Search results for: viscosity reduction
4572 Social Safety Net and Food Security Among Farming Household in Southwest, Nigeria
Authors: Adepoju A. A., Raufu M. O., Ganiyu M. O., Olawuyi S. O., Olalere J. O., Ogunkunle A. A.
Abstract:
This study investigated the effects of social safety nets on food security among farming households in Southwest Nigeria. The study used a multistage sampling technique, purposively selecting two states from southwest Nigeria, Oyo and Ogun as the study area with eight Agricultural Development Programme (ADP) agricultural zones. The Local Government Areas (LGAs) were stratified into urban and rural LGAs. Sixteen villages from Oyo and 12 villages from Ogun were randomly selected from the rural LGAs using a proportionate to-size sampling, resulting in 472 respondents, with 271 and 201 from Oyo and Ogun states, respectively. The data was analyzed using descriptive statistics like mean, standard deviation, frequency and percentages, while logistic regression analysis examines the association between independent variables and dependent variables. The study found that poverty reduction, social empowerment, food security palliative, microcredit, and agricultural empowerment are the most prevalent social safety nets among farming households. School feed programs are the most prevalent form of poverty reduction, while training for empowerment improves wellbeing. Food item distribution is the most beneficial for food security and wellbeing. Self-empowerment-based micro-credit support is the most effective, while Anchor Borrower's project is the most beneficial for agricultural empowerment. The study found that 62.68% of the variance in food security status is explained by independent variables. females farmers have a 56% higher likelihood of being food secure than their male counterparts. An additional increase in age decreases the likelihood of being food secure by 6%. Married individuals have a 58% lower likelihood of being food secure compared to singles, possibly due to increased financial responsibilities. A larger household size increases the likelihood of being food secure by 3.41%. Larger households may benefit from economies of scale or shared resources and social safety net programs. Engagement in farming as a primary occupation increases the likelihood of being food secure by 62%. The study further reveals that participation in poverty reduction and microcredit programs significantly increases the likelihood of food security by 30,069% and 135.48%, respectively. The study therefore recommends expanding school feed programs, improving empowerment training, strengthening food distribution, promoting micro-credit, supporting agricultural empowerment, and addressing gender disparities in social safety net programs.Keywords: poverty reduction, food distribution, micro-credit, household well-being
Procedia PDF Downloads 144571 Impact of Green Roofs on Hot and Humid Climate-Vijayawada
Authors: Santhosh Kumar Sathi
Abstract:
In India, Growth and spread of cities lead to the reduction of forests and green areas of the urban center with built structures. This is one of the reasons for increasing temperature about 2-5% in an urban environment and consequently also one of the key causes of urban heat island effects. Green roofs are one option that can reduce the negative impact of urban development providing numerous environmental benefits. In this paper, Vijayawada city is taken as case to study as it is experiencing rapid urbanization because of new capital Amaravati. That has resulted in remarkable urban heat island; which once recorded a highest temperature of 49°c. This paper focuses on the change in quality of the local environment with the introduction of green roofs. An in-depth study has to be carried out to understand the distribution of land surface temperature and land use of Vijayawada. Delineation of an area which has the highest temperature has been selected to adopt green roof retrofitting. Latest technologies of green roof retrofitting have to be implemented in the selected region. The results of the study indicate a significant temperature reduction in the local environment of that region, confirming the potential of green roofs as urban heat island mitigation strategy.Keywords: energy consumption, green roofs, retrofitting, urban heat island
Procedia PDF Downloads 3764570 Effect of Rubber Tyre and Plastic Wastes Use in Asphalt Concrete Pavement
Authors: F. Onyango, Salim R. Wanjala, M. Ndege, L. Masu
Abstract:
Asphalt concrete pavements have a short life cycle, failing mainly due to temperature changes, traffic loading and ageing. Modified asphalt mixtures provide the technology to produce a bituminous binder with improved viscoelastic properties which remain in balance over a wider temperature range and loading conditions. In this research, 60/70 penetration grade asphalt binder was modified by adding 2, 4, 6, 8, and 10 percent by weight of asphalt binder following the wet process and the mineral aggregate was modified by adding 1, 2, 3, 4, and 5 percent crumb rubber by volume of the mineral aggregate following the dry process. The LDPE modified asphalt binder Rheological properties were evaluated. The laboratory results showed an increase in viscosity, softening point and stiffness of the binder. The modified asphalt was then used in preparing asphalt mixtures by Marshall Mix design procedure. The Marshall stability values for mixes containing 2% crumb rubber and 4% LDPE were found to be 30% higher than the conventional asphalt concrete mix.Keywords: crumb rubber, dry process, hot mix asphalt, wet process
Procedia PDF Downloads 3684569 The Portland Cement Limestone: Silica Fume System as an Alternative Cementitious Material
