Search results for: socio-technical systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9337

Search results for: socio-technical systems

67 Erotic Subversions: Male Masochism, Power, and the Politics of Desire in Hong Kong’s BDSM Landscape

Authors: Maari Sugawara

Abstract:

This research critically engages with the erotic and political entanglements of male clientele of Dominatrices who identify as submissives (hereafter referred to as submissives) within Hong Kong's BDSM scene. Employing masochism as an analytical framework, it interrogates the intersections of capitalism, heteropatriarchy, postcolonialism, and commodified desire. BDSM (Bondage and Discipline, Dominance and Submission, Sadism and Masochism) encompasses practices that explore power, control, and subordination through both physical and psychological role-play, predicated on consent, negotiation, and boundary delineation. This makes BDSM a fertile site for examining how dominance and submission are mobilized, challenged, and reiterated. This study focuses on the dynamics between thirty male submissives and three professional Dominatrices active in Hong Kong since 2019. The predominance of male interviewees reflects the demographic reality that most clients engaging with professional Dominatrices are male. These submissives—men who willfully relinquish control—offer a critical lens for exploring how BDSM, as both practice and market, mirrors and destabilizes dominant power structures. BDSM relationships occasionally replicate the hierarchical logics of heterosexual marriage, particularly in the expectation that submissives engage exclusively with a single Dominatrix, reflecting a dynamic of devotion and fidelity akin to traditional marital structures. However, these relationships also function as counter-normative spaces where care and control are reconfigured, enabling the negotiation of alternative power configurations. By centering BDSM work rather than broader kink practices, this study foregrounds the commodification of intimacy as a key site where suppressed desires, economic forces, and political tensions converge. The submissives in this study are predominantly affluent, cisgender men, underscoring the socio-economic asymmetries in the BDSM market. Furthermore, the research examines how Hong Kong’s political turbulence—particularly the 2019 Yellow Umbrella Movement and the COVID-19 pandemic—has reverberated through the BDSM scene, reshaping the contours of desire, trust, and power in these intimate transactions. The increasing tensions with mainland China, alongside the erosion of public trust in state institutions, form a critical backdrop to this evolving landscape. Grounded in gender and sexuality theories, this research interrogates how the desires of male submissives are constructed within and resist heteronormative frameworks. BDSM practices, far from existing outside capitalist and colonial logics, often act as both a mirror and critique of these systems, revealing complex ways in which power is commodified, enacted, and contested. In their pursuit of emotional care and alternative forms of control, male submissives navigate a paradoxical terrain where their masochistic desires both subvert and perpetuate the socio-political status quo. By examining the intersections of desire, commodification, and the shifting socio-political landscape, this research provides a nuanced understanding of how BDSM functions as a site of negotiation for those navigating the turbulent crosscurrents of capitalist and colonial legacies. Ultimately, it uncovers the complex interplay between erotic practices and the structures of power and identity in a city undergoing profound transformation.

Keywords: masochism, Hong Kong, identity, BDSM, dominatrix, masculinity, gender studies

Procedia PDF Downloads 20
66 Renewable Energy Micro-Grid Control Using Microcontroller in LabVIEW

Authors: Meena Agrawal, Chaitanya P. Agrawal

Abstract:

The power systems are transforming and becoming smarter with innovations in technologies to enable embark simultaneously upon the sustainable energy needs, rising environmental concerns, economic benefits and quality requirements. The advantages provided by inter-connection of renewable energy resources are becoming more viable and dependable with the smart controlling technologies. The limitation of most renewable resources have their diversity and intermittency causing problems in power quality, grid stability, reliability, security etc. is being cured by these efforts. A necessitate of optimal energy management by intelligent Micro-Grids at the distribution end of the power system has been accredited to accommodate sustainable renewable Distributed Energy Resources on large scale across the power grid. All over the world Smart Grids are emerging now as foremost concern infrastructure upgrade programs. The hardware setup includes NI cRIO 9022, Compact Reconfigurable Input Output microcontroller board connected to the PC on a LAN router with three hardware modules. The Real-Time Embedded Controller is reconfigurable controller device consisting of an embedded real-time processor controller for communication and processing, a reconfigurable chassis housing the user-programmable FPGA, Eight hot-swappable I/O modules, and graphical LabVIEW system design software. It has been employed for signal analysis, controls and acquisition and logging of the renewable sources with the LabVIEW Real-Time applications. The employed cRIO chassis controls the timing for the module and handles communication with the PC over the USB, Ethernet, or 802.11 Wi-Fi buses. It combines modular I/O, real-time processing, and NI LabVIEW programmable. In the presented setup, the Analog Input Module NI 9205 five channels have been used for input analog voltage signals from renewable energy sources and NI 9227 four channels have been used for input analog current signals of the renewable sources. For switching actions based on the programming logic developed in software, a module having Electromechanical Relays (single-pole single throw) with 4-Channels, electrically isolated and LED indicating the state of that channel have been used for isolating the renewable Sources on fault occurrence, which is decided by the logic in the program. The module for Ethernet based Data Acquisition Interface ENET 9163 Ethernet Carrier, which is connected on the LAN Router for data acquisition from a remote source over Ethernet also has the module NI 9229 installed. The LabVIEW platform has been employed for efficient data acquisition, monitoring and control. Control logic utilized in program for operation of the hardware switching Related to Fault Relays has been portrayed as a flowchart. A communication system has been successfully developed amongst the sources and loads connected on different computers using Hypertext transfer protocol, HTTP or Ethernet Local Stacked area Network TCP/IP protocol. There are two main I/O interfacing clients controlling the operation of the switching control of the renewable energy sources over internet or intranet. The paper presents experimental results of the briefed setup for intelligent control of the micro-grid for renewable energy sources, besides the control of Micro-Grid with data acquisition and control hardware based on a microcontroller with visual program developed in LabVIEW.

Keywords: data acquisition and control, LabVIEW, microcontroller cRIO, Smart Micro-Grid

Procedia PDF Downloads 333
65 Trajectory Optimization for Autonomous Deep Space Missions

Authors: Anne Schattel, Mitja Echim, Christof Büskens

Abstract:

Trajectory planning for deep space missions has become a recent topic of great interest. Flying to space objects like asteroids provides two main challenges. One is to find rare earth elements, the other to gain scientific knowledge of the origin of the world. Due to the enormous spatial distances such explorer missions have to be performed unmanned and autonomously. The mathematical field of optimization and optimal control can be used to realize autonomous missions while protecting recourses and making them safer. The resulting algorithms may be applied to other, earth-bound applications like e.g. deep sea navigation and autonomous driving as well. The project KaNaRiA ('Kognitionsbasierte, autonome Navigation am Beispiel des Ressourcenabbaus im All') investigates the possibilities of cognitive autonomous navigation on the example of an asteroid mining mission, including the cruise phase and approach as well as the asteroid rendezvous, landing and surface exploration. To verify and test all methods an interactive, real-time capable simulation using virtual reality is developed under KaNaRiA. This paper focuses on the specific challenge of the guidance during the cruise phase of the spacecraft, i.e. trajectory optimization and optimal control, including first solutions and results. In principle there exist two ways to solve optimal control problems (OCPs), the so called indirect and direct methods. The indirect methods are being studied since several decades and their usage needs advanced skills regarding optimal control theory. The main idea of direct approaches, also known as transcription techniques, is to transform the infinite-dimensional OCP into a finite-dimensional non-linear optimization problem (NLP) via discretization of states and controls. These direct methods are applied in this paper. The resulting high dimensional NLP with constraints can be solved efficiently by special NLP methods, e.g. sequential quadratic programming (SQP) or interior point methods (IP). The movement of the spacecraft due to gravitational influences of the sun and other planets, as well as the thrust commands, is described through ordinary differential equations (ODEs). The competitive mission aims like short flight times and low energy consumption are considered by using a multi-criteria objective function. The resulting non-linear high-dimensional optimization problems are solved by using the software package WORHP ('We Optimize Really Huge Problems'), a software routine combining SQP at an outer level and IP to solve underlying quadratic subproblems. An application-adapted model of impulsive thrusting, as well as a model of an electrically powered spacecraft propulsion system, is introduced. Different priorities and possibilities of a space mission regarding energy cost and flight time duration are investigated by choosing different weighting factors for the multi-criteria objective function. Varying mission trajectories are analyzed and compared, both aiming at different destination asteroids and using different propulsion systems. For the transcription, the robust method of full discretization is used. The results strengthen the need for trajectory optimization as a foundation for autonomous decision making during deep space missions. Simultaneously they show the enormous increase in possibilities for flight maneuvers by being able to consider different and opposite mission objectives.

Keywords: deep space navigation, guidance, multi-objective, non-linear optimization, optimal control, trajectory planning.

Procedia PDF Downloads 411
64 Comparing Implications of Manual and ROSA-assisted Total Knee Replacements on Patients and Physicians: A Scoping Review

Authors: Bassem M. Darwish, Robert H. Ablove

Abstract:

Introduction: Total knee arthroscopy (TKA) is a commonly performed procedure in patients with end-stage osteoarthritis and inaccuracy of component alignment in TKA has been shown to have many adverse post-operative outcomes such as accelerated implant wear, reduced functional outcomes, and shorter overall implant survival. Robotic surgical systems have been introduced to try and improve joint alignment and functional outcomes in knee arthroscopy, one recent iteration is the ROSA knee system, released to the market in 2019. The objective of this scoping review is to map the available evidence, identify the current types of evidence, and identify knowledge gaps to guide future studies on patient outcomes following ROSA-assisted total knee arthroplasties. Methods: An electronic search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews. Search terms included ROSA, knee arthroscopy, osteoarthritis, robotic, and malalignment. Types of study participants included patients with osteoarthritis, ages 18 and older, male or female, who received manual TKA (mTKA) or ROSA-assisted TKA (rTKA), and human patients or cadavers. Published, peer-reviewed controlled trials, observational studies, and case series were included. Case reports were not included in article review. Resulting articles were first screened based on title and abstract. Articles meeting inclusion criteria based on title and abstract review then underwent full-text review by the same reviewer. Results: This scoping review identified 11 total studies, 3 prospective observational studies, and 8 retrospective observational studies - a total of 970 rTKA patients and 1745 mTKA patients. There were no case series or randomized controlled trials comparing rTKA and mTKA. Patient-centered outcomes showed promise for rTKA, where it frequently showed significantly favorable functional outcomes, measured via KOOS-JR, VAS, KSS, OKS, FJS, and PROMIS scores, at various times postoperatively. However, there was much discrepancy about which score yielded significance at which postoperative follow-up. Complication rates, reoperation rates, and LOS were very similar between mTKA and rTKA groups. Studies also showed rTKA had more accurate joint alignment within the 0 ± 3o corridor and had significantly higher rates of achieving postoperative joint angles similar to the preoperative plan. Finally, there was major agreement that rTKA cases take significantly longer time at the start, however, there is a rapid learning curve. Once past the learning curve, rTKA cases are performed in a similar time to mTKA and reduced physician stress and strain. Conclusion: The ROSA knee system represents a promising option for the management of osteoarthritis via total knee arthroscopy. The studies reviewed in this paper favor the patient-centered function outcomes, joint alignments, and physician health implications of the ROSA knee system to conventional total knee arthroscopy. Further study is warranted, however, to better understand recovery periods, longer-term functional outcomes, operative fatigue, and reduction in radiation exposure.

