Search results for: unified theory of acceptance and use of technology (UTAUT) model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26061

Search results for: unified theory of acceptance and use of technology (UTAUT) model

16521 A Petri Net Model to Obtain the Throughput of Unreliable Production Lines in the Buffer Allocation Problem

Authors: Joselito Medina-Marin, Alexandr Karelin, Ana Tarasenko, Juan Carlos Seck-Tuoh-Mora, Norberto Hernandez-Romero, Eva Selene Hernandez-Gress

Abstract:

A production line designer faces with several challenges in manufacturing system design. One of them is the assignment of buffer slots in between every machine of the production line in order to maximize the throughput of the whole line, which is known as the Buffer Allocation Problem (BAP). The BAP is a combinatorial problem that depends on the number of machines and the total number of slots to be distributed on the production line. In this paper, we are proposing a Petri Net (PN) Model to obtain the throughput in unreliable production lines, based on PN mathematical tools and the decomposition method. The results obtained by this methodology are similar to those presented in previous works, and the number of machines is not a hard restriction.

Keywords: buffer allocation problem, Petri Nets, throughput, production lines

Procedia PDF Downloads 290
16520 Proposal of a Rectenna Built by Using Paper as a Dielectric Substrate for Electromagnetic Energy Harvesting

Authors: Ursula D. C. Resende, Yan G. Santos, Lucas M. de O. Andrade

Abstract:

The recent and fast development of the internet, wireless, telecommunication technologies and low-power electronic devices has led to an expressive amount of electromagnetic energy available in the environment and the smart applications technology expansion. These applications have been used in the Internet of Things devices, 4G and 5G solutions. The main feature of this technology is the use of the wireless sensor. Although these sensors are low-power loads, their use imposes huge challenges in terms of an efficient and reliable way for power supply in order to avoid the traditional battery. The radio frequency based energy harvesting technology is especially suitable to wireless power sensors by using a rectenna since it can be completely integrated into the distributed hosting sensors structure, reducing its cost, maintenance and environmental impact. The rectenna is an equipment composed of an antenna and a rectifier circuit. The antenna function is to collect as much radio frequency radiation as possible and transfer it to the rectifier, which is a nonlinear circuit, that converts the very low input radio frequency energy into direct current voltage. In this work, a set of rectennas, mounted on a paper substrate, which can be used for the inner coating of buildings and simultaneously harvest electromagnetic energy from the environment, is proposed. Each proposed individual rectenna is composed of a 2.45 GHz patch antenna and a voltage doubler rectifier circuit, built in the same paper substrate. The antenna contains a rectangular radiator element and a microstrip transmission line that was projected and optimized by using the Computer Simulation Software (CST) in order to obtain values of S11 parameter below -10 dB in 2.45 GHz. In order to increase the amount of harvested power, eight individual rectennas, incorporating metamaterial cells, were connected in parallel forming a system, denominated Electromagnetic Wall (EW). In order to evaluate the EW performance, it was positioned at a variable distance from the internet router, and a 27 kΩ resistive load was fed. The results obtained showed that if more than one rectenna is associated in parallel, enough power level can be achieved in order to feed very low consumption sensors. The 0.12 m2 EW proposed in this work was able to harvest 0.6 mW from the environment. It also observed that the use of metamaterial structures provide an expressive growth in the amount of electromagnetic energy harvested, which was increased from 0. 2mW to 0.6 mW.

Keywords: electromagnetic energy harvesting, metamaterial, rectenna, rectifier circuit

Procedia PDF Downloads 146
16519 Human Capital Divergence and Team Performance: A Study of Major League Baseball Teams

Authors: Yu-Chen Wei

Abstract:

The relationship between organizational human capital and organizational effectiveness have been a common topic of interest to organization researchers. Much of this research has concluded that higher human capital can predict greater organizational outcomes. Whereas human capital research has traditionally focused on organizations, the current study turns to the team level human capital. In addition, there are no known empirical studies assessing the effect of human capital divergence on team performance. Team human capital refers to the sum of knowledge, ability, and experience embedded in team members. Team human capital divergence is defined as the variation of human capital within a team. This study is among the first to assess the role of human capital divergence as a moderator of the effect of team human capital on team performance. From the traditional perspective, team human capital represents the collective ability to solve problems and reducing operational risk of all team members. Hence, the higher team human capital, the higher the team performance. This study further employs social learning theory to explain the relationship between team human capital and team performance. According to this theory, the individuals will look for progress by way of learning from teammates in their teams. They expect to have upper human capital, in turn, to achieve high productivity, obtain great rewards and career success eventually. Therefore, the individual can have more chances to improve his or her capability by learning from peers of the team if the team members have higher average human capital. As a consequence, all team members can develop a quick and effective learning path in their work environment, and in turn enhance their knowledge, skill, and experience, leads to higher team performance. This is the first argument of this study. Furthermore, the current study argues that human capital divergence is negative to a team development. For the individuals with lower human capital in the team, they always feel the pressure from their outstanding colleagues. Under the pressure, they cannot give full play to their own jobs and lose more and more confidence. For the smart guys in the team, they are reluctant to be colleagues with the teammates who are not as intelligent as them. Besides, they may have lower motivation to move forward because they are prominent enough compared with their teammates. Therefore, human capital divergence will moderate the relationship between team human capital and team performance. These two arguments were tested in 510 team-seasons drawn from major league baseball (1998–2014). Results demonstrate that there is a positive relationship between team human capital and team performance which is consistent with previous research. In addition, the variation of human capital within a team weakens the above relationships. That is to say, an individual working with teammates who are comparable to them can produce better performance than working with people who are either too smart or too stupid to them.