Authors: C. S. Paglia, E. Ginercordero, A. Jornet
Abstract:
Environmental pollution, along with the depletion of natural resources, is among the most serious global challenges in our times. The construction industry is one of the sectors where a relevant reduction of the environmental impact can be achieved. Thus, the cement production will play a key role in sustainability, by reducing the CO₂ emissions and energy consumption and by increasing the durability of the structures. A large number of investigations have been carried out on blended cements, but it exists a lack of information on the Portland cement limestone - silica fume system. Mortar blends are optimized in the mix proportions for the different ingredients, in particular for the dosage of the silica fume. Portland cement and the new binder-based systems are compared with respect to the fresh mortar properties, the mechanical and the durability behaviour of the hardened specimens at 28 and 90 days. The use of this new binder combination exhibits an interesting hydration development with time and maintain the conventional characteristics of Portland cementitious material. On the other hand, it will be necessary to reproduce the Portland Limestone Cement-silica fume system within the concrete. A reduction of the CO₂ production, energy consumption, and a reasonable service life of the concrete structures, including a maintenance free period, will all contribute to a better environment.Keywords: binder, cement, limestone, silica fume
Procedia PDF Downloads 1194568 Preparation of 1D Nano-Polyaniline/Dendritic Silver Composites
Authors: Wen-Bin Liau, Wan-Ting Wang, Chiang-Jen Hsiao, Sheng-Mao Tseng
Abstract:
In this paper, an interesting and easy method to prepare one-dimensional nanostructured polyaniline/dendritic silver composites is reported. It is well known that the morphology of metal particle is a very important factor to influence the properties of polymer-metal composites. Usually, the dendritic silver is prepared by kinetic control in reduction reaction. It is not a thermodynamically stable structure. It is the goal to reduce silver ion to dendritic silver by polyaniline polymer via kinetic control and form one-dimensional nanostructured polyaniline/dendritic silver composites. The preparation is a two steps sequential reaction. First step, the polyaniline networks composed of nano fibrillar polyaniline are synthesized from aniline monomers aqueous with ammonium persulfate as the initiator at room temperature. In second step, the silver nitrate is added into polyaniline networks dispersed in deionized water. The dendritic silver is formed via reduction by polyaniline networks under the kinetic control. The formation of polyaniline is discussed via transmission electron microscopy (TEM). Nanosheets, nanotubes, nanospheres, nanosticks, and networks are observed via TEM. Then, the mechanism of formation of one-dimensional nanostructured polyaniline/dendritic silver composites is discussed. The formation of dendritic silver is observed by TEM and X-ray diffraction.Keywords: 1D nanostructured polyaniline, dendritic silver, synthesis
Procedia PDF Downloads 5014567 Numerical Investigation of Flow Characteristics inside the External Gear Pump Using Urea Liquid Medium
Authors: Kumaresh Selvakumar, Man Young Kim
Abstract:
In selective catalytic reduction (SCR) unit, the injection system is provided with unique dosing pump to govern the urea injection phenomenon. The urea based operating liquid from the AdBlue tank links up directly with the dosing pump unit to furnish appropriate high pressure for examining the flow characteristics inside the liquid pump. This work aims in demonstrating the importance of external gear pump to provide pertinent high pressure and respective mass flow rate for each rotation. Numerical simulations are conducted using immersed solid method technique for better understanding of unsteady flow characteristics within the pump. Parametric analyses have been carried out for the gear speed and mass flow rate to find the behavior of pressure fluctuations. In the simulation results, the outlet pressure achieves maximum magnitude with the increase in rotational speed and the fluctuations grow higher.Keywords: AdBlue tank, external gear pump, immersed solid method, selective catalytic reduction
Procedia PDF Downloads 2804566 Accessibility for the Disabled in Public Buildings: The Case of a Nigerian University
Authors: S. P. Akinbogun, P. Oloruntoyin
Abstract:
One of the millennium development goals is the reduction of illiteracy. The state of user friendliness of the educational buildings is expected to play a significant role in the quest, particularly among the physically challenged. This study considers the state of access of educational buildings to disabled on wheel chair and crutches. It draws context from one of the federal universities in Nigeria. The study is basically qualitative; data were collected through structured interview and observation to assess compliance with the prescribed accessibility standard of academic buildings in the Federal University of Technology Akure. The study found that narrow entrances and routes of buildings, raised steps at entrances of the buildings, and ramps were absent. This implies exclusion as it renders most of the buildings inaccessible to wheelchair users. Perhaps, it accounts for low enrolment of wheelchair users in the institution despite many of them in the city. The implication is a challenge in the achievement of the millennium development goal concerning the reduction in the level of illiteracy in the country. The study suggests that government should strictly ensure that public buildings should satisfy or retrofitted to meet disabled access before development approval. This should be followed with the issuance of certificate of compliance upon completion.Keywords: public building, accessibility, physically challenged, education