Keywords: arthroplasty, knee, robotics, malalignment

Procedia PDF Downloads 26
63 Current Zonal Isolation Regulation and Standards: A Compare and Contrast Review in Plug and Abandonment

Authors: Z. A. Al Marhoon, H. S. Al Ramis, C. Teodoriu

Abstract:

Well-integrity is one of the major elements considered for drilling geothermal, oil, and gas wells. Well-integrity is minimizing the risk of unplanned fluid flow in the well bore throughout the well lifetime. Well integrity is maximized by applying technical concepts along with practical practices and strategic planning. These practices are usually governed by standardization and regulation entities. Practices during well construction can affect the integrity of the seal at the time of abandonment. On the other hand, achieving a perfect barrier system is impracticable due to the needed cost. This results in a needed balance between regulations requirements and practical applications. The guidelines are only effective when they are attainable in practical applications. Various governmental regulations and international standards have different guidelines on what constitutes high-quality isolation from unwanted flow. Each regulating or standardization body differ in requirements based on the abandonment objective. Some regulation account more for the environmental impact, water table contamination, and possible leaks. Other regulation might lean towards driving more economical benefits while achieving an acceptable isolation criteria. The research methodology used in this topic is derived from a literature review method combined with a compare and contrast analysis. The literature review on various zonal isolation regulations and standards has been conducted. A review includes guidelines from NORSOK (Norwegian governing entity), BSEE (USA offshore governing entity), API (American Petroleum Institute) combined with ISO (International Standardization Organization). The compare and contrast analysis is conducted by assessing the objective of each abandonment regulations and standardization. The current state of well barrier regulation is in balancing action. From one side of this balance, the environmental impact and complete zonal isolation is considered. The other side of the scale is practical application and associated cost. Some standards provide a fair amount of details concerning technical requirements and are often flexible with the needed associated cost. These guidelines cover environmental impact with laws that prevent major or disastrous environmental effects of improper sealing of wells. Usually these regulations are concerned with the near future of sealing rather than long-term. Consequently, applying these guidelines become more feasible from a cost point of view to the required plugging entities. On the other hand, other regulation have well integrity procedures and regulations that lean toward more restrictions environmentally with an increased associated cost requirements. The environmental impact is detailed and covered with its entirety, including medium to small environmental impact in barrier installing operations. Clear and precise attention to long-term leakage prevention is present in these regulations. The result of the compare and contrast analysis of the literature showed that there are various objectives that might tip the scale from one side of the balance (cost) to the other (sealing quality) especially in reference to zonal isolation. Furthermore, investing in initial well construction is a crucial part of ensuring safe final well abandonment. The safety and the cost saving at the end of the well life cycle is dependent upon a well-constructed isolation systems at the beginning of the life cycle. Long term studies on zonal isolation using various hydraulic or mechanical materials need to take place to further assess permanently abandoned wells to achieve the desired balance. Well drilling and isolation techniques will be more effective when they are operationally feasible and have reasonable associated cost to aid the local economy.

Keywords: plug and abandon, P&A regulation, P&A standards, international guidelines, gap analysis

Procedia PDF Downloads 132
62 Braille Lab: A New Design Approach for Social Entrepreneurship and Innovation in Assistive Tools for the Visually Impaired

Authors: Claudio Loconsole, Daniele Leonardis, Antonio Brunetti, Gianpaolo Francesco Trotta, Nicholas Caporusso, Vitoantonio Bevilacqua

Abstract:

Unfortunately, many people still do not have access to communication, with specific regard to reading and writing. Among them, people who are blind or visually impaired, have several difficulties in getting access to the world, compared to the sighted. Indeed, despite technology advancement and cost reduction, nowadays assistive devices are still expensive such as Braille-based input/output systems which enable reading and writing texts (e.g., personal notes, documents). As a consequence, assistive technology affordability is fundamental in supporting the visually impaired in communication, learning, and social inclusion. This, in turn, has serious consequences in terms of equal access to opportunities, freedom of expression, and actual and independent participation to a society designed for the sighted. Moreover, the visually impaired experience difficulties in recognizing objects and interacting with devices in any activities of daily living. It is not a case that Braille indications are commonly reported only on medicine boxes and elevator keypads. Several software applications for the automatic translation of written text into speech (e.g., Text-To-Speech - TTS) enable reading pieces of documents. However, apart from simple tasks, in many circumstances TTS software is not suitable for understanding very complicated pieces of text requiring to dwell more on specific portions (e.g., mathematical formulas or Greek text). In addition, the experience of reading\writing text is completely different both in terms of engagement, and from an educational perspective. Statistics on the employment rate of blind people show that learning to read and write provides the visually impaired with up to 80% more opportunities of finding a job. Especially in higher educational levels, where the ability to digest very complex text is key, accessibility and availability of Braille plays a fundamental role in reducing drop-out rate of the visually impaired, thus affecting the effectiveness of the constitutional right to get access to education. In this context, the Braille Lab project aims at overcoming these social needs by including affordability in designing and developing assistive tools for visually impaired people. In detail, our awarded project focuses on a technology innovation of the operation principle of existing assistive tools for the visually impaired leaving the Human-Machine Interface unchanged. This can result in a significant reduction of the production costs and consequently of tool selling prices, thus representing an important opportunity for social entrepreneurship. The first two assistive tools designed within the Braille Lab project following the proposed approach aims to provide the possibility to personally print documents and handouts and to read texts written in Braille using refreshable Braille display, respectively. The former, named ‘Braille Cartridge’, represents an alternative solution for printing in Braille and consists in the realization of an electronic-controlled dispenser printing (cartridge) which can be integrated within traditional ink-jet printers, in order to leverage the efficiency and cost of the device mechanical structure which are already being used. The latter, named ‘Braille Cursor’, is an innovative Braille display featuring a substantial technology innovation by means of a unique cursor virtualizing Braille cells, thus limiting the number of active pins needed for Braille characters.

Keywords: Human rights, social challenges and technology innovations, visually impaired, affordability, assistive tools

Procedia PDF Downloads 273
61 Addressing Microbial Contamination in East Hararghe, Oromia, Ethiopia: Improving Water Sanitation Infrastructure and Promoting Safe Water Practices for Enhanced Food Safety

Authors: Tuji Jemal Ahmed, Hussen Beker Yusuf

Abstract:

Food safety is a major concern worldwide, with microbial contamination being one of the leading causes of foodborne illnesses. In Ethiopia, drinking water and untreated groundwater are a primary source of microbial contamination, leading to significant health risks. East Hararghe, Oromia, is one of the regions in Ethiopia that has been affected by this problem. This paper provides an overview of the impact of untreated groundwater on human health in Haramaya Rural District, East Hararghe and highlights the urgent need for sustained efforts to address the water sanitation supply problem. The use of untreated groundwater for drinking and household purposes in Haramaya Rural District, East Hararghe is prevalent, leading to high rates of waterborne illnesses such as diarrhea, typhoid fever, and cholera. The impact of these illnesses on human health is significant, resulting in significant morbidity and mortality, especially among vulnerable populations such as children and the elderly. In addition to the direct health impacts, waterborne illnesses also have indirect impacts on human health, such as reduced productivity and increased healthcare costs. Groundwater sources are susceptible to microbial contamination due to the infiltration of surface water, human and animal waste, and agricultural runoff. In Haramaya Rural District, East Hararghe, poor water management practices, inadequate sanitation facilities, and limited access to clean water sources contribute to the prevalence of untreated groundwater as a primary source of drinking water. These underlying causes of microbial contamination highlight the need for improved water sanitation infrastructure, including better access to safe drinking water sources and the implementation of effective treatment methods. The paper emphasizes the need for regular water quality monitoring, especially for untreated groundwater sources, to ensure safe drinking water for the population. The implementation of effective preventive measures, such as the use of effective disinfectants, proper waste disposal methods, and regular water quality monitoring, is crucial to reducing the risk of contamination and improving public health outcomes in the region. Community education and awareness-raising campaigns can also play a critical role in promoting safe water practices and reducing the risk of contamination. These campaigns can include educating the population on the importance of boiling water before drinking, the use of water filters, and proper sanitation practices. In conclusion, the use of untreated groundwater as a primary source of drinking water in East Hararghe, Oromia, Ethiopia, has significant impacts on human health, leading to widespread waterborne illnesses and posing a significant threat to public health. Sustained efforts are urgently needed to address the root causes of contamination, such as poor sanitation and hygiene practices, improper waste management, and the water sanitation supply problem, including the implementation of effective preventive measures and community-based education programs, ultimately improving public health outcomes in the region. A comprehensive approach that involves community-based water management systems, point-of-use water treatment methods, and awareness-raising campaigns can contribute to reducing the incidence of microbial contamination in the region.

Keywords: food safety, health risks, microbial contamination, untreated groundwater

Procedia PDF Downloads 112
60 High Performance Lithium Ion Capacitors from Biomass Waste-Derived Activated Carbon

Authors: Makhan Maharjan, Mani Ulaganathan, Vanchiappan Aravindan, Srinivasan Madhavi, Jing-Yuan Wang, Tuti Mariana Lim

Abstract:

The ever-increasing energy demand has made research to develop high performance energy storage systems that are able to fulfill energy needs. Supercapacitors have potential applications as portable energy storage devices. In recent years, there have been huge research interests to enhance the performances of supercapacitors via exploiting novel promising carbon precursors, tailoring textural properties of carbons, exploiting various electrolytes and device types. In this work, we employed orange peel (waste material) as the starting material and synthesized activated carbon by pyrolysis of KOH impregnated orange peel char at 800 °C in argon atmosphere. The resultant orange peel-derived activated carbon (OP-AC) exhibited BET surface area of 1,901 m² g-1, which is the highest surface area so far reported for the orange peel. The pore size distribution (PSD) curve exhibits the pores centered at 11.26 Å pore width, suggesting dominant microporosity. The high surface area OP-AC accommodates more ions in the electrodes and its well-developed porous structure facilitates fast diffusion of ions which subsequently enhance electrochemical performance. The OP-AC was studied as positive electrode in combination with different negative electrode materials, such as pre-lithiated graphite (LiC6) and Li4Ti5O12 for making hybrid capacitors. The lithium ion capacitor (LIC) fabricated using OP-AC with pre-lithiated graphite delivered high energy density of ~106 Wh kg–1. The energy density for OP-AC||Li4Ti5O12 capacitor was ~35 Wh kg⁻¹. For comparison purpose, configuration of OP-AC||OP-AC capacitors were studied in both aqueous (1M H2SO4) and organic (1M LiPF6 in EC-DMC) electrolytes, which delivered the energy density of 8.0 Wh kg⁻¹ and 16.3 Wh kg⁻¹, respectively. The cycling retentions obtained at current density of 1 A g⁻¹ were ~85.8, ~87.0 ~82.2 and ~58.8% after 2500 cycles for OP-AC||OP-AC (aqueous), OP-AC||OP-AC (organic), OP-AC||Li4Ti5O12 and OP-AC||LiC6 configurations, respectively. In addition, characterization studies were performed by elemental and proximate composition, thermogravimetry analysis, field emission-scanning electron microscopy, Raman spectra, X-ray diffraction (XRD) pattern, Fourier transform-infrared, X-ray photoelectron spectroscopy (XPS) and N2 sorption isotherms. The morphological features from FE-SEM exhibited well-developed porous structures. Two typical broad peaks observed in the XRD framework of the synthesized carbon implies amorphous graphitic structure. The ratio of 0.86 for ID/IG in Raman spectra infers high degree of graphitization in the sample. The band spectra of C 1s in XPS display the well resolved peaks related to carbon atoms in various chemical environments. The presence of functional groups is also corroborated from the FTIR spectroscopy. Characterization studies revealed the synthesized carbon to be promising electrode material towards the application for energy storage devices. Overall, the intriguing properties of OP-AC make it a new alternative promising electrode material for the development of high energy lithium ion capacitors from abundant, low-cost, renewable biomass waste. The authors gratefully acknowledge Agency for Science, Technology and Research (A*STAR)/ Singapore International Graduate Award (SINGA) and Nanyang Technological University (NTU), Singapore for funding support.

