitation forecast. We found that assimilating MHS and terrestrial and sounding made the forecast on precipitation, area and the center of the precipitation more accurate by comparing the result of 1h,6h,12h, and 24h. Analyzing the difference of the initial field, we knew that the data assimilating about Qinghai-Tibet Plateau influence its lower reaches forecast by affecting on initial temperature and RH.

Keywords: Qinghai-Tibet Plateau, precipitation, data assimilation, GSI

Procedia PDF Downloads 231