Keywords: human capital divergence, team human capital, team performance, team level research

Procedia PDF Downloads 229
16518 Mathematical Modeling for the Break-Even Point Problem in a Non-homogeneous System

Authors: Filipe Cardoso de Oliveira, Lino Marcos da Silva, Ademar Nogueira do Nascimento, Cristiano Hora de Oliveira Fontes

Abstract:

This article presents a mathematical formulation for the production Break-Even Point problem in a non-homogeneous system. The optimization problem aims to obtain the composition of the best product mix in a non-homogeneous industrial plant, with the lowest cost until the breakeven point is reached. The problem constraints represent real limitations of a generic non-homogeneous industrial plant for n different products. The proposed model is able to solve the equilibrium point problem simultaneously for all products, unlike the existing approaches that propose a resolution in a sequential way, considering each product in isolation and providing a sub-optimal solution to the problem. The results indicate that the product mix found through the proposed model has economical advantages over the traditional approach used.

Keywords: branch and bound, break-even point, non-homogeneous production system, integer linear programming, management accounting

Procedia PDF Downloads 191
16517 Drying and Transport Processes in Distributed Hydrological Modelling Based on Finite Volume Schemes (Iber Model)

Authors: Carlos Caro, Ernest Bladé, Pedro Acosta, Camilo Lesmes

Abstract:

The drying-wet process is one of the topics to be more careful in distributed hydrological modeling using finite volume schemes as a means of solving the equations of Saint Venant. In a hydrologic and hydraulic computer model, surface flow phenomena depend mainly on the different flow accumulation and subsequent runoff generation. These accumulations are generated by routing, cell by cell, from the heights of water, which begin to appear due to the rain at each instant of time. Determine when it is considered a dry cell and when considered wet to include in the full calculation is an issue that directly affects the quantification of direct runoff or generation of flow at the end of a zone of contribution by accumulations flow generated from cells or finite volume.

Keywords: hydrology, transport processes, hydrological modelling, finite volume schemes

Procedia PDF Downloads 375
16516 Patterns of Private Transfers in the Philippines: An Analysis of Who Gives and Receives More

Authors: Rutcher M. Lacaza, Stephen Jun V. Villejo

Abstract:

This paper investigated the patterns of private transfers in the Philippines using the Family Income Expenditure Survey (FIES) 2009, conducted by the Philippine government’s National Statistics Office (NSO) every three years. The paper performed bivariate analysis on net transfers, using the identified determinants for a household to be either a net receiver or a net giver. The household characteristics considered are the following: age, sex, marital status, employment status and educational attainment of the household head, and also size, location, pre-transfer income and the number of employed members of the household. The variables net receiver and net giver are determined by computing the net transfer, subtracting total gifts from total receipts. The receipts are defined as the sum of cash received from abroad, cash received from domestic sources, total gifts received and inheritance. While gifts are defined as the sum of contributions and donations to church and other religious institutions, contributions and donations to other institutions, gifts and contributions to others, and gifts and assistance to private individuals outside the family. Both in kind and in cash transfers are considered in the analysis. It also performed a multiple regression analysis on transfers received and income including other household characteristics to examine the motives for giving transfers – whether altruism or exchanged. It also used the binary logistic regression to estimate the probability of being a net receiver or net giver given the household characteristics. The study revealed that receiving tends to be universal – both the non-poor and the poor benefit although the poor receive substantially less than the non-poor. Regardless of whether households are net receivers or net givers, households in the upper deciles generally give and receive more than those in the lower deciles. It also appears that private transfers may just flow within economic groups. Big amounts of transfers are, therefore, directed to the non-poor and the small amounts go to the poor. This was also supported by the increasing function of gross transfers received and the income of households – the poor receiving less and the non-poor receiving more. This is contrary to the theory that private transfers can help equalize the distribution of income. This suggested that private transfers in the Philippines are not altruistically motivated but exchanged. However, bilateral data on transfers received or given is needed to test this theory directly. The results showed that transfers are much needed by the poor and it is important to understand the nature of private transfers, to ensure that government transfer programs are properly designed and targeted so as to prevent the duplication of private safety nets already present among the non-poor.