Keywords: energy storage, lithium-ion capacitors, orange peels, porous activated carbon

Procedia PDF Downloads 228
59 Digital Mapping of First-Order Drainages and Springs of the Guajiru River, Northeast of Brazil, Based on Satellite and Drone Images

Authors: Sebastião Milton Pinheiro da Silva, Michele Barbosa da Rocha, Ana Lúcia Fernandes Campos, Miquéias Rildo de Souza Silva

Abstract:

Water is an essential natural resource for life on Earth. Rivers, lakes, lagoons and dams are the main sources of water storage for human consumption. The costs of extracting and using these water sources are lower than those of exploiting groundwater on transition zones to semi-arid terrains. However, the volume of surface water has decreased over time, with the depletion of first-order drainage and the disappearance of springs, phenomena which are easily observed in the field. Climate change worsens water scarcity, compromising supply and hydric security for rural populations. To minimize the expected impacts, producing and storing water through watershed management planning requires detailed cartographic information on the relief and topography, and updated data on the stage and intensity of catchment basin environmental degradation problems. The cartography available of the Brazilian northeastern territory dates to the 70s, with topographic maps, printed, at a scale of 1:100,000 which does not meet the requirements to execute this project. Exceptionally, there are topographic maps at scales of 1:50,000 and 1:25,000 of some coastal regions in northeastern Brazil. Still, due to scale limitations and outdatedness, they are products of little utility for mapping low-order watersheds drainage and springs. Remote sensing data and geographic information systems can contribute to guiding the process of mapping and environmental recovery by integrating detailed relief and topographic data besides social and other environmental information in the Guajiru River Basin, located on the east coast of Rio Grande do Norte, on the Northeast region of Brazil. This study aimed to recognize and map catchment basin, springs and low-order drainage features along estimating morphometric parameters. Alos PALSAR and Copernicus DEM digital elevation models were evaluated and provided regional drainage features and the watersheds limits extracted with Terraview/Terrahidro 5.0 software. CBERS 4A satellite images with 2 m spatial resolution, processed with ESA SNAP Toolbox, allowed generating land use land cover map of Guajiru River. A Mappir Survey 3 multiespectral camera onboard of a DJI Phantom 4, a Mavic 2 Pro PPK Drone and an X91 GNSS receiver to collect the precised position of selected points were employed to detail mapping. Satellite images enabled a first knowledge approach of watershed areas on a more regional scale, yet very current, and drone images were essential in mapping details of catchment basins. The drone multispectral image mosaics, the digital elevation model, the contour lines and geomorphometric parameters were generated using OpenDroneMap/ODM and QGis softwares. The drone images generated facilitated the location, understanding and mapping of watersheds, recharge areas and first-order ephemeral watercourses on an adequate scale and will be used in the following project’s phases: watershed management planning, recovery and environmental protection of Rio's springs Guajiru. Environmental degradation is being analyzed from the perspective of the availability and quality of surface water supply.

Keywords: imaging, relief, UAV, water

Procedia PDF Downloads 29
58 The Use of the TRIGRS Model and Geophysics Methodologies to Identify Landslides Susceptible Areas: Case Study of Campos do Jordao-SP, Brazil

Authors: Tehrrie Konig, Cassiano Bortolozo, Daniel Metodiev, Rodolfo Mendes, Marcio Andrade, Marcio Moraes

Abstract:

Gravitational mass movements are recurrent events in Brazil, usually triggered by intense rainfall. When these events occur in urban areas, they end up becoming disasters due to the economic damage, social impact, and loss of human life. To identify the landslide-susceptible areas, it is important to know the geotechnical parameters of the soil, such as cohesion, internal friction angle, unit weight, hydraulic conductivity, and hydraulic diffusivity. The measurement of these parameters is made by collecting soil samples to analyze in the laboratory and by using geophysical methodologies, such as Vertical Electrical Survey (VES). The geophysical surveys analyze the soil properties with minimal impact in its initial structure. Statistical analysis and mathematical models of physical basis are used to model and calculate the Factor of Safety for steep slope areas. In general, such mathematical models work from the combination of slope stability models and hydrological models. One example is the mathematical model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope- Stability Model) which calculates the variation of the Factor of Safety of a determined study area. The model relies on changes in pore-pressure and soil moisture during a rainfall event. TRIGRS was written in the Fortran programming language and associates the hydrological model, which is based on the Richards Equation, with the stability model based on the principle of equilibrium limit. Therefore, the aims of this work are modeling the slope stability of Campos do Jordão with TRIGRS, using geotechnical and geophysical methodologies to acquire the soil properties. The study area is located at southern-east of Sao Paulo State in the Mantiqueira Mountains and has a historic landslide register. During the fieldwork, soil samples were collected, and the VES method applied. These procedures provide the soil properties, which were used as input data in the TRIGRS model. The hydrological data (infiltration rate and initial water table height) and rainfall duration and intensity, were acquired from the eight rain gauges installed by Cemaden in the study area. A very high spatial resolution digital terrain model was used to identify the slopes declivity. The analyzed period is from March 6th to March 8th of 2017. As results, the TRIGRS model calculates the variation of the Factor of Safety within a 72-hour period in which two heavy rainfall events stroke the area and six landslides were registered. After each rainfall, the Factor of Safety declined, as expected. The landslides happened in areas identified by the model with low values of Factor of Safety, proving its efficiency on the identification of landslides susceptible areas. This study presents a critical threshold for landslides, in which an accumulated rainfall higher than 80mm/m² in 72 hours might trigger landslides in urban and natural slopes. The geotechnical and geophysics methods are shown to be very useful to identify the soil properties and provide the geological characteristics of the area. Therefore, the combine geotechnical and geophysical methods for soil characterization and the modeling of landslides susceptible areas with TRIGRS are useful for urban planning. Furthermore, early warning systems can be developed by combining the TRIGRS model and weather forecast, to prevent disasters in urban slopes.

Keywords: landslides, susceptibility, TRIGRS, vertical electrical survey

Procedia PDF Downloads 171
57 Urban Ecosystem Health and Urban Agriculture

Authors: Mahbuba Kaneez Hasna

Abstract:

Introductory Statement outlining the background: Little has been written about political ecology of urban gardening, such as a network of knowledge generation, technologies of food production and distribution, food consumption practices, and the regulation of ‘agricultural activities. For urban food gardens to sustain as a long-term food security enterprise, we will need to better understand the anthropological, ecological, political, and institutional factors influencing their development, management, and ongoing viability. Significance of the study: Dhaka as one of the fastest growing city. There are currently no studies regards to Bangladesh on how urban slum dwellerscope with the changing urban environment in the city, where they overcome challenges, and how they cope with the urban ecological cycle of food and vegetable production. It is also essential to understand the importance of their access to confined spaces in the slums they apply their indigenous knowledge. These relationships in nature are important factors in community and conservation ecology. Until now, there has been no significant published academic work on relationships between urban and environmental anthropology, urban planning, geography, ecology, and social anthropology with a focus on urban agriculture and how this contributes to the moral economies, indigenous knowledge, and government policies in order to improve the lives and livelihoods of slum dwellers surrounding parks and open spaces in Dhaka, Bangladesh. Methodology: it have applied participant observation, semi-structured questionnaire-based interviews, and focus group discussions to collect social data. Interviews were conducted with the urban agriculture practitioners who are slum dwellers who carry out their urban agriculture activities. Some of the interviews were conducted with non-government organisations (NGOs) and local and state government officials, using semi-structured interviews. Using these methods developed a clearer understanding of how green space cultivation, local economic self-reliance, and urban gardening are producing distinctive urban ecologies in Dhaka and their policy-implications on urban sustainability. Major findings of the study: The research provided an in-depth knowledge on the challenges that slum dwellers encounter in establishing and maintaining urban gardens, such as the economic development of the city, conflicting political agendas, and environmental constraints in areas within which gardening activities take place. The research investigated (i) How do slum dwellers perform gardening practices from rural areas to open spaces in the city? (ii) How do men and women’s ethno-botanical knowledge contribute to urban biodiversity; (iii) And how do slum dwellers navigate complex constellations of land use policy, competing political agendas, and conflicting land and water tenures to meet livelihood functions provided by their gardens. Concluding statement: Lack of infrastructure facilities such as water supply and sanitation, micro-drains and waste disposal areas, and poor access to basic health care services increase the misery of people in the slum areas. Lack of environmental health awareness information for farmers, such as the risks from the use of chemical pesticides in gardens and from grazing animals in contaminated fields or cropping and planting trees or vegetable in contaminated dumping grounds, can all cause high health risk to humans and their environment.

Keywords: gender, urban agriculture, ecosystem health, urban slum systems

Procedia PDF Downloads 80
56 Impact of Simulated Brain Interstitial Fluid Flow on the Chemokine CXC-Chemokine-Ligand-12 Release From an Alginate-Based Hydrogel

Authors: Wiam El Kheir, Anais Dumais, Maude Beaudoin, Bernard Marcos, Nick Virgilio, Benoit Paquette, Nathalie Faucheux, Marc-Antoine Lauzon

Abstract:

The high infiltrative pattern of glioblastoma multiforme cells (GBM) is the main cause responsible for the actual standard treatments failure. The tumor high heterogeneity, the interstitial fluid flow (IFF) and chemokines guides GBM cells migration in the brain parenchyma resulting in tumor recurrence. Drug delivery systems emerged as an alternative approach to develop effective treatments for the disease. Some recent studies have proposed to harness the effect CXC-lchemokine-ligand-12 to direct and control the cancer cell migration through delivery system. However, the dynamics of the brain environment on the delivery system remains poorly understood. Nanoparticles (NPs) and hydrogels are known as good carriers for the encapsulation of different agents and control their release. We studied the release of CXCL12 (free or loaded into NPs) from an alginate-based hydrogel under static and indirect perfusion (IP) conditions. Under static conditions, the main phenomena driving CXCL12 release from the hydrogel was diffusion with the presence of strong interactions between the positively charged CXCL12 and the negatively charge alginate. CXCL12 release profiles were independent from the initial mass loadings. Afterwards, we demonstrated that the release could tuned by loading CXCL12 into Alginate/Chitosan-Nanoparticles (Alg/Chit-NPs) and embedded them into alginate-hydrogel. The initial burst release was substantially attenuated and the overall cumulative release percentages of 21%, 16% and 7% were observed for initial mass loadings of 0.07, 0.13 and 0.26 µg, respectively, suggesting stronger electrostatic interactions. Results were mathematically modeled based on Fick’s second law of diffusion framework developed previously to estimate the effective diffusion coefficient (Deff) and the mass transfer coefficient. Embedding the CXCL12 into NPs decreased the Deff an order of magnitude, which was coherent with experimental data. Thereafter, we developed an in-vitro 3D model that takes into consideration the convective contribution of the brain IFF to study CXCL12 release in an in-vitro microenvironment that mimics as faithfully as possible the human brain. From is unique design, the model also allowed us to understand the effect of IP on CXCL12 release in respect to time and space. Four flow rates (0.5, 3, 6.5 and 10 µL/min) which may increase CXCL12 release in-vivo depending on the tumor location were assessed. Under IP, cumulative percentages varying between 4.5-7.3%, 23-58.5%, 77.8-92.5% and 89.2-95.9% were released for the three initial mass loadings of 0.08, 0.16 and 0.33 µg, respectively. As the flow rate increase, IP culture conditions resulted in a higher release of CXCL12 compared to static conditions as the convection contribution became the main driving mass transport phenomena. Further, depending on the flow rate, IP had a direct impact on CXCL12 distribution within the simulated brain tissue, which illustrates the importance of developing such 3D in-vitro models to assess the efficiency of a delivery system targeting the brain. In future work, using this very model, we aim to understand the impact of the different phenomenon occurring on GBM cell behaviors in response to the resulting chemokine gradient subjected to various flow while allowing them to express their invasive characteristics in an in-vitro microenvironment that mimics the in-vivo brain parenchyma.

