Search results for: dense discrete phase model (DDPM)
19963 Assessment of the Landscaped Biodiversity in the National Park of Tlemcen (Algeria) Using Per-Object Analysis of Landsat Imagery
Authors: Bencherif Kada
Abstract:
In the forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape, and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification, that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction, and area of an object, etc.), and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify of the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak, and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants, and bare soils. Texture attributes seem to provide no useful information, while spatial attributes of shape and compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.Keywords: forest, oaks, remote sensing, diversity, shrublands
Procedia PDF Downloads 12419962 Text2Time: Transformer-Based Article Time Period Prediction
Authors: Karthick Prasad Gunasekaran, B. Chase Babrich, Saurabh Shirodkar, Hee Hwang
Abstract:
Construction preparation is crucial for the success of a construction project. By involving project participants early in the construction phase, project managers can plan ahead and resolve issues early, resulting in project success and satisfaction. This study uses quantitative data from construction management projects to determine the relationship between the pre-construction phase, construction schedule, and customer satisfaction. This study examined a total of 65 construction projects and 93 clients per job to (a) identify the relationship between the pre-construction phase and program reduction and (b) the pre-construction phase and customer retention. Based on a quantitative analysis, this study found a negative correlation between pre-construction status and project schedule in 65 construction projects. This finding means that the more preparatory work done on a particular project, the shorter the total construction time. The Net Promoter Score of 93 clients from 65 projects was then used to determine the relationship between construction preparation and client satisfaction. The pre-construction status and the projects were further analyzed, and a positive correlation between them was found. This shows that customers are happier with projects with a higher ready-to-build ratio than projects with less ready-to-build.Keywords: NLP, BERT, LLM, deep learning, classification
Procedia PDF Downloads 10419961 Simulation of Behaviour Dynamics and Optimization of the Energy System
Authors: Iva Dvornik, Sandro Božić, Žana Božić Brkić
Abstract:
System-dynamic simulating modelling is one of the most appropriate and successful scientific methods of the complex, non-linear, natural, technical and organizational systems. In the recent practice its methodology proved to be efficient in solving the problems of control, behavior, sensitivity and flexibility of the system dynamics behavior having a high degree of complexity, all these by computing simulation i.e. “under laboratory conditions” what means without any danger for observed realities. This essay deals with the research of the gas turbine dynamic process as well as the operating pump units and transformation of gas energy into hydraulic energy has been simulated. In addition, system mathematical model has been also researched (gas turbine- centrifugal pumps – pipeline pressure system – storage vessel).Keywords: system dynamics, modelling, centrifugal pump, turbine, gases, continuous and discrete simulation, heuristic optimisation
Procedia PDF Downloads 10819960 A Comparative Study between FEM and Meshless Methods
Authors: Jay N. Vyas, Sachin Daxini
Abstract:
Numerical simulation techniques are widely used now in product development and testing instead of expensive, time-consuming and sometimes dangerous laboratory experiments. Numerous numerical methods are available for performing simulation of physical problems of different engineering fields. Grid based methods, like Finite Element Method, are extensively used in performing various kinds of static, dynamic, structural and non-structural analysis during product development phase. Drawbacks of grid based methods in terms of discontinuous secondary field variable, dealing fracture mechanics and large deformation problems led to development of a relatively a new class of numerical simulation techniques in last few years, which are popular as Meshless methods or Meshfree Methods. Meshless Methods are expected to be more adaptive and flexible than Finite Element Method because domain descretization in Meshless Method requires only nodes. Present paper introduces Meshless Methods and differentiates it with Finite Element Method in terms of following aspects: Shape functions used, role of weight function, techniques to impose essential boundary conditions, integration techniques for discrete system equations, convergence rate, accuracy of solution and computational effort. Capabilities, benefits and limitations of Meshless Methods are discussed and concluded at the end of paper.Keywords: numerical simulation, Grid-based methods, Finite Element Method, Meshless Methods
Procedia PDF Downloads 38919959 Rheological Properties and Thermal Performance of Suspensions of Microcapsules Containing Phase Change Materials
Authors: Vinh Duy Cao, Carlos Salas-Bringas, Anna M. Szczotok, Marianne Hiorth, Anna-Lena Kjøniksen
Abstract:
The increasing cost of energy supply for the purposes of heating and cooling creates a demand for more energy efficient buildings. Improved construction techniques and enhanced material technology can greatly reduce the energy consumption needed for the buildings. Microencapsulated phase change materials (MPCM) suspensions utilized as heat transfer fluids for energy storage and heat transfer applications provide promising potential solutions. A full understanding of the flow and thermal characteristics of microcapsule suspensions is needed to optimize the design of energy storage systems, in order to reduce the capital cost, system size, and energy consumption. The MPCM suspensions exhibited pseudoplastic and thixotropic behaviour, and significantly improved the thermal performance of the suspensions. Three different models were used to characterize the thixotropic behaviour of the MPCM suspensions: the second-order structural, kinetic model was found to give a better fit to the experimental data than the Weltman and Figoni-Shoemaker models. For all samples, the initial shear stress increased, and the breakdown rate accelerated significantly with increasing concentration. The thermal performance and rheological properties, especially the selection of rheological models, will be useful for developing the applications of microcapsules as heat transfer fluids in thermal energy storage system such as calculation of an optimum MPCM concentration, pumping power requirement, and specific power consumption. The effect of temperature on the shear thinning properties of the samples suggests that some of the phase change material is located outside the capsules, and contributes to agglomeration of the samples.Keywords: latent heat, microencapsulated phase change materials, pseudoplastic, suspension, thixotropic behaviour
Procedia PDF Downloads 26619958 Ultrahigh Thermal Stability of Dielectric Permittivity in 0.6Bi(Mg₁/₂Ti₁/₂)O₃-0.4Ba₀.₈Ca₀.₂(Ti₀.₈₇₅Nb₀.₁₂₅)O₃
Authors: Kaiyuan Chena, Senentxu Lanceros-Méndeza, Laijun Liub, Qi Zhanga
Abstract:
0.6Bi(Mg1/2Ti1/2)O3-0.4Ba0.8Ca0.2(Nb0.125Ti0.875)O3 (0.6BMT-0.4BCNT) ceramics with a pseudo-cubic structure and re-entrant dipole glass behavior have been investigated via X-ray diffraction and dielectric permittivity-temperature spectra. It shows an excellent dielectric-temperature stability with small variations of dielectric permittivity (± 5%, 420 - 802 K) and dielectric loss tangent (tanδ < 2.5%, 441 - 647 K) in a wide temperature range. Three dielectric anomalies are observed from 290 K to 1050 K. The low-temperature weakly coupled re-entrant relaxor behavior was described using Vogel-Fulcher law and the new glass model. The mid- and high-temperature dielectric anomalies are characterized by isothermal impedance and electrical modulus. The activation energy of both dielectric relaxation and conductivity follows the Arrhenius law in the temperature ranges of 633 - 753 K and 833 - 973 K, respectively. The ultrahigh thermal stability of the dielectric permittivity is attributed to the weakly coupling of polar clusters, the formation of diffuse phase transition (DPT) and the local phase transition of calcium-containing perovskite.Keywords: permittivity, relaxor, electronic ceramics, activation energy
Procedia PDF Downloads 10219957 Carbon-Doped TiO2 Nanofibers Prepared by Electrospinning
Authors: ChoLiang Chung, YuMin Chen
Abstract:
C-doped TiO2 nanofibers were prepared by electrospinning successfully. Different amounts of carbon were added into the nanofibers by using chitosan, aiming to shift the wave length that is required to excite the photocatalyst from ultraviolet light to visible light. Different amounts of carbon and different atmosphere fibers were calcined at 500oC, and the optical characteristic of C-doped TiO2 nanofibers had been changed. characterizes of nanofibers were identified by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), UV-vis, Atomic Force Microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). The XRD is used to identify the phase composition of nanofibers. The morphology of nanofibers were explored by FE-SEM and AFM. Optical characteristics of absorption were measured by UV-Vis. Three dimension surface images of C-doped TiO2 nanofibers revealed different effects of processing. The results of XRD showed that the phase of C-doped TiO2 nanofibers transformed to rutile phase and anatase phase successfully. The results of AFM showed that the surface morphology of nanofibers became smooth after high temperature treatment. Images from FE-SEM revealed the average size of nanofibers. UV-vis results showed that the band-gap of TiO2 were reduced. Finally, we found out C-doped TiO2 nanofibers can change countenance of nanofiber and make it smoother.Keywords: carbon, TiO2, chitosan, electrospinning
Procedia PDF Downloads 25719956 Mapping Forest Biodiversity Using Remote Sensing and Field Data in the National Park of Tlemcen (Algeria)
Authors: Bencherif Kada
Abstract:
In forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects, and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction and area of an object, etc.) and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants and bare soils. Texture attributes seem to provide no useful information while spatial attributes of shape, compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.Keywords: forest, oaks, remote sensing, biodiversity, shrublands
Procedia PDF Downloads 3019955 Using Teachers' Perceptions of Science Outreach Activities to Design an 'Optimum' Model of Science Outreach
Authors: Victoria Brennan, Andrea Mallaburn, Linda Seton
Abstract:
Science outreach programmes connect school pupils with external agencies to provide activities and experiences that enhance their exposure to science. It can be argued that these programmes not only aim to support teachers with curriculum engagement and promote scientific literacy but also provide pivotal opportunities to spark scientific interest in students. In turn, a further objective of these programmes is to increase awareness of career opportunities within this field. Although outreach work is also often described as a fun and satisfying venture, a plethora of researchers express caution to how successful the processes are to increases engagement post-16 in science. When researching the impact of outreach programmes, it is often student feedback regarding the activities or enrolment numbers to particular science courses post-16, which are generated and analysed. Although this is informative, the longevity of the programme’s impact could be better informed by the teacher’s perceptions; the evidence of which is far more limited in the literature. In addition, there are strong suggestions that teachers can have an indirect impact on a student’s own self-concept. These themes shape the focus and importance of this ongoing research project as it presents the rationale that teachers are under-used resources when it comes to considering the design of science outreach programmes. Therefore, the end result of the research will consist of a presentation of an ‘optimum’ model of outreach. The result of which should be of interest to the wider stakeholders such as universities or private or government organisations who design science outreach programmes in the hope to recruit future scientists. During phase one, questionnaires (n=52) and interviews (n=8) have generated both quantitative and qualitative data. These have been analysed using the Wilcoxon non-parametric test to compare teachers’ perceptions of science outreach interventions and thematic analysis for open-ended questions. Both of these research activities provide an opportunity for a cross-section of teacher opinions of science outreach to be obtained across all educational levels. Therefore, an early draft of the ‘optimum’ model of science outreach delivery was generated using both the wealth of literature and primary data. This final (ongoing) phase aims to refine this model using teacher focus groups to provide constructive feedback about the proposed model. The analysis uses principles of modified Grounded Theory to ensure that focus group data is used to further strengthen the model. Therefore, this research uses a pragmatist approach as it aims to focus on the strengths of the different paradigms encountered to ensure the data collected will provide the most suitable information to create an improved model of sustainable outreach. The results discussed will focus on this ‘optimum’ model and teachers’ perceptions of benefits and drawbacks when it comes to engaging with science outreach work. Although the model is still a ‘work in progress’, it provides both insight into how teachers feel outreach delivery can be a sustainable intervention tool within the classroom and what providers of such programmes should consider when designing science outreach activities.Keywords: educational partnerships, science education, science outreach, teachers
Procedia PDF Downloads 12919954 OFDM Radar for High Accuracy Target Tracking
Authors: Mahbube Eghtesad
Abstract:
For a number of years, the problem of simultaneous detection and tracking of a target has been one of the most relevant and challenging issues in a wide variety of military and civilian systems. We develop methods for detecting and tracking a target using an orthogonal frequency division multiplexing (OFDM) based radar. As a preliminary step we introduce the target trajectory and Gaussian noise model in discrete time form. Then resorting to match filter and Kalman filter we derive a detector and target tracker. After that we propose an OFDM radar in order to achieve further improvement in tracking performance. The motivation for employing multiple frequencies is that the different scattering centers of a target resonate differently at each frequency. Numerical examples illustrate our analytical results, demonstrating the achieved performance improvement due to the OFDM signaling method.Keywords: matched filter, target trashing, OFDM radar, Kalman filter
Procedia PDF Downloads 39919953 Acute Phase Proteins, Proinflammatory Cytokines and Oxidative Stress Biomarkers in Sheep with Pneumonic Pasteurellosis
Authors: Wael M. El-Deeb
Abstract:
The aim of this study was to assess the pathophysiological importance of lipid profile, acute phase proteins, proinflammatory cytokines and oxidative stress markers in sheep with pneumonic pasteurellosis. Blood samples were collected from 36 Pasteurellamultocida-infected sheep, together with 20 healthy controls. Samples for bacteriological examination (nasal swabs, bronchoalveolar lavage) were collected from all animals and subjected to bacteriological examinations. Moreover, heart blood and lung samples were collected from the dead pneumonic sheep and subjected also to bacteriological examinations. A lipid profile was determined, along with a blood picture and other biochemical parameters. The acute phase proteins (fibrinogen, haptoglobin, serum amyloid A), the proinflammatory cytokine tumour necrosis factor-alpha, interleukins (IL-1α, IL-1β, IL-6), interferon-gamma and the oxidative stress markers malondialdehyde, super oxide dismutase, glutathione and catalase were also measured. The examined biochemical parameters were increased in the pneumonic sheep, except for cholesterol and high-density lipoprotein cholesterol (HDL-c), which were significantly lower than control group. Acute phase proteins and cytokines were significantly higher in the pneumonic sheep when compared to the healthy sheep. There was a significant increase in the levels of malondialdehyde; however, a significant decrease in the levels of super oxide dismutase, glutathione and catalase was observed. The present study shed the light on the possible pathphysiological role of lipid profile, acute phase proteins (APPs), proinflammatory cytokines and oxidative stress markers in pneumonic pasteurelosis in sheep.Keywords: acute phase proteins, sheep, pasteurella, interleukins, stress
Procedia PDF Downloads 39119952 Usage of Crude Glycerol for Biological Hydrogen Production, Experiments and Analysis
Authors: Ilze Dimanta, Zane Rutkovska, Vizma Nikolajeva, Janis Kleperis, Indrikis Muiznieks
Abstract:
Majority of word’s steadily increasing energy consumption is provided by non-renewable fossil resources. Need to find an alternative energy resource is essential for further socio-economic development. Hydrogen is renewable, clean energy carrier with high energy density (142 MJ/kg, accordingly – oil has 42 MJ/kg). Biological hydrogen production is an alternative way to produce hydrogen from renewable resources, e.g. using organic waste material resource fermentation that facilitate recycling of sewage and are environmentally benign. Hydrogen gas is produced during the fermentation process of bacteria in anaerobic conditions. Bacteria are producing hydrogen in the liquid phase and when thermodynamic equilibrium is reached, hydrogen is diffusing from liquid to gaseous phase. Because of large quantities of available crude glycerol and the highly reduced nature of carbon in glycerol per se, microbial conversion of it seems to be economically and environmentally viable possibility. Such industrial organic waste product as crude glycerol is perspective for usage in feedstock for hydrogen producing bacteria. The process of biodiesel production results in 41% (w/w) of crude glycerol. The developed lab-scale test system (experimental bioreactor) with hydrogen micro-electrode (Unisense, Denmark) was used to determine hydrogen production yield and rate in the liquid phase. For hydrogen analysis in the gas phase the RGAPro-100 mass-spectrometer connected to the experimental test-system was used. Fermentative bacteria strains were tested for hydrogen gas production rates. The presence of hydrogen in gaseous phase was measured using mass spectrometer but registered concentrations were comparatively small. To decrease the hydrogen partial pressure in liquid phase reactor with a system for continuous bubbling with inert gas was developed. H2 production rate for the best producer in liquid phase reached 0,40 mmol H2/l, in gaseous phase - 1,32 mmol H2/l. Hydrogen production rate is time dependent – higher rate of hydrogen production is at the fermentation process beginning when concentration increases, but after three hours of fermentation, it decreases.Keywords: bio-hydrogen, fermentation, experimental bioreactor, crude glycerol
Procedia PDF Downloads 52219951 Pathways and Mechanisms of Lymphocytes Emigration from Newborn Thymus
Authors: Olena Grygorieva
Abstract:
Nowadays mechanisms of thymocytes emigration from the thymus to the periphery are investigated actively. We have proposed a hypothesis of thymocytes’ migration from the thymus through lymphatic vessels during periodical short-term local edema. By morphological, hystochemical methods we have examined quantity of lymphocytes, epitelioreticulocytes, mast cells, blood and lymphatic vessels in morpho-functional areas of rats’ thymuses during the first week after birth in 4 hours interval. In newborn and beginning from 8 hour after birth every 12 hours specific density of the thymus, absolute quantity of microcirculatory vessels, especially of lymphatic ones, lymphcyte-epithelial index, quantity of mast cells and their degranulative forms increase. Structure of extracellular matrix, intrathymical microenvironment and lymphocytes’ adhesive properties change. Absolute quantity of small lymphocytes in thymic cortex changes wavy. All these changes are straightly expressed from 0 till 2, from 12 till 16, from 108 till 120 hours of postnatal life. During this periods paravasal lymphatic vessels are stuffed with lymphocytes, i.e. discrete migration of lymphocytes from the thymus occurs. After rapid edema reduction, quantity of lymphatic vessels decrease, they become empty. Therefore, in the thymus of newborn periodical short-term local edema is observed, on its top discrete migration of lymphocytes from the thymus occurs.Keywords: lymphocytes, lymphatic vessels, mast cells, thymus
Procedia PDF Downloads 22619950 Finite Element Method Analysis of Occluded-Ear Simulator and Natural Human Ear Canal
Authors: M. Sasajima, T. Yamaguchi, Y. Hu, Y. Koike
Abstract:
In this paper, we discuss the propagation of sound in the narrow pathways of an occluded-ear simulator typically used for the measurement of insert-type earphones. The simulator has a standardized frequency response conforming to the international standard (IEC60318-4). In narrow pathways, the speed and phase of sound waves are modified by viscous air damping. In our previous paper, we proposed a new finite element method (FEM) to consider the effects of air viscosity in this type of audio equipment. In this study, we will compare the results from the ear simulator FEM model, and those from a three dimensional human ear canal FEM model made from computed tomography images, with the measured frequency response data from the ear canals of 18 people.Keywords: ear simulator, FEM, viscosity, human ear canal
Procedia PDF Downloads 40819949 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines
Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri
Abstract:
This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.Keywords: wind turbines, aeroelasticity, repetitive control, periodic systems
Procedia PDF Downloads 25019948 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle
Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel
Abstract:
Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network
Procedia PDF Downloads 20919947 Rayleigh-Bénard-Taylor Convection of Newtonian Nanoliquid
Authors: P. G. Siddheshwar, T. N. Sakshath
Abstract:
In the paper we make linear and non-linear stability analyses of Rayleigh-Bénard convection of a Newtonian nanoliquid in a rotating medium (called as Rayleigh-Bénard-Taylor convection). Rigid-rigid isothermal boundaries are considered for investigation. Khanafer-Vafai-Lightstone single phase model is used for studying instabilities in nanoliquids. Various thermophysical properties of nanoliquid are obtained using phenomenological laws and mixture theory. The eigen boundary value problem is solved for the Rayleigh number using an analytical method by considering trigonometric eigen functions. We observe that the critical nanoliquid Rayleigh number is less than that of the base liquid. Thus the onset of convection is advanced due to the addition of nanoparticles. So, increase in volume fraction leads to advanced onset and thereby increase in heat transport. The amplitudes of convective modes required for estimating the heat transport are determined analytically. The tri-modal standard Lorenz model is derived for the steady state assuming small scale convective motions. The effect of rotation on the onset of convection and on heat transport is investigated and depicted graphically. It is observed that the onset of convection is delayed due to rotation and hence leads to decrease in heat transport. Hence, rotation has a stabilizing effect on the system. This is due to the fact that the energy of the system is used to create the component V. We observe that the amount of heat transport is less in the case of rigid-rigid isothermal boundaries compared to free-free isothermal boundaries.Keywords: nanoliquid, rigid-rigid, rotation, single phase
Procedia PDF Downloads 23419946 Development and Modeling of the Process of Narrow-seam Laser Welding of Ni-Superalloy in a Hard-to-Reach Place
Authors: Vladimir Isakov, Evgeniy Rykov, Lubov Magerramova, Nikolay Emmaussky
Abstract:
For the manufacture of critical hollow products, a laser narrow-seam welding scheme based on the supply of a laser beam into the inner cavity has been developed. The report presents the results of comprehensive studies aimed at creating a sealed weld that repeats the geometric shape of the inner cavity using a rotary mirror. Laser welding of hard-to-reach places requires preliminary modeling of the process to identify defect-free modes performed at the highest possible welding speed. Optimization of the technological modes of the welded joint with a ratio of the seam width to its depth equal to 1/5 of the thickness of the Ni superalloy 6.0 mm was performed using the Verhulst limited growth model in a discrete representation. This mathematical model in the form of a recurrence relation made it possible to numerically investigate the entire variety of laser melting modes: chaotic; self-oscillating; stationary and attenuated. The control parameters and the parameter of the order to which other variables of the technological system of laser welding are subordinated are established. In it, the coefficient of relative heat capacity of the melt bath was used as a control parameter, characterizing the competition between the heat input by the laser and the heat sink into the surrounding metal. The parameter of the order of the narrow–seam laser welding process, in this interpretation, is a dimensionless value of the penetration depth, which is an argument of the function of the desired logistic equation. Experimental studies of narrow-seam welding were performed using a copper, water-cooled mirror by radiation from a powerful fiber laser. The obtained results were used to validate the evolutionary mathematical model of the laser welding process.Keywords: laser welding, internal cavity, limited growth model, ni-superalloy
Procedia PDF Downloads 019945 Simulation of Elastic Bodies through Discrete Element Method, Coupled with a Nested Overlapping Grid Fluid Flow Solver
Authors: Paolo Sassi, Jorge Freiria, Gabriel Usera
Abstract:
In this work, a finite volume fluid flow solver is coupled with a discrete element method module for the simulation of the dynamics of free and elastic bodies in interaction with the fluid and between themselves. The open source fluid flow solver, caffa3d.MBRi, includes the capability to work with nested overlapping grids in order to easily refine the grid in the region where the bodies are moving. To do so, it is necessary to implement a recognition function able to identify the specific mesh block in which the device is moving in. The set of overlapping finer grids might be displaced along with the set of bodies being simulated. The interaction between the bodies and the fluid is computed through a two-way coupling. The velocity field of the fluid is first interpolated to determine the drag force on each object. After solving the objects displacements, subject to the elastic bonding among them, the force is applied back onto the fluid through a Gaussian smoothing considering the cells near the position of each object. The fishnet is represented as lumped masses connected by elastic lines. The internal forces are derived from the elasticity of these lines, and the external forces are due to drag, gravity, buoyancy and the load acting on each element of the system. When solving the ordinary differential equations system, that represents the motion of the elastic and flexible bodies, it was found that the Runge Kutta solver of fourth order is the best tool in terms of performance, but requires a finer grid than the fluid solver to make the system converge, which demands greater computing power. The coupled solver is demonstrated by simulating the interaction between the fluid, an elastic fishnet and a set of free bodies being captured by the net as they are dragged by the fluid. The deformation of the net, as well as the wake produced in the fluid stream are well captured by the method, without requiring the fluid solver mesh to adapt for the evolving geometry. Application of the same strategy to the simulation of elastic structures subject to the action of wind is also possible with the method presented, and one such application is currently under development.Keywords: computational fluid dynamics, discrete element method, fishnets, nested overlapping grids
Procedia PDF Downloads 41619944 Implicit and Explicit Mechanisms of Emotional Contagion
Authors: Andres Pinilla Palacios, Ricardo Tamayo
Abstract:
Emotional contagion is characterized as an automatic tendency to synchronize behaviors that facilitate emotional convergence among humans. It might thus play a pivotal role to understand the dynamics of key social interactions. However, a few research has investigated its potential mechanisms. We suggest two complementary but independent processes that may underlie emotional contagion. The efficient contagion hypothesis, based on fast and implicit bottom-up processes, modulated by familiarity and spread of activation in the emotional associative networks of memory. Secondly, the emotional contrast hypothesis, based on slow and explicit top-down processes guided by deliberated appraisal and hypothesis-testing. In order to assess these two hypotheses, an experiment with 39 participants was conducted. In the first phase, participants were induced (between-groups) to an emotional state (positive, neutral or negative) using a standardized video taken from the FilmStim database. In the second phase, participants classified and rated (within-subject) the emotional state of 15 faces (5 for each emotional state) taken from the POFA database. In the third phase, all participants were returned to a baseline emotional state using the same neutral video used in the first phase. In a fourth phase, participants classified and rated a new set of 15 faces. The accuracy in the identification and rating of emotions was partially explained by the efficient contagion hypothesis, but the speed with which these judgments were made was partially explained by the emotional contrast hypothesis. However, results are ambiguous, so a follow-up experiment is proposed in which emotional expressions and activation of the sympathetic system will be measured using EMG and EDA respectively.Keywords: electromyography, emotional contagion, emotional valence, identification of emotions, imitation
Procedia PDF Downloads 31619943 Poly(Ethylene Glycol)-Silicone Containing Phase Change Polymer for Thermal Energy Storage
Authors: Swati Sundararajan, , Asit B. Samui, Prashant S. Kulkarni
Abstract:
The global energy crisis has led to extensive research on alternative sources of energy. The gap between energy supply and demand can be met by thermal energy storage techniques, of which latent heat storage is most effective in the form of phase change materials (PCMs). Phase change materials utilize latent heat absorbed or released over a narrow temperature range of the material undergoing phase transformation, to store energy. The latent heat can be utilized for heating or cooling purposes. It can also be used for converting to electricity. All these actions amount to minimizing the load on electricity demand. These materials retain this property over repeated number of cycles. Different PCMs differ in the phase change temperature and the heat storage capacities. Poly(ethylene glycol) (PEG) was cross-linked to hydroxyl-terminated poly(dimethyl siloxane) (PDMS) in the presence of cross-linker, tetraethyl orthosilicate (TEOS) and catalyst, dibutyltin dilaurate. Four different ratios of PEG and PDMS were reacted together, and the composition with the lowest PEG concentration resulted in the formation of a flexible solid-solid phase change membrane. The other compositions are obtained in powder form. The enthalpy values of the prepared PCMs were studied by using differential scanning calorimetry and the crystallization properties were analyzed by using X-ray diffraction and polarized optical microscopy. The incorporation of silicone moiety was expected to reduce the hydrophilic character of PEG, which was evaluated by measurement of contact angle. The membrane forming ability of this crosslinked polymer can be extended to several smart packaging, building and textile applications. The detailed synthesis, characterization and performance evaluation of the crosslinked polymer blend will be incorporated in the presentation.Keywords: phase change materials, poly(ethylene glycol), poly(dimethyl siloxane), thermal energy storage
Procedia PDF Downloads 35419942 Spherical Nonlinear Wave Propagation in Relativistic Quantum Plasma
Authors: Alireza Abdikian
Abstract:
By assuming a quantum relativistic degenerate electron-positron (e-p) plasma media, the nonlinear acoustic solitary propagation in the presence of the stationary ions for neutralizing the plasma background of bounded cylindrical geometry was investigated. By using the standard reductive perturbation technique with cooperation the quantum hydrodynamics model for the e-p fluid, the spherical Kadomtsev-Petviashvili equation was derived for small but finite amplitude waves and was given the solitary wave solution for the parameters relevant for dense astrophysical objects such as white dwarf stars. By using a suitable coordinate transformation and using improved F-expansion technique, the SKP equation can be solved analytically. The numerical results reveal that the relativistic effects lead to propagate the electrostatic bell shape structures and by increasing the relativistic effects, the amplitude and the width of the e-p acoustic solitary wave will decrease.Keywords: Electron-positron plasma, Acoustic solitary wave, Relativistic plasmas, the spherical Kadomtsev-Petviashvili equation
Procedia PDF Downloads 14219941 Audit Is a Production Performance Tool
Authors: Lattari Samir
Abstract:
The performance of a production process is the result of proper operation where the management tools appear as the key to success through process management which consists of managing and implementing a quality policy, organizing and planning the manufacturing, and thus defining an efficient logic as the main areas covered by production management. To carry out this delicate mission, which requires reconciling often contradictory objectives, the auditor is called upon, who must be able to express an opinion on the effectiveness of the operation of the "production" function. To do this, the auditor must structure his mission in three phases, namely, the preparation phase to assimilate the particularities of this function, the implementation phase and the conclusion phase. The audit is a systematic and independent examination of all the stages of a manufacturing process intended to determine whether the pre-established arrangements for the combination of production factors are respected, whether their implementation is effective and whether they are relevant in relation to the goals.Keywords: audit, performance of process, independent examination, management tools, audit of accounts