Keywords: private transfers, net receiver, net giver, altruism, exchanged.

Procedia PDF Downloads 202
16515 The Legal and Regulatory Gaps of Blockchain-Enabled Energy Prosumerism

Authors: Karisma Karisma, Pardis Moslemzadeh Tehrani

Abstract:

This study aims to conduct a high-level strategic dialogue on the lack of consensus, consistency, and legal certainty regarding blockchain-based energy prosumerism so that appropriate institutional and governance structures can be put in place to address the inadequacies and gaps in the legal and regulatory framework. The drive to achieve national and global decarbonization targets is a driving force behind climate goals and policies under the Paris Agreement. In recent years, efforts to ‘demonopolize’ and ‘decentralize’ energy generation and distribution have driven the energy transition toward decentralized systems, invoking concepts such as ownership, sovereignty, and autonomy of RE sources. The emergence of individual and collective forms of prosumerism and the rapid diffusion of blockchain is expected to play a critical role in the decarbonization and democratization of energy systems. However, there is a ‘regulatory void’ relating to individual and collective forms of prosumerism that could prevent the rapid deployment of blockchain systems and potentially stagnate the operationalization of blockchain-enabled energy sharing and trading activities. The application of broad and facile regulatory fixes may be insufficient to address the major regulatory gaps. First, to the authors’ best knowledge, the concepts and elements circumjacent to individual and collective forms of prosumerism have not been adequately described in the legal frameworks of many countries. Second, there is a lack of legal certainty regarding the creation and adaptation of business models in a highly regulated and centralized energy system, which inhibits the emergence of prosumer-driven niche markets. There are also current and prospective challenges relating to the legal status of blockchain-based platforms for facilitating energy transactions, anticipated with the diffusion of blockchain technology. With the rise of prosumerism in the energy sector, the areas of (a) network charges, (b) energy market access, (c) incentive schemes, (d) taxes and levies, and (e) licensing requirements are still uncharted territories in many countries. The uncertainties emanating from this area pose a significant hurdle to the widespread adoption of blockchain technology, a complementary technology that offers added value and competitive advantages for energy systems. The authors undertake a conceptual and theoretical investigation to elucidate the lack of consensus, consistency, and legal certainty in the study of blockchain-based prosumerism. In addition, the authors set an exploratory tone to the discussion by taking an analytically eclectic approach that builds on multiple sources and theories to delve deeper into this topic. As an interdisciplinary study, this research accounts for the convergence of regulation, technology, and the energy sector. The study primarily adopts desk research, which examines regulatory frameworks and conceptual models for crucial policies at the international level to foster an all-inclusive discussion. With their reflections and insights into the interaction of blockchain and prosumerism in the energy sector, the authors do not aim to develop definitive regulatory models or instrument designs, but to contribute to the theoretical dialogue to navigate seminal issues and explore different nuances and pathways. Given the emergence of blockchain-based energy prosumerism, identifying the challenges, gaps and fragmentation of governance regimes is key to facilitating global regulatory transitions.

Keywords: blockchain technology, energy sector, prosumer, legal and regulatory.

Procedia PDF Downloads 170
16514 Hand Movements and the Effect of Using Smart Teaching Aids: Quality of Writing Styles Outcomes of Pupils with Dysgraphia

Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Sajedah Al Yaari, Adham Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Ayah Al Yaari, Fatehi Eissa

Abstract:

Dysgraphia is a neurological disorder of written expression that impairs writing ability and fine motor skills, resulting primarily in problems relating not only to handwriting but also to writing coherence and cohesion. We investigate the properties of smart writing technology to highlight some unique features of the effects they cause on the academic performance of pupils with dysgraphia. In Amis, dysgraphics undergo writing problems to express their ideas due to ordinary writing aids, as the default strategy. The Amis data suggests a possible connection between available writing aids and pupils’ writing improvement; therefore, texts’ expression and comprehension. A group of thirteen dysgraphic pupils were placed in a regular classroom of primary school, with twenty-one pupils being recruited in the study as a control group. To ensure validity, reliability and accountability to the research, both groups studied writing courses for two semesters, of which the first was equipped with smart writing aids while the second took place in an ordinary classroom. Two pre-tests were undertaken at the beginning of the first two semesters, and two post-tests were administered at the end of both semesters. Tests examined pupils’ ability to write coherent, cohesive and expressive texts. The dysgraphic group received the treatment of a writing course in the first semester in classes with smart technology and produced significantly greater increases in writing expression than in an ordinary classroom, and their performance was better than that of the control group in the second semester. The current study concludes that using smart teaching aids is a ‘MUST’, both for teaching and learning dysgraphia. Furthermore, it is demonstrated that for young dysgraphia, expressive tasks are more challenging than coherent and cohesive tasks. The study, therefore, supports the literature suggesting a role for smart educational aids in writing and that smart writing techniques may be an efficient addition to regular educational practices, notably in special educational institutions and speech-language therapeutic facilities. However, further research is needed to prompt the adults with dysgraphia more often than is done to the older adults without dysgraphia in order to get them to finish the other productive and/or written skills tasks.