Keywords: 3D culture system, chemokines gradient, glioblastoma multiforme, kinetic release, mathematical modeling

Procedia PDF Downloads 82
55 A Self-Heating Gas Sensor of SnO2-Based Nanoparticles Electrophoretic Deposited

Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Sonia M. Zanetti, Mario Cilense, Leinig Antônio Perazolli, Maria Aparecida Zaghete

Abstract:

The contamination of the environment has been one of the biggest problems of our time, mostly due to developments of many industries. SnO2 is an n-type semiconductor with band gap about 3.5 eV and has its electrical conductivity dependent of type and amount of modifiers agents added into matrix ceramic during synthesis process, allowing applications as sensing of gaseous pollutants on ambient. The chemical synthesis by polymeric precursor method consists in a complexation reaction between tin ion and citric acid at 90 °C/2 hours and subsequently addition of ethyleneglycol for polymerization at 130 °C/2 hours. It also prepared polymeric resin of zinc, cobalt and niobium ions. Stoichiometric amounts of the solutions were mixed to obtain the systems (Zn, Nb)-SnO2 and (Co, Nb) SnO2 . The metal immobilization reduces its segregation during the calcination resulting in a crystalline oxide with high chemical homogeneity. The resin was pre-calcined at 300 °C/1 hour, milled in Atritor Mill at 500 rpm/1 hour, and then calcined at 600 °C/2 hours. X-Ray Diffraction (XDR) indicated formation of SnO2 -rutile phase (JCPDS card nº 41-1445). The characterization by Scanning Electron Microscope of High Resolution showed spherical ceramic powder nanostructured with 10-20 nm of diameter. 20 mg of SnO2 -based powder was kept in 20 ml of isopropyl alcohol and then taken to an electrophoretic deposition (EPD) system. The EPD method allows control the thickness films through the voltage or current applied in the electrophoretic cell and by the time used for deposition of ceramics particles. This procedure obtains films in a short time with low costs, bringing prospects for a new generation of smaller size devices with easy integration technology. In this research, films were obtained in an alumina substrate with interdigital electrodes after applying 2 kV during 5 and 10 minutes in cells containing alcoholic suspension of (Zn, Nb)-SnO2 and (Co, Nb) SnO2 of powders, forming a sensing layer. The substrate has designed integrated micro hotplates that provide an instantaneous and precise temperature control capability when a voltage is applied. The films were sintered at 900 and 1000 °C in a microwave oven of 770 W, adapted by the research group itself with a temperature controller. This sintering is a fast process with homogeneous heating rate which promotes controlled growth of grain size and also the diffusion of modifiers agents, inducing the creation of intrinsic defects which will change the electrical characteristics of SnO2 -based powders. This study has successfully demonstrated a microfabricated system with an integrated micro-hotplate for detection of CO and NO2 gas at different concentrations and temperature, with self-heating SnO2 - based nanoparticles films, being suitable for both industrial process monitoring and detection of low concentrations in buildings/residences in order to safeguard human health. The results indicate the possibility for development of gas sensors devices with low power consumption for integration in portable electronic equipment with fast analysis. Acknowledgments The authors thanks to the LMA-IQ for providing the FEG-SEM images, and the financial support of this project by the Brazilian research funding agencies CNPq, FAPESP 2014/11314-9 and CEPID/CDMF- FAPESP 2013/07296-2.

Keywords: chemical synthesis, electrophoretic deposition, self-heating, gas sensor

Procedia PDF Downloads 274
54 IEEE802.15.4e Based Scheduling Mechanisms and Systems for Industrial Internet of Things

Authors: Ho-Ting Wu, Kai-Wei Ke, Bo-Yu Huang, Liang-Lin Yan, Chun-Ting Lin

Abstract:

With the advances in advanced technology, wireless sensor network (WSN) has become one of the most promising candidates to implement the wireless industrial internet of things (IIOT) architecture. However, the legacy IEEE 802.15.4 based WSN technology such as Zigbee system cannot meet the stringent QoS requirement of low powered, real-time, and highly reliable transmission imposed by the IIOT environment. Recently, the IEEE society developed IEEE 802.15.4e Time Slotted Channel Hopping (TSCH) access mode to serve this purpose. Furthermore, the IETF 6TiSCH working group has proposed standards to integrate IEEE 802.15.4e with IPv6 protocol smoothly to form a complete protocol stack for IIOT. In this work, we develop key network technologies for IEEE 802.15.4e based wireless IIoT architecture, focusing on practical design and system implementation. We realize the OpenWSN-based wireless IIOT system. The system architecture is divided into three main parts: web server, network manager, and sensor nodes. The web server provides user interface, allowing the user to view the status of sensor nodes and instruct sensor nodes to follow commands via user-friendly browser. The network manager is responsible for the establishment, maintenance, and management of scheduling and topology information. It executes centralized scheduling algorithm, sends the scheduling table to each node, as well as manages the sensing tasks of each device. Sensor nodes complete the assigned tasks and sends the sensed data. Furthermore, to prevent scheduling error due to packet loss, a schedule inspection mechanism is implemented to verify the correctness of the schedule table. In addition, when network topology changes, the system will act to generate a new schedule table based on the changed topology for ensuring the proper operation of the system. To enhance the system performance of such system, we further propose dynamic bandwidth allocation and distributed scheduling mechanisms. The developed distributed scheduling mechanism enables each individual sensor node to build, maintain and manage the dedicated link bandwidth with its parent and children nodes based on locally observed information by exchanging the Add/Delete commands via two processes. The first process, termed as the schedule initialization process, allows each sensor node pair to identify the available idle slots to allocate the basic dedicated transmission bandwidth. The second process, termed as the schedule adjustment process, enables each sensor node pair to adjust their allocated bandwidth dynamically according to the measured traffic loading. Such technology can sufficiently satisfy the dynamic bandwidth requirement in the frequently changing environments. Last but not least, we propose a packet retransmission scheme to enhance the system performance of the centralized scheduling algorithm when the packet delivery rate (PDR) is low. We propose a multi-frame retransmission mechanism to allow every single network node to resend each packet for at least the predefined number of times. The multi frame architecture is built according to the number of layers of the network topology. Performance results via simulation reveal that such retransmission scheme is able to provide sufficient high transmission reliability while maintaining low packet transmission latency. Therefore, the QoS requirement of IIoT can be achieved.

Keywords: IEEE 802.15.4e, industrial internet of things (IIOT), scheduling mechanisms, wireless sensor networks (WSN)

Procedia PDF Downloads 160
53 Magnetic Single-Walled Carbon Nanotubes (SWCNTs) as Novel Theranostic Nanocarriers: Enhanced Targeting and Noninvasive MRI Tracking

Authors: Achraf Al Faraj, Asma Sultana Shaik, Baraa Al Sayed

Abstract:

Specific and effective targeting of drug delivery systems (DDS) to cancerous sites remains a major challenge for a better diagnostic and therapy. Recently, SWCNTs with their unique physicochemical properties and the ability to cross the cell membrane show promising in the biomedical field. The purpose of this study was first to develop a biocompatible iron oxide tagged SWCNTs as diagnostic nanoprobes to allow their noninvasive detection using MRI and their preferential targeting in a breast cancer murine model by placing an optimized flexible magnet over the tumor site. Magnetic targeting was associated to specific antibody-conjugated SWCNTs active targeting. The therapeutic efficacy of doxorubicin-conjugated SWCNTs was assessed, and the superiority of diffusion-weighted (DW-) MRI as sensitive imaging biomarker was investigated. Short Polyvinylpyrrolidone (PVP) stabilized water soluble SWCNTs were first developed, tagged with iron oxide nanoparticles and conjugated with Endoglin/CD105 monoclonal antibodies. They were then conjugated with doxorubicin drugs. SWCNTs conjugates were extensively characterized using TEM, UV-Vis spectrophotometer, dynamic light scattering (DLS) zeta potential analysis and electron spin resonance (ESR) spectroscopy. Their MR relaxivities (i.e. r1 and r2*) were measured at 4.7T and their iron content and metal impurities quantified using ICP-MS. SWCNTs biocompatibility and drug efficacy were then evaluated both in vitro and in vivo using a set of immunological assays. Luciferase enhanced bioluminescence 4T1 mouse mammary tumor cells (4T1-Luc2) were injected into the right inguinal mammary fat pad of Balb/c mice. Tumor bearing mice received either free doxorubicin (DOX) drug or SWCNTs with or without either DOX or iron oxide nanoparticles. A multi-pole 10x10mm high-energy flexible magnet was maintained over the tumor site during 2 hours post-injections and their properties and polarity were optimized to allow enhanced magnetic targeting of SWCNTs toward the primary tumor site. Tumor volume was quantified during the follow-up investigation study using a fast spin echo MRI sequence. In order to detect the homing of SWCNTs to the main tumor site, susceptibility-weighted multi-gradient echo (MGE) sequence was used to generate T2* maps. Apparent diffusion coefficient (ADC) measurements were also performed as a sensitive imaging biomarker providing early and better assessment of disease treatment. At several times post-SWCNT injection, histological analysis were performed on tumor extracts and iron-loaded SWCNT were quantified using ICP-MS in tumor sites, liver, spleen, kidneys, and lung. The optimized multi-poles magnet revealed an enhanced targeting of magnetic SWCNTs to the primary tumor site, which was found to be much higher than the active targeting achieved using antibody-conjugated SWCNTs. Iron-loading allowed their sensitive noninvasive tracking after intravenous administration using MRI. The active targeting of doxorubicin through magnetic antibody-conjugated SWCNTs nanoprobes was found to considerably decrease the primary tumor site and may have inhibited the development of metastasis in the tumor-bearing mice lung. ADC measurements in DW-MRI were found to significantly increase in a time-dependent manner after the injection of DOX-conjugated SWCNTs complexes.

Keywords: single-walled carbon nanotubes, nanomedicine, magnetic resonance imaging, cancer diagnosis and therapy

Procedia PDF Downloads 328
52 Linking the Genetic Signature of Free-Living Soil Diazotrophs with Process Rates under Land Use Conversion in the Amazon Rainforest

Authors: Rachel Danielson, Brendan Bohannan, S.M. Tsai, Kyle Meyer, Jorge L.M. Rodrigues

Abstract:

The Amazon Rainforest is a global diversity hotspot and crucial carbon sink, but approximately 20% of its total extent has been deforested- primarily for the establishment of cattle pasture. Understanding the impact of this large-scale disturbance on soil microbial community composition and activity is crucial in understanding potentially consequential shifts in nutrient or greenhouse gas cycling, as well as adding to the body of knowledge concerning how these complex communities respond to human disturbance. In this study, surface soils (0-10cm) were collected from three forests and three 45-year-old pastures in Rondonia, Brazil (the Amazon state with the greatest rate of forest destruction) in order to determine the impact of forest conversion on microbial communities involved in nitrogen fixation. Soil chemical and physical parameters were paired with measurements of microbial activity and genetic profiles to determine how community composition and process rates relate to environmental conditions. Measuring both the natural abundance of 15N in total soil N, as well as incorporation of enriched 15N2 under incubation has revealed that conversion of primary forest to cattle pasture results in a significant increase in the rate of nitrogen fixation by free-living diazotrophs. Quantification of nifH gene copy numbers (an essential subunit encoding the nitrogenase enzyme) correspondingly reveals a significant increase of genes in pasture compared to forest soils. Additionally, genetic sequencing of both nifH genes and transcripts shows a significant increase in the diversity of the present and metabolically active diazotrophs within the soil community. Levels of both organic and inorganic nitrogen tend to be lower in pastures compared to forests, with ammonium rather than nitrate as the dominant inorganic form. However, no significant or consistent differences in total, extractable, permanganate-oxidizable, or loss-on-ignition carbon are present between the two land-use types. Forest conversion is associated with a 0.5- 1.0 unit pH increase, but concentrations of many biologically relevant nutrients such as phosphorus do not increase consistently. Increases in free-living diazotrophic community abundance and activity appear to be related to shifts in carbon to nitrogen pool ratios. Furthermore, there may be an important impact of transient, low molecular weight plant-root-derived organic carbon on free-living diazotroph communities not captured in this study. Preliminary analysis of nitrogenase gene variant composition using NovoSeq metagenomic sequencing indicates that conversion of forest to pasture may significantly enrich vanadium-based nitrogenases. This indication is complemented by a significant decrease in available soil molybdenum. Very little is known about the ecology of diazotrophs utilizing vanadium-based nitrogenases, so further analysis may reveal important environmental conditions favoring their abundance and diversity in soil systems. Taken together, the results of this study indicate a significant change in nitrogen cycling and diazotroph community composition with the conversion of the Amazon Rainforest. This may have important implications for the sustainability of cattle pastures once established since nitrogen is a crucial nutrient for forage grass productivity.