Procedia PDF Downloads 7519940 Model Averaging for Poisson Regression
Authors: Zhou Jianhong
Abstract:
Model averaging is a desirable approach to deal with model uncertainty, which, however, has rarely been explored for Poisson regression. In this paper, we propose a model averaging procedure based on an unbiased estimator of the expected Kullback-Leibler distance for the Poisson regression. Simulation study shows that the proposed model average estimator outperforms some other commonly used model selection and model average estimators in some situations. Our proposed methods are further applied to a real data example and the advantage of this method is demonstrated again.Keywords: model averaging, poission regression, Kullback-Leibler distance, statistics
Procedia PDF Downloads 52019939 Effects of Copper Oxide Doping on Hydrothermal Ageing in Alumina Toughened Zirconia
Authors: Mohamed Abbas, Ramesh Singh
Abstract:
This study investigates the hydrothermal aging behavior of undoped and copper oxide-doped alumina-toughened zirconia (ATZ). The ATZ ceramic composites underwent conventional sintering at temperatures ranging from 1250 to 1500°C with a holding time of 12 minutes. XRD analysis revealed a stable 100% tetragonal phase for conventionally sintered ATZ samples up to 1450°C, even after 100 hours of exposure. At 1500℃, XRD patterns of both undoped and doped ATZ samples showed no phase transformation after up to 3 hours of exposure to superheated steam. Extended exposure, however, resulted in phase transformation beyond 10 hours. CuO-doped ATZ samples initially exhibited lower monoclinic content, gradually increasing with aging. Undoped ATZ demonstrated better-aging resistance, maintaining ~40% monoclinic content after 100 hours. FESEM images post-aging revealed surface roughness changes due to the tetragonal-to-monoclinic phase transformation, with limited nucleation in the largest tetragonal grains. Fracture analysis exhibited macrocracks and microcracks on the transformed surface layer after aging. This study found that 0.2wt% CuO doping did not prevent the low-temperature degradation (LTD) phenomenon at elevated temperatures. Transformation zone depth (TZD) calculations supported the trend observed in the transformed monoclinic phase.Keywords: alumina toughened zirconia, conventional sintering, copper oxide, hydrothermal ageing
Procedia PDF Downloads 6919938 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission
Authors: Ramin Khamedi, Isa Ahmadi
Abstract:
In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).Keywords: acoustic emission, dual phase steels, deformation, failure, fracture
Procedia PDF Downloads 40319937 Usage of Channel Coding Techniques for Peak-to-Average Power Ratio Reduction in Visible Light Communications Systems
Authors: P. L. D. N. M. de Silva, S. G. Edirisinghe, R. Weerasuriya
Abstract:
High peak-to-average power ratio (PAPR) is a concern of orthogonal frequency division multiplexing (OFDM) based visible light communication (VLC) systems. Discrete Fourier Transform spread (DFT-s) OFDM is an alternative single carrier modulation scheme which would address this concern. Employing channel coding techniques is another mechanism to reduce the PAPR. Previous research has been conducted to study the impact of these techniques separately. However, to the best of the knowledge of the authors, no study has been done so far to identify the improvement which can be harnessed by hybridizing these two techniques for VLC systems. Therefore, this is a novel study area under this research. In addition, channel coding techniques such as Polar codes and Turbo codes have been tested in the VLC domain. However, other efficient techniques such as Hamming coding and Convolutional coding have not been studied too. Therefore, the authors present the impact of the hybrid of DFT-s OFDM and Channel coding (Hamming coding and Convolutional coding) on PAPR in VLC systems using Matlab simulations.Keywords: convolutional coding, discrete Fourier transform spread orthogonal frequency division multiplexing, hamming coding, peak-to-average power ratio, visible light communications
Procedia PDF Downloads 15419936 Investigation of the Growth Kinetics of Phases in Ni–Sn System
Authors: Varun A Baheti, Sanjay Kashyap, Kamanio Chattopadhyay, Praveen Kumar, Aloke Paul
Abstract:
Ni–Sn system finds applications in the microelectronics industry, especially with respect to flip–chip or direct chip, attach technology. Here the region of interest is under bump metallization (UBM), and solder bump (Sn) interface due to the formation of brittle intermetallic phases there. Understanding the growth of these phases at UBM/Sn interface is important, as in many cases it controls the electro–mechanical properties of the product. Cu and Ni are the commonly used UBM materials. Cu is used for good bonding because of fast reaction with solder and Ni often acts as a diffusion barrier layer due to its inherently slower reaction kinetics with Sn–based solders. Investigation on the growth kinetics of phases in Ni–Sn system is reported in this study. Just for simplicity, Sn being major solder constituent is chosen. Ni–Sn electroplated diffusion couples are prepared by electroplating pure Sn on Ni substrate. Bulk diffusion couples prepared by the conventional method are also studied along with Ni–Sn electroplated