Keywords: smart technology, writing aids, pupils with dysgraphia, hands’ movement

Procedia PDF Downloads 23
16513 Robust Half-Metallicity and Magnetic Properties of Cubic PrMnO3 Perovskite

Authors: B. Bouadjemi, S. Bentata, W. Benstaali, A. Abbad, T. Lantri, A. Zitouni

Abstract:

The purpose of this study was to investigate the structural,electronic and magnetic properties of the cubic praseodymium oxides perovskites PrMnO3. It includes our calculations based on the use of the density functional theory (DFT) with both generalized gradient approximation (GGA) and GGA+U approaches, The spin polarized electronic band structures and densities of states aswellas the integer value of the magnetic moment of the unit cell (6 μB) illustrate that PrMnO3 is half-metallic ferromagnetic. The study shows that the robust half-metallicity makes the cubic PrMnO3 a promising candidate for application in spintronics.

Keywords: Perovskite, DFT, electronic properties, Magnetic moment, half-metallic

Procedia PDF Downloads 440
16512 Process Simulation of 1-Butene Separation from C4 Mixture by Extractive Distillation

Authors: Muhammad Naeem, Abdulrahman A. Al-Rabiah, Wasif Mughees

Abstract:

Technical mixture of C4 containing 1-butene and n-butane are very close to each other with regard to their boiling points i.e. -6.3°C for 1-butene and -1°C for n-butane. Extractive distillation process is used for the separation of 1-butene from the existing mixture of C4. The solvent is the essential of extractive distillation, and an appropriate solvent plays an important role in the process economy of extractive distillation. Aspen Plus has been applied for the separation of these hydrocarbons as a simulator. Moreover, NRTL activity coefficient model was used in the simulation. This model indicated that the material balances in this separation process were accurate for several solvent flow rates. Mixture of acetonitrile and water used as a solvent and 99% pure 1-butene was separated. This simulation proposed the ratio of the feed to solvent as 1: 7.9 and 15 plates for the solvent recovery column. Previously feed to solvent ratio was more than this and the number of proposed plates were 30, which shows that the separation process can be economized.

Keywords: extractive distillation, 1-butene, aspen plus, ACN solvent

Procedia PDF Downloads 520
16511 Electric Field Investigation in MV PILC Cables with Void Defect

Authors: Mohamed A. Alsharif, Peter A. Wallace, Donald M. Hepburn, Chengke Zhou

Abstract:

Worldwide, most PILC MV underground cables in use are approaching the end of their design life; hence, failures are likely to increase. This paper studies the electric field and potential distributions within the PILC insulted cable containing common void-defect. The finite element model of the performance of the belted PILC MV underground cable is presented. The variation of the electric field stress within the cable using the Finite Element Method (FEM) is concentrated. The effects of the void-defect within the insulation are given. Outcomes will lead to deeper understanding of the modeling of Paper Insulated Lead Covered (PILC) and electric field response of belted PILC insulted cable containing void defect.

Keywords: MV PILC cables, finite element model/COMSOL multiphysics, electric field stress, partial discharge degradation

Procedia PDF Downloads 473
16510 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins

Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan

Abstract:

Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.

Keywords: cognition, generalized correlation coefficient, GWAS, twins

Procedia PDF Downloads 108
16509 Library Screening and Evaluation of Mycobacterium tuberculosis Ketol-Acid Reductoisomerase Inhibitors

Authors: Vagolu S. Krishna, Shan Zheng, Estharla M. Rekha, Luke W. Guddat, Dharmarajan Sriram

Abstract:

Tuberculosis (TB) remains a major threat to human health. This due to the fact that current drug treatments are less than optimal as well as the rising occurrence of multi drug-resistant and extensively drug-resistant strains of the etiological agent, Mycobacterium tuberculosis (Mt). Given the wide-spread significance of this disease, we have undertaken a design and evaluation program to discover new anti-TB drug leads. Here, our attention is focused on ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid biosynthesis pathway. Importantly, this enzyme is present in bacteria but not in humans, making it an attractive proposition for drug discovery. In the present work, we used high-throughput virtual screening to identify seventeen potential inhibitors of KARI using the Birla Institute of Technology and Science in-house database. Compounds were selected based on high docking scores, which were assigned as the result of favourable interactions between the compound and the active site of KARI. The Ki values for two leads, compounds 14 and 16 are 3.71 and 3.06 µM, respectively for Mt KARI. To assess the mode of binding, 100 ns molecular dynamics simulations for these two compounds in association with Mt KARI were performed and showed that the complex was stable with an average RMSD of less than 2.5 Å for all atoms. Compound 16 showed an MIC of 2.06 ± 0.91 µM and a 1.9 fold logarithmic reduction in the growth of Mt in an infected macrophage model. The two compounds exhibited low toxicity against murine macrophage RAW 264.7 cell lines. Thus, both compounds are promising candidates for development as an anti-TB drug leads.