Keywords: free-living diazotrophs, land use change, metagenomic sequencing, nitrogen fixation

Procedia PDF Downloads 193
51 Speciation of Bacteria Isolated from Clinical Canine and Feline Urine Samples by Using ChromID CPS Elite Agar: A Preliminary Study

Authors: Delsy Salinas, Andreia Garcês, Augusto Silva, Paula Brilhante Simões

Abstract:

Urinary tract infection (UTI) is a common disease affecting dogs and cats in both community and hospital environment. Bacteria is the most frequent agent isolated, fewer than 1% of infections are due to parasitic, fungal, or viral agents. Common symptoms and laboratory abnormalities includeabdominal pain, pyrexia, renomegaly, and neutrophilia with left shift. A rapid and precise identification of the bacterial agent is still a challenge in veterinarian laboratories. Therefore, this cross-sectional study aims to describe bacterial colony patterns of urine samples by using chromID™ CPS® EliteAgar (BioMérieux, France) from canine and feline specimens submitted to a veterinary laboratory in Portugal (INNO Veterinary Laboratory, Braga)from January to March2022. All urine samples were cultivated in CPS Elite Agar with calibrated 1 µL inoculating loop and incubated at 37ºC for 18-24h. Color,size, and shape (regular or irregular outline)were recorded for all samples. All colonies were classified as Gram-negative or Gram-positive bacteriausing Gram stain (PREVI® Color BioMérieux, France) and determined if they were pure colonies. Identification of bacteria species was performed using GP and GN cards inVitek 2® Compact(BioMérieux, France). A total of 256/1003 submitted urine samples presented bacterial growth, from which 172 isolates were included in this study. The sample’s population included 111 dogs (n=45 males and n=66 females) and 61 cats (n=35 males and n=26 females). The most frequent isolated bacteria wasEscherichia coli (44,7%), followed by Proteus mirabilis (13,4%). All Escherichia coli isolates presented red to burgundy colonies, a colony diameter between 2 to 6 mm, and regular or irregular outlines. Similarly, 100% of Proteus mirabilis isolates were dark yellow colonies with a diffuse pigment and the same size and shape as Escherichia coli. White and pink pale colonies where Staphylococcus species exclusively and S. pseudintermedius was the most frequent (8,2 %). Cian to blue colonies were mostly Enterococcusspp. (8,2%) and Streptococcus spp. (4,6%). Beige to brown colonies were Pseudomonas aeruginosa (2,9%) and Citrobacter spp. (1,2%).Klebsiella spp.,Serratia spp. and Enterobacter spp were green colonies. All Gram-positive isolates were 1 to 2 mm diameter long and had a regular outline, meanwhile, Gram-negative rods presented variable patterns. This results showed that theprevalence of E coli and P. mirabilis as uropathogenic agents follows the same trends in Europe as previously described in other studies. Both agents presented a particular color pattern in CPS Elite Agar to identify them without needing complementary tests. No other bacteria genus could be correlated strongly to a specific color pattern, and similar results have been observed instudies using human’s samples. Chromogenic media shows a great advantage for common urine bacteria isolation than traditional COS, McConkey, and CLEDAgar mediums in a routine context, especially when mixed fermentative Gram-negative agents grow simultaneously. In addition, CPS Elite Agar is versatile for Artificial Intelligent Reading Plates Systems. Routine veterinarian laboratories could use CPS Elite Agar for a rapid screening for bacteria identification,mainlyE coli and P.mirabilis, saving 6h to 10h of automatized identification.

Keywords: cats, CPS elite agar, dogs, urine pathogens

Procedia PDF Downloads 102
50 Pharmacophore-Based Modeling of a Series of Human Glutaminyl Cyclase Inhibitors to Identify Lead Molecules by Virtual Screening, Molecular Docking and Molecular Dynamics Simulation Study

Authors: Ankur Chaudhuri, Sibani Sen Chakraborty

Abstract:

In human, glutaminyl cyclase activity is highly abundant in neuronal and secretory tissues and is preferentially restricted to hypothalamus and pituitary. The N-terminal modification of β-amyloids (Aβs) peptides by the generation of a pyro-glutamyl (pGlu) modified Aβs (pE-Aβs) is an important process in the initiation of the formation of neurotoxic plaques in Alzheimer’s disease (AD). This process is catalyzed by glutaminyl cyclase (QC). The expression of QC is characteristically up-regulated in the early stage of AD, and the hallmark of the inhibition of QC is the prevention of the formation of pE-Aβs and plaques. A computer-aided drug design (CADD) process was employed to give an idea for the designing of potentially active compounds to understand the inhibitory potency against human glutaminyl cyclase (QC). This work elaborates the ligand-based and structure-based pharmacophore exploration of glutaminyl cyclase (QC) by using the known inhibitors. Three dimensional (3D) quantitative structure-activity relationship (QSAR) methods were applied to 154 compounds with known IC50 values. All the inhibitors were divided into two sets, training-set, and test-sets. Generally, training-set was used to build the quantitative pharmacophore model based on the principle of structural diversity, whereas the test-set was employed to evaluate the predictive ability of the pharmacophore hypotheses. A chemical feature-based pharmacophore model was generated from the known 92 training-set compounds by HypoGen module implemented in Discovery Studio 2017 R2 software package. The best hypothesis was selected (Hypo1) based upon the highest correlation coefficient (0.8906), lowest total cost (463.72), and the lowest root mean square deviation (2.24Å) values. The highest correlation coefficient value indicates greater predictive activity of the hypothesis, whereas the lower root mean square deviation signifies a small deviation of experimental activity from the predicted one. The best pharmacophore model (Hypo1) of the candidate inhibitors predicted comprised four features: two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature. The Hypo1 was validated by several parameters such as test set activity prediction, cost analysis, Fischer's randomization test, leave-one-out method, and heat map of ligand profiler. The predicted features were then used for virtual screening of potential compounds from NCI, ASINEX, Maybridge and Chembridge databases. More than seven million compounds were used for this purpose. The hit compounds were filtered by drug-likeness and pharmacokinetics properties. The selective hits were docked to the high-resolution three-dimensional structure of the target protein glutaminyl cyclase (PDB ID: 2AFU/2AFW) to filter these hits further. To validate the molecular docking results, the most active compound from the dataset was selected as a reference molecule. From the density functional theory (DFT) study, ten molecules were selected based on their highest HOMO (highest occupied molecular orbitals) energy and the lowest bandgap values. Molecular dynamics simulations with explicit solvation systems of the final ten hit compounds revealed that a large number of non-covalent interactions were formed with the binding site of the human glutaminyl cyclase. It was suggested that the hit compounds reported in this study could help in future designing of potent inhibitors as leads against human glutaminyl cyclase.

Keywords: glutaminyl cyclase, hit lead, pharmacophore model, simulation

Procedia PDF Downloads 130
49 Solid State Fermentation: A Technological Alternative for Enriching Bioavailability of Underutilized Crops

Authors: Vipin Bhandari, Anupama Singh, Kopal Gupta

Abstract:

Solid state fermentation, an eminent bioconversion technique for converting many biological substrates into a value-added product, has proven its role in the biotransformation of crops by nutritionally enriching them. Hence, an effort was made for nutritional enhancement of underutilized crops viz. barnyard millet, amaranthus and horse gram based composite flour using SSF. The grains were given pre-treatments before fermentation and these pre-treatments proved quite effective in diminishing the level of antinutrients in grains and in improving their nutritional characteristics. The present study deals with the enhancement of nutritional characteristics of underutilized crops viz. barnyard millet, amaranthus and horsegram based composite flour using solid state fermentation (SSF) as the principle bioconversion technique to convert the composite flour substrate into a nutritionally enriched value added product. Response surface methodology was used to design the experiments. The variables selected for the fermentation experiments were substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content having three levels of each. Seventeen designed experiments were conducted randomly to find the effect of these variables on microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index. The data from all experiments were analyzed using Design Expert 8.0.6 and the response functions were developed using multiple regression analysis and second order models were fitted for each response. Results revealed that pretreatments proved quite handful in diminishing the level of antinutrients and thus enhancing the nutritional value of the grains appreciably, for instance, there was about 23% reduction in phytic acid levels after decortication of barnyard millet. The carbohydrate content of the decorticated barnyard millet increased to 81.5% from initial value of 65.2%. Similarly popping and puffing of horsegram and amaranthus respectively greatly reduced the trypsin inhibitor activity. Puffing of amaranthus also reduced the tannin content appreciably. Bacillus subtilis was used as the inoculating specie since it is known to produce phytases in solid state fermentation systems. These phytases remarkably reduce the phytic acid content which acts as a major antinutritional factor in food grains. Results of solid state fermentation experiments revealed that phytic acid levels reduced appreciably when fermentation was allowed to continue for 72 hours at a temperature of 35°C. Particle size and substrate blend ratio also affected the responses positively. All the parameters viz. substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content affected the responses namely microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index but the effect of fermentation time was found to be most significant on all the responses. Statistical analysis resulted in the optimum conditions (particle size 355µ, substrate blend ratio 50:20:30 of barnyard millet, amaranthus and horsegram respectively, fermentation time 68 hrs, fermentation temperature 35°C and moisture content 47%) for maximum reduction in phytic acid. The model F- value was found to be highly significant at 1% level of significance in case of all the responses. Hence, second order model could be fitted to predict all the dependent parameters. The effect of fermentation time was found to be most significant as compared to other variables.