diffusion couples. Diffusion couples are annealed for 25–1000 h at 50–215°C to study the phase evolutions and growth kinetics of various phases. The interdiffusion zone was analysed using field emission gun equipped scanning electron microscope (FE–SEM) for imaging. Indexing of selected area diffraction (SAD) patterns obtained from transmission electron microscope (TEM) and composition measurements done in electron probe micro−analyser (FE–EPMA) confirms the presence of various product phases grown across the interdiffusion zone. Time-dependent experiments indicate diffusion controlled growth of the product phase. The estimated activation energy in the temperature range 125–215°C for parabolic growth constants (and hence integrated interdiffusion coefficients) of the Ni₃Sn₄ phase shed light on the growth mechanism of the phase; whether its grain boundary controlled or lattice controlled diffusion. The location of the Kirkendall marker plane indicates that the Ni₃Sn₄ phase grows mainly by diffusion of Sn in the binary Ni–Sn system.Keywords: diffusion, equilibrium phase, metastable phase, the Ni-Sn system
Procedia PDF Downloads 30719935 An Event-Related Potentials Study on the Processing of English Subjunctive Mood by Chinese ESL Learners
Authors: Yan Huang
Abstract:
Event-related potentials (ERPs) technique helps researchers to make continuous measures on the whole process of language comprehension, with an excellent temporal resolution at the level of milliseconds. The research on sentence processing has developed from the behavioral level to the neuropsychological level, which brings about a variety of sentence processing theories and models. However, the applicability of these models to L2 learners is still under debate. Therefore, the present study aims to investigate the neural mechanisms underlying English subjunctive mood processing by Chinese ESL learners. To this end, English subject clauses with subjunctive moods are used as the stimuli, all of which follow the same syntactic structure, “It is + adjective + that … + (should) do + …” Besides, in order to examine the role that language proficiency plays on L2 processing, this research deals with two groups of Chinese ESL learners (18 males and 22 females, mean age=21.68), namely, high proficiency group (Group H) and low proficiency group (Group L). Finally, the behavioral and neurophysiological data analysis reveals the following findings: 1) Syntax and semantics interact with each other on the SECOND phase (300-500ms) of sentence processing, which is partially in line with the Three-phase Sentence Model; 2) Language proficiency does affect L2 processing. Specifically, for Group H, it is the syntactic processing that plays the dominant role in sentence processing while for Group L, semantic processing also affects the syntactic parsing during the THIRD phase of sentence processing (500-700ms). Besides, Group H, compared to Group L, demonstrates a richer native-like ERPs pattern, which further demonstrates the role of language proficiency in L2 processing. Based on the research findings, this paper also provides some enlightenment for the L2 pedagogy as well as the L2 proficiency assessment.Keywords: Chinese ESL learners, English subjunctive mood, ERPs, L2 processing
Procedia PDF Downloads 13119934 Achieving Net Zero Energy Building in a Hot Climate Using Integrated Photovoltaic and Parabolic Trough Collectors
Authors: Adel A. Ghoneim
Abstract:
In most existing buildings in hot climate, cooling loads lead to high primary energy consumption and consequently high CO2 emissions. These can be substantially decreased with integrated renewable energy systems. Kuwait is characterized by its dry hot long summer and short warm winter. Kuwait receives annual total radiation more than 5280 MJ/m2 with approximately 3347 h of sunshine. Solar energy systems consist of PV modules and parabolic trough collectors are considered to satisfy electricity consumption, domestic water heating, and cooling loads of an existing building. This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules and parabolic trough collectors (PTC). The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of two phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase considers the installation of photovoltaic modules and parabolic trough collectors. The 2-storey building under consideration is the Applied Sciences Department at the College of Technological Studies, Kuwait. Single effect lithium bromide water absorption chillers are implemented to provide air conditioning load to the building. A numerical model is developed to evaluate the performance of parabolic trough collectors in Kuwait climate. Transient simulation program (TRNSYS) is adapted to simulate the performance of different solar system components. In addition, a numerical model is developed to assess the environmental impacts of building integrated renewable energy systems. Results indicate that efficient energy conservation can play an important role in converting the existing buildings into NZEBs as it saves a significant portion of annual energy consumption of the building. The first phase results in an energy conservation of about 28% of the building consumption. In the second phase, the integrated PV completely covers the lighting and equipment loads of the building. On the other hand, parabolic trough collectors of optimum area of 765 m2 can satisfy a significant portion of the cooling load, i.e about73% of the total building cooling load. The annual avoided CO2 emission is evaluated at the optimum conditions to assess the environmental impacts of renewable energy systems. The total annual avoided CO2 emission is about 680 metric ton/year which confirms the environmental impacts of these systems in Kuwait.Keywords: building integrated renewable systems, Net-Zero energy building, solar fraction, avoided CO2 emission
Procedia PDF Downloads 611