Keywords: ketol-acid reductoisomerase, macrophage, molecular docking and dynamics, tuberculosis

Procedia PDF Downloads 109
16508 Performance Assessment of PV Based Grid Connected Solar Plant with Varying Load Conditions

Authors: Kusum Tharani, Ratna Dahiya

Abstract:

This paper aims to analyze the power flow of a grid connected 100-kW Photovoltaic(PV) array connected to a 25-kV grid via a DC-DC boost converter and a three-phase three-level Voltage Source Converter (VSC). Maximum Power Point Tracking (MPPT) is implemented in the boost converter bymeans of a Simulink model using the 'Perturb & Observe' technique. First, related papers and technological reports were extensively studied and analyzed. Accordingly, the system is tested under various loading conditions. Power flow analysis is done using the Newton-Raphson method in Matlab environment. Finally, the system is subject to Single Line to Ground Fault and Three Phase short circuit. The results are simulated under the grid-connected operating model.

Keywords: grid connected PV Array, Newton-Raphson Method, power flow analysis, three phase fault

Procedia PDF Downloads 541
16507 Investigations into the Efficiencies of Steam Conversion in Three Reactor Chemical Looping

Authors: Ratnakumar V. Kappagantula, Gordon D. Ingram, Hari B. Vuthaluru

Abstract:

This paper analyzes a three reactor chemical looping process for hydrogen production from natural gas, allowing for carbon dioxide capture through chemical looping technology. An oxygen carrier is circulated to separate carbon dioxide, to reduce steam for hydrogen production and to supply oxygen for combustion. In this study, the emphasis is placed on the steam conversion in the steam reactor by investigating the hydrogen efficiencies of the complete system at steam conversions of 15.8% and 50%. An Aspen Plus model was developed for a Three Reactor Chemical Looping process to study the effects of operational parameters on hydrogen production is investigated. Maximum hydrogen production was observed under stoichiometric conditions. Different conversions in the steam reactor, which was modelled as a Gibbs reactor, were found when Gibbs-identified products and user identified products were chosen. Simulations were performed for different oxygen carriers, which consist of an active metal oxide on an inert support material. For the same metal oxide mass flowrate, the fuel reactor temperature decreased for different support materials in the order: aluminum oxide (Al2O3) > magnesium aluminate (MgAl2O4) > zirconia (ZrO2). To achieve the same fuel reactor temperature for the same oxide mass flow rate, the inert mass fraction was found to be 0.825 for ZrO2, 0.7 for MgAl2O4 and 0.6 for Al2O3. The effect of poisoning of the oxygen carrier was also analyzed. With 3000 ppm sulfur-based impurities in the feed gas, the hydrogen product energy rate of the process were found to decrease by 0.4%.

Keywords: aspen plus, chemical looping combustion, inert support balls, oxygen carrier

Procedia PDF Downloads 310
16506 Microwave Imaging by Application of Information Theory Criteria in MUSIC Algorithm

Authors: Majid Pourahmadi

Abstract:

The performance of time-reversal MUSIC algorithm will be dramatically degrades in presence of strong noise and multiple scattering (i.e. when scatterers are close to each other). This is due to error in determining the number of scatterers. The present paper provides a new approach to alleviate such a problem using an information theoretic criterion referred as minimum description length (MDL). The merits of the novel approach are confirmed by the numerical examples. The results indicate the time-reversal MUSIC yields accurate estimate of the target locations with considerable noise and multiple scattering in the received signals.

Keywords: microwave imaging, time reversal, MUSIC algorithm, minimum description length (MDL)

Procedia PDF Downloads 318
16505 Characteristics of the Mortars Obtained by Radioactive Recycled Sand

Authors: Claudiu Mazilu, Ion Robu, Radu Deju

Abstract:

At the end of 2011 worldwide there were 124 power reactors shut down, from which: 16 fully decommissioned, 50 power reactors in a decommissioning process, 49 reactors in “safe enclosure mode”, 3 reactors “entombed”, for other 6 reactors it was not yet have specified the decommissioning strategy. The concrete radioactive waste that will be generated from dismantled structures of VVR-S nuclear research reactor from Magurele (e.g.: biological shield of the reactor core and hot cells) represents an estimated amount of about 70 tons. Until now the solid low activity radioactive waste (LLW) was pre-placed in containers and cementation with mortar made from cement and natural fine aggregates, providing a fill ratio of the container of approximately 50 vol. % for concrete. In this paper is presented an innovative technology in which radioactive concrete is crushed and the mortar made from recycled radioactive sand, cement, water and superplasticizer agent is poured in container with radioactive rubble (that is pre-placed in container) for cimentation. Is achieved a radioactive waste package in which the degree of filling of radioactive waste increases substantially. The tests were carried out on non-radioactive material because the radioactive concrete was not available in a good time. Waste concrete with maximum size of 350 mm were crushed in the first stage with a Liebhher type jaw crusher, adjusted to nominal size of 50 mm. Crushed concrete less than 50 mm was sieved in order to obtain useful sort for preplacement, 10 to 50 mm. The rest of the screening > 50 mm obtained from primary crushing of concrete was crushed in the second stage, with different working principles crushers at size < 2.5 mm, in order to produce recycled fine aggregate (sand) for the filler mortar and which fulfills the technical specifications proposed: –jaw crusher, Retsch type, model BB 100; –hammer crusher, Buffalo Shuttle model WA-12-H; presented a series of characteristics of recycled concrete aggregates by predefined class (the granulosity, the granule shape, the absorption of water, behavior to the Los Angeles test, the content of attached mortar etc.), most in comparison with characteristics of natural aggregates. Various mortar recipes were used in order to identify those that meet the proposed specification (flow-rate: 16-50s, no bleeding, min. 30N/mm2 compressive strength of the mortar after 28 days, the proportion of recycled sand used in mortar: min. 900kg/m3) and allow obtaining of the highest fill ratio for mortar. In order to optimize the mortars following compositional factors were varied: aggregate nature, water/cement (W/C) ratio, sand/cement (S/C) ratio, nature and proportion of additive. To confirm the results obtained on a small scale, it made an attempt to fill the mortar in a container that simulates the final storage drums. Was measured the mortar fill ratio (98.9%) compared with the results of laboratory tests and targets set out in the proposed specification. Although fill ratio obtained on the mock-up is lower by 0.8 vol. % compared to that obtained in the laboratory tests (99.7%), the result meets the specification criteria.

Keywords: characteristics, radioactive recycled concrete aggregate, mortars, fill ratio

Procedia PDF Downloads 184
16504 Decentralized Control of Interconnected Systems with Non-Linear Unknown Interconnections

Authors: Haci Mehmet Guzey, Levent Acar

Abstract:

In this paper, a novel decentralized controller is developed for linear systems with nonlinear unknown interconnections. A model linear decoupled system is assigned for each system. By using the difference actual and model state dynamics, the problem is formulated as inverse problem. Then, the interconnected dynamics are approximated by using Galerkin’s expansion method for inverse problems. Two different sets of orthogonal basis functions are utilized to approximate the interconnected dynamics. Approximated interconnections are utilized in the controller to cancel the interconnections and decouple the systems. Subsequently, the interconnected systems behave as a collection of decoupled systems.

Keywords: decentralized control, inverse problems, large scale systems, nonlinear interconnections, basis functions, system identification

Procedia PDF Downloads 522
16503 Testing Chat-GPT: An AI Application

Authors: Jana Ismail, Layla Fallatah, Maha Alshmaisi

Abstract:

ChatGPT, a cutting-edge language model built on the GPT-3.5 architecture, has garnered attention for its profound natural language processing capabilities, holding promise for transformative applications in customer service and content creation. This study delves into ChatGPT's architecture, aiming to comprehensively understand its strengths and potential limitations. Through systematic experiments across diverse domains, such as general knowledge and creative writing, we evaluated the model's coherence, context retention, and task-specific accuracy. While ChatGPT excels in generating human-like responses and demonstrates adaptability, occasional inaccuracies and sensitivity to input phrasing were observed. The study emphasizes the impact of prompt design on output quality, providing valuable insights for the nuanced deployment of ChatGPT in conversational AI and contributing to the ongoing discourse on the evolving landscape of natural language processing in artificial intelligence.

Keywords: artificial Inelegance, chatGPT, open AI, NLP

Procedia PDF Downloads 62
16502 A Survey on the Requirements of University Course Timetabling

Authors: Nurul Liyana Abdul Aziz, Nur Aidya Hanum Aizam

Abstract:

Course timetabling problems occur every semester in a university which includes the allocation of resources (subjects, lecturers and students) to a number of fixed rooms and timeslots. The assignment is carried out in a way such that there are no conflicts within rooms, students and lecturers, as well as fulfilling a range of constraints. The constraints consist of rules and policies set up by the universities as well as lecturers’ and students’ preferences of courses to be allocated in specific timeslots. This paper specifically focuses on the preferences of the course timetabling problem in one of the public universities in Malaysia. The demands will be considered into our existing mathematical model to make it more generalized and can be used widely. We have distributed questionnaires to a number of lecturers and students of the university to investigate their demands and preferences for their desired course timetable. We classify the preferences thus converting them to construct one mathematical model that can produce such timetable.