Keywords: composite flour, solid state fermentation, underutilized crops, cereals, fermentation technology, food processing

Procedia PDF Downloads 326
48 Health and Climate Changes: "Ippocrate" a New Alert System to Monitor and Identify High Risk

Authors: A. Calabrese, V. F. Uricchio, D. di Noia, S. Favale, C. Caiati, G. P. Maggi, G. Donvito, D. Diacono, S. Tangaro, A. Italiano, E. Riezzo, M. Zippitelli, M. Toriello, E. Celiberti, D. Festa, A. Colaianni

Abstract:

Climate change has a severe impact on human health. There is a vast literature demonstrating temperature increase is causally related to cardiovascular problem and represents a high risk for human health, but there are not study that improve a solution. In this work, it is studied how the clime influenced the human parameter through the analysis of climatic conditions in an area of the Apulia Region: Capurso Municipality. At the same time, medical personnel involved identified a set of variables useful to define an index describing health condition. These scientific studies are the base of an innovative alert system, IPPOCRATE, whose aim is to asses climate risk and share information to population at risk to support prevention and mitigation actions. IPPOCRATE is an e-health system, it is designed to provide technological support to analysis of health risk related to climate and provide tools for prevention and management of critical events. It is the first integrated system of prevention of human risk caused by climate change. IPPOCRATE calculates risk weighting meteorological data with the vulnerability of monitored subjects and uses mobile and cloud technologies to acquire and share information on different data channels. It is composed of four components: Multichannel Hub. Multichannel Hub is the ICT infrastructure used to feed IPPOCRATE cloud with a different type of data coming from remote monitoring devices, or imported from meteorological databases. Such data are ingested, transformed and elaborated in order to be dispatched towards mobile app and VoIP phone systems. IPPOCRATE Multichannel Hub uses open communication protocols to create a set of APIs useful to interface IPPOCRATE with 3rd party applications. Internally, it uses non-relational paradigm to create flexible and highly scalable database. WeHeart and Smart Application The wearable device WeHeart is equipped with sensors designed to measure following biometric variables: heart rate, systolic blood pressure and diastolic blood pressure, blood oxygen saturation, body temperature and blood glucose for diabetic subjects. WeHeart is designed to be easy of use and non-invasive. For data acquisition, users need only to wear it and connect it to Smart Application by Bluetooth protocol. Easy Box was designed to take advantage from new technologies related to e-health care. EasyBox allows user to fully exploit all IPPOCRATE features. Its name, Easy Box, reveals its purpose of container for various devices that may be included depending on user needs. Territorial Registry is the IPPOCRATE web module reserved to medical personnel for monitoring, research and analysis activities. Territorial Registry allows to access to all information gathered by IPPOCRATE using GIS system in order to execute spatial analysis combining geographical data (climatological information and monitored data) with information regarding the clinical history of users and their personal details. Territorial Registry was designed for different type of users: control rooms managed by wide area health facilities, single health care center or single doctor. Territorial registry manages such hierarchy diversifying the access to system functionalities. IPPOCRATE is the first e-Health system focused on climate risk prevention.

Keywords: climate change, health risk, new technological system

Procedia PDF Downloads 867
47 Triple Immunotherapy to Overcome Immune Evasion by Tumors in a Melanoma Mouse Model

Authors: Mary-Ann N. Jallad, Dalal F. Jaber, Alexander M. Abdelnoor

Abstract:

Introduction: Current evidence confirms that both innate and adaptive immune systems are capable of recognizing and abolishing malignant cells. The emergence of cancerous tumors in patients is, therefore, an indication that certain cancer cells can resist elimination by the immune system through a process known as “immune evasion”. In fact, cancer cells often exploit regulatory mechanisms to escape immunity. Such mechanisms normally exist to control the immune responses and prohibit exaggerated or autoimmune reactions. Recently, immunotherapies have shown promising yet limited results. Therefore this study investigates several immunotherapeutic combinations and devises a triple immunotherapy which harnesses the innate and acquired immune responses towards the annihilation of malignant cells through overcoming their ability of immune evasion, consequently hampering malignant progression and eliminating established tumors. The aims of the study are to rule out acute/chronic toxic effects of the proposed treatment combinations, to assess the effect of these combinations on tumor growth and survival rates, and to investigate potential mechanisms underlying the phenotypic results through analyzing serum levels of anti-tumor cytokines, angiogenic factors and tumor progression indicator, and the tumor-infiltrating immune-cells populations. Methodology: For toxicity analysis, cancer-free C57BL/6 mice are randomized into 9 groups: Group 1 untreated, group 2 treated with sterile saline (solvent of used treatments), group 3 treated with Monophosphoryl-lipid-A, group 4 with anti-CTLA4-antibodies, group 5 with 1-Methyl-Tryptophan (Indolamine-Dioxygenase-1 inhibitor), group 6 with both MPLA and anti-CTLA4-antibodies, group 7 with both MPLA and 1-MT, group 8 with both anti-CTLA4-antibodies and 1-MT, and group 9 with all three: MPLA, anti-CTLA4-antibodies and 1-MT. Mice are monitored throughout the treatment period and for three following months. At that point, histological sections from their main organs are assessed. For tumor progression and survival analysis, a murine melanoma model is generated by injecting analogous mice with B16F10 melanoma cells. These mice are segregated into the listed nine groups. Their tumor size and survival are monitored. For a depiction of underlying mechanisms, melanoma-bearing mice from each group are sacrificed at several time-points. Sera are tested to assess the levels of Interleukin-12 (IL-12), Vascular-Endothelial-Growth Factor (VEGF), and S100B. Furthermore, tumors are excised for analysis of infiltrated immune cell populations including T-cells, macrophages, natural killer cells and immune-regulatory cells. Results: Toxicity analysis shows that all treated groups present no signs of neither acute nor chronic toxicity. Their appearance and weights were comparable to those of control groups throughout the treatment period and for the following 3 months. Moreover, histological sections from their hearts, kidneys, lungs, and livers were normal. Work is ongoing for completion of the remaining study aims. Conclusion: Toxicity was the major concern for the success of the proposed comprehensive combinational therapy. Data generated so far ruled out any acute or chronic toxic effects. Consequently, ongoing work is quite promising and may significantly contribute to the development of more effective immunotherapeutic strategies for the treatment of cancer patients.

Keywords: cancer immunotherapy, check-point blockade, combination therapy, melanoma

Procedia PDF Downloads 120
46 The Path to Ruthium: Insights into the Creation of a New Element

Authors: Goodluck Akaoma Ordu

Abstract:

Ruthium (Rth) represents a theoretical superheavy element with an atomic number of 119, proposed within the context of advanced materials science and nuclear physics. The conceptualization of Rth involves theoretical frameworks that anticipate its atomic structure, including a hypothesized stable isotope, Rth-320, characterized by 119 protons and 201 neutrons. The synthesis of Ruthium (Rth) hinges on intricate nuclear fusion processes conducted in state-of-the-art particle accelerators, notably utilizing Calcium-48 (Ca-48) as a projectile nucleus and Einsteinium-253 (Es-253) as a target nucleus. These experiments aim to induce fusion reactions that yield Ruthium isotopes, such as Rth-301, accompanied by neutron emission. Theoretical predictions outline various physical and chemical properties attributed to Ruthium (Rth). It is envisaged to possess a high density, estimated at around 25 g/cm³, with melting and boiling points anticipated to be exceptionally high, approximately 4000 K and 6000 K, respectively. Chemical studies suggest potential oxidation states of +2, +3, and +4, indicating a versatile reactivity, particularly with halogens and chalcogens. The atomic structure of Ruthium (Rth) is postulated to feature an electron configuration of [Rn] 5f^14 6d^10 7s^2 7p^2, reflecting its position in the periodic table as a superheavy element. However, the creation and study of superheavy elements like Ruthium (Rth) pose significant challenges. These elements typically exhibit very short half-lives, posing difficulties in their stabilization and detection. Research efforts are focused on identifying the most stable isotopes of Ruthium (Rth) and developing advanced detection methodologies to confirm their existence and properties. Specialized detectors are essential in observing decay patterns unique to Ruthium (Rth), such as alpha decay or fission signatures, which serve as key indicators of its presence and characteristics. The potential applications of Ruthium (Rth) span across diverse technological domains, promising innovations in energy production, material strength enhancement, and sensor technology. Incorporating Ruthium (Rth) into advanced energy systems, such as the Arc Reactor concept, could potentially amplify energy output efficiencies. Similarly, integrating Ruthium (Rth) into structural materials, exemplified by projects like the NanoArc gauntlet, could bolster mechanical properties and resilience. Furthermore, Ruthium (Rth)--based sensors hold promise for achieving heightened sensitivity and performance in various sensing applications. Looking ahead, the study of Ruthium (Rth) represents a frontier in both fundamental science and applied research. It underscores the quest to expand the periodic table and explore the limits of atomic stability and reactivity. Future research directions aim to delve deeper into Ruthium (Rth)'s atomic properties under varying conditions, paving the way for innovations in nanotechnology, quantum materials, and beyond. The synthesis and characterization of Ruthium (Rth) stand as a testament to human ingenuity and technological advancement, pushing the boundaries of scientific understanding and engineering capabilities. In conclusion, Ruthium (Rth) embodies the intersection of theoretical speculation and experimental pursuit in the realm of superheavy elements. It symbolizes the relentless pursuit of scientific excellence and the potential for transformative technological breakthroughs. As research continues to unravel the mysteries of Ruthium (Rth), it holds the promise of reshaping materials science and opening new frontiers in technological innovation.

Keywords: superheavy element, nuclear fusion, bombardment, particle accelerator, nuclear physics, particle physics

Procedia PDF Downloads 35
45 Molecular Signaling Involved in the 'Benzo(a)Pyrene' Induced Germ Cell DNA Damage and Apoptosis: Possible Protection by Natural Aryl Hydrocarbon Receptor Antagonist and Anti-Tumor Agent

Authors: Kuladip Jana

Abstract:

Benzo(a)pyrene [B(a)P] is an environmental toxicant present mostly in cigarette smoke and car exhaust, is an aryl hydrocarbon receptor (AhR) ligand that exerts its toxic effects on both male and female reproductive systems. In this study, the effect of B(a)P at different doses (0.1, 0.25, 0.5, 1 and 5 mg /kg body weight) was studied on male reproductive system of rat. A significant decrease in cauda epididymal sperm count and motility along with the presence of sperm head abnormalities and altered epididymal and testicular histology were documented following B(a)P treatment. B(a)P treatment resulted apoptotic sperm cells as observed by TUNEL and Annexin V-PI assay with increased ROS, altered sperm mitochondrial membrane potential (ΔΨm) with a simultaneous decrease in the activity of antioxidant enzymes and GSH status. TUNEL positive apoptotic cells also observed in testis as well as isolated germ and Leydig cells following B(a)P exposure. Western Blot analysis revealed the activation of p38MAPK, cytosolic translocation of cytochrome-c, up-regulation of Bax and inducible nitric oxide synthase (iNOS) with cleavage of PARP and down-regulation of BCl2 in testis upon B(a)P treatment. The protein and mRNA levels of testicular key steroidogenesis regulatory proteins like StAR, cytochrome P450 IIA1 (CYPIIA1), 3β HSD, 17β HSD showed a significant decrease in a dose dependent manner while an increase in the expression of cytochrome P450 1A1 (CYP1A1), Aryl hydrocarbon Receptor (AhR), active caspase- 9 and caspase- 3 following B(a)P exposure. We conclude that exposure of benzo(a)pyrene caused testicular gamatogenic and steroidogenic disorders by induction of oxidative stress, inhibition of StAR and other steroidogenic enzymes along with activation of p38MAPK and initiated caspase-3 mediated germ and Leydig cell apoptosis.The possible protective role of naturally occurring phytochemicals against B(a)P induced testicular toxicity needs immediate consideration. Curcumin and resveratrol separately were found to protect against B(a)P induced germ cell apoptosis, and their combinatorial effect was more significant. Our present study in isolated testicular germ cell population from adult male Wistar rats, highlighted their synergistic protective effect against B(a)P induced germ cell apoptosis. Curcumin-resveratrol co-treatment decreased the expression of pro-apoptotic proteins like cleaved caspase 3,8,9, cleaved PARP, Apaf1, FasL, tBid. Curcumin-resveratrol co-treatment decreased Bax/Bcl2 ratio, mitochondria to cytosolic translocation of cytochrome c and activated the survival protein Akt. Curcumin-resveratrol decreased the expression of p53 dependent apoptotic genes like Fas, FasL, Bax, Bcl2, Apaf1.Curcumin-resveratrol co-treatment thus prevented B(a)P induced germ cell apoptosis. B(a)P induced testicular ROS generation and oxidative stress were significantly ameliorated with curcumin and resveratrol. Curcumin-resveratrol co-treatment prevented B(a)P induced nuclear translocation of AhR and CYP1A1 production. The combinatorial treatment significantly inhibited B(a)P induced ERK 1/2, p38 MAPK and JNK 1/2 activation. B(a)P treatment increased the expression of p53 and its phosphorylation (p53 ser 15). Curcumin-resveratrol co-treatment significantly decreased p53 level and its phosphorylation (p53 ser 15). The study concludes that curcumin-resveratrol synergistically modulated MAPKs and p53, prevented oxidative stress, regulated the expression of pro and anti-apoptotic proteins as well as the proteins involved in B(a)P metabolism thus protected germ cells from B(a)P induced apoptosis.