Keywords: university course timetabling problem, integer programming, preferences, constraints

Procedia PDF Downloads 350
16501 Skills Development: The Active Learning Model of a French Computer Science Institute

Authors: N. Paparisteidi, D. Rodamitou

Abstract:

This article focuses on the skills development and path planning of students studying computer science in EPITECH: french private institute of Higher Education. The researchers examine students’ points of view and experience in a blended learning model based on a skills development curriculum. The study is based on the collection of four main categories of data: semi-participant observation, distribution of questionnaires, interviews, and analysis of internal school databases. The findings seem to indicate that a skills-based program on active learning enables students to develop their learning strategies as well as their personal skills and to actively engage in the creation of their career path and contribute to providing additional information to curricula planners and decision-makers about learning design in higher education.

Keywords: active learning, blended learning, higher education, skills development

Procedia PDF Downloads 91
16500 Increase of Energy Efficiency by Means of Application of Active Bearings

Authors: Alexander Babin, Leonid Savin

Abstract:

In the present paper, increasing of energy efficiency of a thrust hybrid bearing with a central feeding chamber is considered. The mathematical model was developed to determine the pressure distribution and the reaction forces, based on the Reynolds equation and static characteristics’ equations. The boundary problem of pressure distribution calculation was solved using the method of finite differences. For various types of lubricants, geometry and operational characteristics, axial gaps can be determined, where the minimal friction coefficient is provided. The next part of the study considers the application of servovalves in order to maintain the desired position of the rotor. The report features the calculation results and the analysis of the influence of the operational and geometric parameters on the energy efficiency of mechatronic fluid-film bearings.

Keywords: active bearings, energy efficiency, mathematical model, mechatronics, thrust multipad bearing

Procedia PDF Downloads 271
16499 Human Posture Estimation Based on Multiple Viewpoints

Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo

Abstract:

This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields.

Keywords: multi-view, pose estimation, ST-GCN, joint fusion

Procedia PDF Downloads 53
16498 Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach

Authors: Charline David, Alexandre Blondin Massé, Arnaud Zinflou

Abstract:

In 2016, Clements, Hurn, and Li proposed a multiple equation time series approach for the short-term load forecasting, reporting an average mean absolute percentage error (MAPE) of 1.36% on an 11-years dataset for the Queensland region in Australia. We present an adaptation of their model to the electrical power load consumption for the whole Quebec province in Canada. More precisely, we take into account two additional meteorological variables — cloudiness and wind speed — on top of temperature, as well as the use of multiple meteorological measurements taken at different locations on the territory. We also consider other minor improvements. Our final model shows an average MAPE score of 1:79% over an 8-years dataset.

Keywords: short-term load forecasting, special days, time series, multiple equations, parallelization, clustering

Procedia PDF Downloads 86
16497 The Role of Social Influences and Cultural Beliefs on Perceptions of Postpartum Depression among Mexican Origin Mothers in San Diego

Authors: Mireya Mateo Gomez

Abstract:

The purpose of this study was to examine the perceptions first-generation Mexican origin mothers living in San Diego have on postpartum depression (PPD), with a special focus on social influences and cultural beliefs towards those meanings. This study also aimed to examine possible PPD help-seeking behaviors that first-generation Mexican origin mothers can perform. The Health Belief Model (HBM) and Social Ecological Model (SEM) were the guiding theoretical frameworks for this study. Data for this study were collected from three focus groups, four in-depth interviews, and the distribution of an acculturation survey (ARSMA II). There were a total of 15 participants, in which participant’s mean age was 45, and the mean age migrated to the United States being 22. Most participants identified as being married, born in Southern or Western Mexico, and with a strong Mexican identity in relation to the ARSMA survey. Participants identified four salient PPD perceptions corresponding to the interpersonal level of SEM. These four main perceptions were: 1) PPD affecting the identity of motherhood; 2) PPD being a natural part of a mother’s experience but mitigated by networks; 3) PPD being a U.S. phenomenon due to family and community breakdown; and 4) natural remedies as a preferred PPD treatment. In regard to themes relating to help seeking behaviors, participants identified seven being: 1) seeking help from immediate family members; 2) practicing home remedies; 3) seeking help from a medical professional; 4) obtaining help from a clinic or organization; 5) seeking help from God; 6) participating in PPD support groups; and 7) talking to a friend. It was evident in this study that postpartum depression is not a well discussed topic within the Mexican immigrant population. In relation to the role culture and social influences have on PPD perceptions, most participants shared hearing or learning about PPD from their family members or friends. Participants also stated seeking help from family members if diagnosed with PPD and seeking out home remedies. This study as well provides suggestions to increase the awareness of PPD among the Mexican immigrant community.