Keywords: benzo(a)pyrene, germ cell, apoptosis, oxidative stress, resveratrol, curcumin

Procedia PDF Downloads 257
44 Improving Data Completeness and Timely Reporting: A Joint Collaborative Effort between Partners in Health and Ministry of Health in Remote Areas, Neno District, Malawi

Authors: Wiseman Emmanuel Nkhomah, Chiyembekezo Kachimanga, Moses Banda Aron, Julia Higgins, Manuel Mulwafu, Kondwani Mpinga, Mwayi Chunga, Grace Momba, Enock Ndarama, Dickson Sumphi, Atupere Phiri, Fabien Munyaneza

Abstract:

Background: Data is key to supporting health service delivery as stakeholders, including NGOs rely on it for effective service delivery, decision-making, and system strengthening. Several studies generated debate on data quality from national health management information systems (HMIS) in sub-Saharan Africa. This limits the utilization of data in resource-limited settings, which already struggle to meet standards set by the World Health Organization (WHO). We aimed to evaluate data quality improvement of Neno district HMIS over a 4-year period (2018 – 2021) following quarterly data reviews introduced in January 2020 by the district health management team and Partners In Health. Methods: Exploratory Mixed Research was used to examine report rates, followed by in-depth interviews using Key Informant Interviews (KIIs) and Focus Group Discussions (FGDs). We used the WHO module desk review to assess the quality of HMIS data in the Neno district captured from 2018 to 2021. The metrics assessed included the completeness and timeliness of 34 reports. Completeness was measured as a percentage of non-missing reports. Timeliness was measured as the span between data inputs and expected outputs meeting needs. We computed T-Test and recorded P-values, summaries, and percentage changes using R and Excel 2016. We analyzed demographics for key informant interviews in Power BI. We developed themes from 7 FGDs and 11 KIIs using Dedoose software, from which we picked perceptions of healthcare workers, interventions implemented, and improvement suggestions. The study was reviewed and approved by Malawi National Health Science Research Committee (IRB: 22/02/2866). Results: Overall, the average reporting completeness rate was 83.4% (before) and 98.1% (after), while timeliness was 68.1% and 76.4 respectively. Completeness of reports increased over time: 2018, 78.8%; 2019, 88%; 2020, 96.3% and 2021, 99.9% (p< 0.004). The trend for timeliness has been declining except in 2021, where it improved: 2018, 68.4%; 2019, 68.3%; 2020, 67.1% and 2021, 81% (p< 0.279). Comparing 2021 reporting rates to the mean of three preceding years, both completeness increased from 88% to 99% (in 2021), while timeliness increased from 68% to 81%. Sixty-five percent of reports have maintained meeting a national standard of 90%+ in completeness while only 24% in timeliness. Thirty-two percent of reports met the national standard. Only 9% improved on both completeness and timeliness, and these are; cervical cancer, nutrition care support and treatment, and youth-friendly health services reports. 50% of reports did not improve to standard in timeliness, and only one did not in completeness. On the other hand, factors associated with improvement included improved communications and reminders using internal communication, data quality assessments, checks, and reviews. Decentralizing data entry at the facility level was suggested to improve timeliness. Conclusion: Findings suggest that data quality in HMIS for the district has improved following collaborative efforts. We recommend maintaining such initiatives to identify remaining quality gaps and that results be shared publicly to support increased use of data. These results can inform Ministry of Health and its partners on some interventions and advise initiatives for improving its quality.

Keywords: data quality, data utilization, HMIS, collaboration, completeness, timeliness, decision-making

Procedia PDF Downloads 83
43 Application of Large Eddy Simulation-Immersed Boundary Volume Penalization Method for Heat and Mass Transfer in Granular Layers

Authors: Artur Tyliszczak, Ewa Szymanek, Maciej Marek

Abstract:

Flow through granular materials is important to a vast array of industries, for instance in construction industry where granular layers are used for bulkheads and isolators, in chemical engineering and catalytic reactors where large surfaces of packed granular beds intensify chemical reactions, or in energy production systems, where granulates are promising materials for heat storage and heat transfer media. Despite the common usage of granulates and extensive research performed in this field, phenomena occurring between granular solid elements or between solids and fluid are still not fully understood. In the present work we analyze the heat exchange process between the flowing medium (gas, liquid) and solid material inside the granular layers. We consider them as a composite of isolated solid elements and inter-granular spaces in which a gas or liquid can flow. The structure of the layer is controlled by shapes of particular granular elements (e.g., spheres, cylinders, cubes, Raschig rings), its spatial distribution or effective characteristic dimension (total volume or surface area). We will analyze to what extent alteration of these parameters influences on flow characteristics (turbulent intensity, mixing efficiency, heat transfer) inside the layer and behind it. Analysis of flow inside granular layers is very complicated because the use of classical experimental techniques (LDA, PIV, fibber probes) inside the layers is practically impossible, whereas the use of probes (e.g. thermocouples, Pitot tubes) requires drilling of holes inside the solid material. Hence, measurements of the flow inside granular layers are usually performed using for instance advanced X-ray tomography. In this respect, theoretical or numerical analyses of flow inside granulates seem crucial. Application of discrete element methods in combination with the classical finite volume/finite difference approaches is problematic as a mesh generation process for complex granular material can be very arduous. A good alternative for simulation of flow in complex domains is an immersed boundary-volume penalization (IB-VP) in which the computational meshes have simple Cartesian structure and impact of solid objects on the fluid is mimicked by source terms added to the Navier-Stokes and energy equations. The present paper focuses on application of the IB-VP method combined with large eddy simulation (LES). The flow solver used in this work is a high-order code (SAILOR), which was used previously in various studies, including laminar/turbulent transition in free flows and also for flows in wavy channels, wavy pipes and over various shape obstacles. In these cases a formal order of approximation turned out to be in between 1 and 2, depending on the test case. The current research concentrates on analyses of the flows in dense granular layers with elements distributed in a deterministic regular manner and validation of the results obtained using LES-IB method and body-fitted approach. The comparisons are very promising and show very good agreement. It is found that the size, number of elements and their distribution have huge impact on the obtained results. Ordering of the granular elements (or lack of it) affects both the pressure drop and efficiency of the heat transfer as it significantly changes mixing process.

Keywords: granular layers, heat transfer, immersed boundary method, numerical simulations

Procedia PDF Downloads 135
42 Circular Tool and Dynamic Approach to Grow the Entrepreneurship of Macroeconomic Metabolism

Authors: Maria Areias, Diogo Simões, Ana Figueiredo, Anishur Rahman, Filipa Figueiredo, João Nunes

Abstract:

It is expected that close to 7 billion people will live in urban areas by 2050. In order to improve the sustainability of the territories and its transition towards circular economy, it’s necessary to understand its metabolism and promote and guide the entrepreneurship answer. The study of a macroeconomic metabolism involves the quantification of the inputs, outputs and storage of energy, water, materials and wastes for an urban region. This quantification and analysis representing one opportunity for the promotion of green entrepreneurship. There are several methods to assess the environmental impacts of an urban territory, such as human and environmental risk assessment (HERA), life cycle assessment (LCA), ecological footprint assessment (EF), material flow analysis (MFA), physical input-output table (PIOT), ecological network analysis (ENA), multicriteria decision analysis (MCDA) among others. However, no consensus exists about which of those assessment methods are best to analyze the sustainability of these complex systems. Taking into account the weaknesses and needs identified, the CiiM - Circular Innovation Inter-Municipality project aims to define an uniform and globally accepted methodology through the integration of various methodologies and dynamic approaches to increase the efficiency of macroeconomic metabolisms and promoting entrepreneurship in a circular economy. The pilot territory considered in CiiM project has a total area of 969,428 ha, comprising a total of 897,256 inhabitants (about 41% of the population of the Center Region). The main economic activities in the pilot territory, which contribute to a gross domestic product of 14.4 billion euros, are: social support activities for the elderly; construction of buildings; road transport of goods, retailing in supermarkets and hypermarkets; mass production of other garments; inpatient health facilities; and the manufacture of other components and accessories for motor vehicles. The region's business network is mostly constituted of micro and small companies (similar to the Central Region of Portugal), with a total of 53,708 companies identified in the CIM Region of Coimbra (39 large companies), 28,146 in the CIM Viseu Dão Lafões (22 large companies) and 24,953 in CIM Beiras and Serra da Estrela (13 large companies). For the construction of the database was taking into account data available at the National Institute of Statistics (INE), General Directorate of Energy and Geology (DGEG), Eurostat, Pordata, Strategy and Planning Office (GEP), Portuguese Environment Agency (APA), Commission for Coordination and Regional Development (CCDR) and Inter-municipal Community (CIM), as well as dedicated databases. In addition to the collection of statistical data, it was necessary to identify and characterize the different stakeholder groups in the pilot territory that are relevant to the different metabolism components under analysis. The CIIM project also adds the potential of a Geographic Information System (GIS) so that it is be possible to obtain geospatial results of the territorial metabolisms (rural and urban) of the pilot region. This platform will be a powerful visualization tool of flows of products/services that occur within the region and will support the stakeholders, improving their circular performance and identifying new business ideas and symbiotic partnerships.

Keywords: circular economy tools, life cycle assessment macroeconomic metabolism, multicriteria decision analysis, decision support tools, circular entrepreneurship, industrial and regional symbiosis

Procedia PDF Downloads 98
41 Closing down the Loop Holes: How North Korea and Other Bad Actors Manipulate Global Trade in Their Favor

Authors: Leo Byrne, Neil Watts

Abstract:

In the complex and evolving landscape of global trade, maritime sanctions emerge as a critical tool wielded by the international community to curb illegal activities and alter the behavior of non-compliant states and entities. These sanctions, designed to restrict or prohibit trade by sea with sanctioned jurisdictions, entities, or individuals, face continuous challenges due to the sophisticated evasion tactics employed by countries like North Korea. As the Democratic People's Republic of Korea (DPRK) diverts significant resources to circumvent these measures, understanding the nuances of their methodologies becomes imperative for maintaining the integrity of global trade systems. The DPRK, one of the most sanctioned nations globally, has developed an intricate network to facilitate its trade in illicit goods, ensuring the flow of revenue from designated activities continues unabated. Given its geographic and economic conditions, North Korea predominantly relies on maritime routes, utilizing foreign ports to route its illicit trade. This reliance on the sea is exploited through various sophisticated methods, including the use of front companies, falsification of documentation, commingling of bulk cargos, and physical alterations to vessels. These tactics enable the DPRK to navigate through the gaps in regulatory frameworks and lax oversight, effectively undermining international sanctions regimes Maritime sanctions carry significant implications for global trade, imposing heightened risks in the maritime domain. The deceptive practices employed not only by the DPRK but also by other high-risk jurisdictions, necessitate a comprehensive understanding of UN targeted sanctions. For stakeholders in the maritime sector—including maritime authorities, vessel owners, shipping companies, flag registries, and financial institutions serving the shipping industry—awareness and compliance are paramount. Violations can lead to severe consequences, including reputational damage, sanctions, hefty fines, and even imprisonment. To mitigate risks associated with these deceptive practices, it is crucial for maritime sector stakeholders to employ rigorous due diligence and regulatory compliance screening measures. Effective sanctions compliance serves as a protective shield against legal, financial, and reputational risks, preventing exploitation by international bad actors. This requires not only a deep understanding of the sanctions landscape but also the capability to identify and manage risks through informed decision-making and proactive risk management practices. As the DPRK and other sanctioned entities continue to evolve their sanctions evasion tactics, the international community must enhance its collective efforts to demystify and counter these practices. By leveraging more stringent compliance measures, stakeholders can safeguard against the illicit use of the maritime domain, reinforcing the effectiveness of maritime sanctions as a tool for global security. This paper seeks to dissect North Korea's adaptive strategies in the face of maritime sanctions. By examining up-to-date, geographically, and temporally relevant case studies, it aims to shed light on the primary nodes through which Pyongyang evades sanctions and smuggles goods via third-party ports. The goal is to propose multi-level interaction strategies, ranging from governmental interventions to localized enforcement mechanisms, to counteract these evasion tactics.