Keywords: cultural beliefs, health belief model, Mexican origin mothers, perceptions, postpartum depression social ecological model

Procedia PDF Downloads 135
16496 The Usage of Bridge Estimator for Hegy Seasonal Unit Root Tests

Authors: Huseyin Guler, Cigdem Kosar

Abstract:

The aim of this study is to propose Bridge estimator for seasonal unit root tests. Seasonality is an important factor for many economic time series. Some variables may contain seasonal patterns and forecasts that ignore important seasonal patterns have a high variance. Therefore, it is very important to eliminate seasonality for seasonal macroeconomic data. There are some methods to eliminate the impacts of seasonality in time series. One of them is filtering the data. However, this method leads to undesired consequences in unit root tests, especially if the data is generated by a stochastic seasonal process. Another method to eliminate seasonality is using seasonal dummy variables. Some seasonal patterns may result from stationary seasonal processes, which are modelled using seasonal dummies but if there is a varying and changing seasonal pattern over time, so the seasonal process is non-stationary, deterministic seasonal dummies are inadequate to capture the seasonal process. It is not suitable to use seasonal dummies for modeling such seasonally nonstationary series. Instead of that, it is necessary to take seasonal difference if there are seasonal unit roots in the series. Different alternative methods are proposed in the literature to test seasonal unit roots, such as Dickey, Hazsa, Fuller (DHF) and Hylleberg, Engle, Granger, Yoo (HEGY) tests. HEGY test can be also used to test the seasonal unit root in different frequencies (monthly, quarterly, and semiannual). Another issue in unit root tests is the lag selection. Lagged dependent variables are added to the model in seasonal unit root tests as in the unit root tests to overcome the autocorrelation problem. In this case, it is necessary to choose the lag length and determine any deterministic components (i.e., a constant and trend) first, and then use the proper model to test for seasonal unit roots. However, this two-step procedure might lead size distortions and lack of power in seasonal unit root tests. Recent studies show that Bridge estimators are good in selecting optimal lag length while differentiating nonstationary versus stationary models for nonseasonal data. The advantage of this estimator is the elimination of the two-step nature of conventional unit root tests and this leads a gain in size and power. In this paper, the Bridge estimator is proposed to test seasonal unit roots in a HEGY model. A Monte-Carlo experiment is done to determine the efficiency of this approach and compare the size and power of this method with HEGY test. Since Bridge estimator performs well in model selection, our approach may lead to some gain in terms of size and power over HEGY test.

Keywords: bridge estimators, HEGY test, model selection, seasonal unit root

Procedia PDF Downloads 319
16495 Technoscience in the Information Society

Authors: A. P. Moiseeva, Z. S. Zavyalova

Abstract:

This paper focuses on the Technoscience phenomenon and its role in modern society. It gives a review of the latest research on Technoscience. Based on the works of Paul Forman, Bernadette Bensaude-Vincent, Bruno Latour, Maria Caramez Carlotto and others, the authors consider the concept of Technoscience, its specific character and prospects of its development.

Keywords: technoscience, information society, transdisciplinarity, European Technology Platforms

Procedia PDF Downloads 651
16494 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection

Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi

Abstract:

In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.

Keywords: cardiac anomalies, ECG, HTM, real time anomaly detection

Procedia PDF Downloads 206
16493 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles

Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan

Abstract:

Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.

Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks

Procedia PDF Downloads 40
16492 PLO-AIM: Potential-Based Lane Organization in Autonomous Intersection Management

Authors: Berk Ecer, Ebru Akcapinar Sezer

Abstract:

Traditional management models of intersections, such as no-light intersections or signalized intersection, are not the most effective way of passing the intersections if the vehicles are intelligent. To this end, Dresner and Stone proposed a new intersection control model called Autonomous Intersection Management (AIM). In the AIM simulation, they were examining the problem from a multi-agent perspective, demonstrating that intelligent intersection control can be made more efficient than existing control mechanisms. In this study, autonomous intersection management has been investigated. We extended their works and added a potential-based lane organization layer. In order to distribute vehicles evenly to each lane, this layer triggers vehicles to analyze near lanes, and they change their lane if other lanes have an advantage. We can observe this behavior in real life, such as drivers, change their lane by considering their intuitions. Basic intuition on selecting the correct lane for traffic is selecting a less crowded lane in order to reduce delay. We model that behavior without any change in the AIM workflow. Experiment results show us that intersection performance is directly connected with the vehicle distribution in lanes of roads of intersections. We see the advantage of handling lane management with a potential approach in performance metrics such as average delay of intersection and average travel time. Therefore, lane management and intersection management are problems that need to be handled together. This study shows us that the lane through which vehicles enter the intersection is an effective parameter for intersection management. Our study draws attention to this parameter and suggested a solution for it. We observed that the regulation of AIM inputs, which are vehicles in lanes, was as effective as contributing to aim intersection management. PLO-AIM model outperforms AIM in evaluation metrics such as average delay of intersection and average travel time for reasonable traffic rates, which is in between 600 vehicle/hour per lane to 1300 vehicle/hour per lane. The proposed model reduced the average travel time reduced in between %0.2 - %17.3 and reduced the average delay of intersection in between %1.6 - %17.1 for 4-lane and 6-lane scenarios.

Keywords: AIM project, autonomous intersection management, lane organization, potential-based approach

Procedia PDF Downloads 124