Keywords: maritime, maritime sanctions, international sanctions, compliance, risk

Procedia PDF Downloads 68
40 Microfluidic Plasmonic Device for the Sensitive Dual LSPR-Thermal Detection of the Cardiac Troponin Biomarker in Laminal Flow

Authors: Andreea Campu, Ilinica Muresan, Simona Cainap, Simion Astilean, Monica Focsan

Abstract:

Acute myocardial infarction (AMI) is the most severe cardiovascular disease, which has threatened human lives for decades, thus a continuous interest is directed towards the detection of cardiac biomarkers such as cardiac troponin I (cTnI) in order to predict risk and, implicitly, fulfill the early diagnosis requirements in AMI settings. Microfluidics is a major technology involved in the development of efficient sensing devices with real-time fast responses and on-site applicability. Microfluidic devices have gathered a lot of attention recently due to their advantageous features such as high sensitivity and specificity, miniaturization and portability, ease-of-use, low-cost, facile fabrication, and reduced sample manipulation. The integration of gold nanoparticles into the structure of microfluidic sensors has led to the development of highly effective detection systems, considering the unique properties of the metallic nanostructures, specifically the Localized Surface Plasmon Resonance (LSPR), which makes them highly sensitive to their microenvironment. In this scientific context, herein, we propose the implementation of a novel detection device, which successfully combines the efficiency of gold bipyramids (AuBPs) as signal transducers and thermal generators with the sample-driven advantages of the microfluidic channels into a miniaturized, portable, low-cost, specific, and sensitive test for the dual LSPR-thermographic cTnI detection. Specifically, AuBPs with longitudinal LSPR response at 830 nm were chemically synthesized using the seed-mediated growth approach and characterized in terms of optical and morphological properties. Further, the colloidal AuBPs were deposited onto pre-treated silanized glass substrates thus, a uniform nanoparticle coverage of the substrate was obtained and confirmed by extinction measurements showing a 43 nm blue-shift of the LSPR response as a consequence of the refractive index change. The as-obtained plasmonic substrate was then integrated into a microfluidic “Y”-shaped polydimethylsiloxane (PDMS) channel, fabricated using a Laser Cutter system. Both plasmonic and microfluidic elements were plasma treated in order to achieve a permanent bond. The as-developed microfluidic plasmonic chip was further coupled to an automated syringe pump system. The proposed biosensing protocol implicates the successive injection inside the microfluidic channel as follows: p-aminothiophenol and glutaraldehyde, to achieve a covalent bond between the metallic surface and cTnI antibody, anti-cTnI, as a recognition element, and target cTnI biomarker. The successful functionalization and capture of cTnI was monitored by LSPR detection thus, after each step, a red-shift of the optical response was recorded. Furthermore, as an innovative detection technique, thermal determinations were made after each injection by exposing the microfluidic plasmonic chip to 785 nm laser excitation, considering that the AuBPs exhibit high light-to-heat conversion performances. By the analysis of the thermographic images, thermal curves were obtained, showing a decrease in the thermal efficiency after the anti-cTnI-cTnI reaction was realized. Thus, we developed a microfluidic plasmonic chip able to operate as both LSPR and thermal sensor for the detection of the cardiac troponin I biomarker, leading thus to the progress of diagnostic devices.

Keywords: gold nanobipyramids, microfluidic device, localized surface plasmon resonance detection, thermographic detection

Procedia PDF Downloads 128
39 Microencapsulation of Probiotic and Evaluation for Viability, Antimicrobial Property and Cytotoxic Activities of its Postbiotic Metabolites on MCF-7 Breast Cancer Cell Line

Authors: Nkechi V. Enwuru, Bullum Nkeki, Elizabeth A. Adekoya, Olumide A. Adebesin, Rebecca F. Peters, Victoria A. Aikhomu, Mendie E. U.

Abstract:

Background: Probiotics are live microbial feed supplement beneficial for host. Probiotics and their postbiotic products have been used to prevent or treat various health conditions. However, the products cell viability is often low due to harsh conditions subjected during processing, handling, storage, and gastrointestinal transit. These strongly influence probiotics’ benefits; thus, viability is essential for probiotics to produce health benefits for the host. Microencapsulation is a promising technique with considerable effects on probiotic survival. The study is aimed to formulate a microencapsulated probiotic and evaluate its viability, antimicrobial efficacy, and cytotoxic activity of its postbiotic on the MCF-7 breast cancer cell line. Method: Human and animal raw milk were sampled for lactic acid bacteria. The isolated bacteria were identified using conventional and VITEK 2 systems. The identified lactic acid bacterium was encapsulated using spray-dried and extrusion methods. The free, encapsulated, and chitosan-coated encapsulated probiotics were tested for viability in simulated-gastric intestinal (SGI) fluid and different storage conditions at refrigerated (4oC) and room (25oC) temperatures. The disintegration time and weight uniformity of the spray-dried hard gelatin capsules were tested. The antimicrobial property of free and encapsulated probiotics was tested against enteric pathogenic isolates from antiretroviral therapy (ART) treated HIV-positive patients. The postbiotic of the free cells was extracted, and its cytotoxic effect on the MCF-7 breast cancer cell line was tested through an MTT assay. Result: The Lactobacillus plantarum was isolated from animal raw milk. Zero-size hard gelatin L. plantarum capsules with granules within a size range of 0.71–1.00 mm diameter was formulated. The disintegration time ranges from 2.14±0.045 to 2.91±0.293 minutes, while the average weight is 502.1mg. Simulated gastric solution significantly affected viability of both free and microcapsules. However, the encapsulated cells were more protected and viable due to impermeability in the microcapsules. Furthermore, the viability of free cells stored at 4oC and 25oC were less than 4 log CFU/g and 6 log CFU/g respectively after 12 weeks. However, the microcapsules stored at 4oC achieved the highest viability among the free and microcapsules stored at 25oC and the free cells stored at 4oC. Encapsulated cells were released in the simulated gastric fluid, viable and effective against the enteric pathogens tested. However, chitosan-coated calcium alginate encapsulated probiotics significantly inhibited Shigella flexneri, Candida albicans, and Escherichia coli. The Postbiotic Metabolites (PM) of L. plantarum produced a cytotoxic effect on the MCF-7 breast cancer cell line. The postbiotic showed significant cytotoxic activity similar to 5FU, a standard antineoplastic agent. The inhibition concentration of 50% growth (IC50) of postbiotic metabolite K3 is low and consistent with the IC50 of the positive control (Cisplatin). Conclusions: Lactobacillus plantarum postbiotic exhibited a cytotoxic effect on the MCF-7 breast cancer cell line and could be used as combined adjuvant therapy in breast cancer management. The microencapsulation technique protects the probiotics, improving their viability and delivery to the gastrointestinal tract. Chitosan enhances antibacterial efficacy; thus, chitosan-coated microencapsulated L. plantarum probiotics could be more effective and used as a combined therapy in HIV management of opportunistic enteric infection.

Keywords: probiotics, encapsulation, gastrointestinal conditions, antimicrobial effect, postbiotic, cytotoxicity effect

Procedia PDF Downloads 119
38 The Impact of Supporting Productive Struggle in Learning Mathematics: A Quasi-Experimental Study in High School Algebra Classes

Authors: Sumeyra Karatas, Veysel Karatas, Reyhan Safak, Gamze Bulut-Ozturk, Ozgul Kartal

Abstract:

Productive struggle entails a student's cognitive exertion to comprehend mathematical concepts and uncover solutions not immediately apparent. The significance of productive struggle in learning mathematics is accentuated by influential educational theorists, emphasizing its necessity for learning mathematics with understanding. Consequently, supporting productive struggle in learning mathematics is recognized as a high-leverage and effective mathematics teaching practice. In this study, the investigation into the role of productive struggle in learning mathematics led to the development of a comprehensive rubric for productive struggle pedagogy through an exhaustive literature review. The rubric consists of eight primary criteria and 37 sub-criteria, providing a detailed description of teacher actions and pedagogical choices that foster students' productive struggles. These criteria encompass various pedagogical aspects, including task design, tool implementation, allowing time for struggle, posing questions, scaffolding, handling mistakes, acknowledging efforts, and facilitating discussion/feedback. Utilizing this rubric, a team of researchers and teachers designed eight 90-minute lesson plans, employing a productive struggle pedagogy, for a two-week unit on solving systems of linear equations. Simultaneously, another set of eight lesson plans on the same topic, featuring identical content and problems but employing a traditional lecture-and-practice model, was designed by the same team. The objective was to assess the impact of supporting productive struggle on students' mathematics learning, defined by the strands of mathematical proficiency. This quasi-experimental study compares the control group, which received traditional lecture- and practice instruction, with the treatment group, which experienced a productive struggle in pedagogy. Sixty-six 10th and 11th-grade students from two algebra classes, taught by the same teacher at a high school, underwent either the productive struggle pedagogy or lecture-and-practice approach over two-week eight 90-minute class sessions. To measure students' learning, an assessment was created and validated by a team of researchers and teachers. It comprised seven open-response problems assessing the strands of mathematical proficiency: procedural and conceptual understanding, strategic competence, and adaptive reasoning on the topic. The test was administered at the beginning and end of the two weeks as pre-and post-test. Students' solutions underwent scoring using an established rubric, subjected to expert validation and an inter-rater reliability process involving multiple criteria for each problem based on their steps and procedures. An analysis of covariance (ANCOVA) was conducted to examine the differences between the control group, which received traditional pedagogy, and the treatment group, exposed to the productive struggle pedagogy, on the post-test scores while controlling for the pre-test. The results indicated a significant effect of treatment on post-test scores for procedural understanding (F(2, 63) = 10.47, p < .001), strategic competence (F(2, 63) = 9.92, p < .001), adaptive reasoning (F(2, 63) = 10.69, p < .001), and conceptual understanding (F(2, 63) = 10.06, p < .001), controlling for pre-test scores. This demonstrates the positive impact of supporting productive struggle in learning mathematics. In conclusion, the results revealed the significance of the role of productive struggle in learning mathematics. The study further explored the practical application of productive struggle through the development of a comprehensive rubric describing the pedagogy of supporting productive struggle.

Keywords: effective mathematics teaching practice, high school algebra, learning mathematics, productive struggle

Procedia PDF Downloads 51