Procedia PDF Downloads 2204565 Liquid-Liquid Transitions in Strontium Tellurite Melts
Authors: Rajinder Kaur, Atul Khanna
Abstract:
Transparent glass-ceramic and crystalline samples of the system: xSrO-(100-x)TeO2; x = 7.5 and 8.5 mol% were prepared by quenching the melts in the temperature range of 700 to 950oC. A very interesting effect of the temperature on the glass-forming ability (GFA) of strontium tellurite melts is observed,and it is found that the melts produce transparent glass-ceramics when it is solidified from lower temperatures in the range of 700-750oC, however, when the melts are cooled from higher temperatures in the range of 850-950oC, the GFA is significantly reduced andanti-glass and/or crystalline phases are produced on solidification.The effect of temperature on GFA of strontium tellurite melts is attributed to short-range structural transformations: TeO₄TeO₃ which procceds towards the right side with an increrase in temperature. This isomerization reaction lowers the melt viscosity and enhances the crystallization tedendency. It is concluded that the high-temperature strontium tellurite meltsfreeze faster into crystalline phases as compared to the melts at a lower temperature; the latter supercooland solidify into glassy phases.Keywords: anti-glasss, ceramic, supercool liquid, raman spectroscopy
Procedia PDF Downloads 834564 Influence of TEOS Concentration and Triton Additive on the Nanostructured Silica Sol-Gel Antireflective Coatings
Authors: Najme lari, Shahrokh Ahangarani, Ali Shanaghi
Abstract:
Nanostructure silica antireflective surfaces were fabricated on glasses by Sol-Gel technique. Various silica sols (varying in composition: tetraethyl orthosilicate (TEOS) concentration and Triton additive) were synthesized by the polymeric process and then subsequently coated on substrates. Silica thin films were investigated by using UV-Visible Spectroscopy; Fourier-Transformed Infrared Spectrophotometer and Filed Emission Scanning Electron Microscopy were used. Results indicated that dense silica layers, obtained from the polymeric method, permit a considerable reduction of these light reflections compared with uncoated glasses in all the cases studied, but the degree of reduction is different depending on the composition of the precursor solution. It was found that the transmittance increased from 0.915 for the bare slide up to 0.96 for the best made sample corresponding to the Triton-doped silica. The addition of Triton x-100 to the silica sols improved the optical property of thin film because of it helps to create nanoporous in the coating. Also the results showed SiO2 content is an effective parameter to prepare the antireflective films. Loss of SiO2 cause to rapid the reactions and Si-O-Si bonding form better under this condition.Keywords: sol–gel, silica thin films, antireflective coatings, optical properties, triton
Procedia PDF Downloads 4214563 High Performance Field Programmable Gate Array-Based Stochastic Low-Density Parity-Check Decoder Design for IEEE 802.3an Standard
Authors: Ghania Zerari, Abderrezak Guessoum, Rachid Beguenane
Abstract:
This paper introduces high-performance architecture for fully parallel stochastic Low-Density Parity-Check (LDPC) field programmable gate array (FPGA) based LDPC decoder. The new approach is designed to decrease the decoding latency and to reduce the FPGA logic utilisation. To accomplish the target logic utilisation reduction, the routing of the proposed sub-variable node (VN) internal memory is designed to utilize one slice distributed RAM. Furthermore, a VN initialization, using the channel input probability, is achieved to enhance the decoder convergence, without extra resources and without integrating the output saturated-counters. The Xilinx FPGA implementation, of IEEE 802.3an standard LDPC code, shows that the proposed decoding approach attain high performance along with reduction of FPGA logic utilisation.Keywords: low-density parity-check (LDPC) decoder, stochastic decoding, field programmable gate array (FPGA), IEEE 802.3an standard
Procedia PDF Downloads 2974562 Providing Healthy Food in Primary and Secondary Schools of Saudi Arabia to Significantly Reduce Obesity and Improve Health by Using the Star Rating System for a Healthier Diet
Authors: Emran M. Badghish
Abstract:
Overweight and obesity have now become an epidemic around the globe, both in high-, as well as low-income regions. It is important to use preventive measures that are cost-effective. Schools are the essence of building societies and engaging them in healthy nutrition will offer a way to reach individuals at an early stage in life, with many positive and significant impacts. Aim: Provide healthy food in schools of children aged 5 to 18 years old. Methods: Distributing healthy food to a school and implementation of a star rating system for healthier foods, with five stars for the healthiest option to a half a star for the unhealthiest. The stars system was developed in Australia and should motivate children to consume the healthier nutritional options. Each canteen should be allowed a minimum of 3.5 stars rating for the food provided. Outcome Measurement: Body-mass-index as an indicator of overweight and obesity should be checked at the beginning of the study annually for five years for all children. Another side measurement is the performance by checking the grades and a questionnaire on eating habits at the start of the study and yearly. Expected Outcome: A lower health-risk behaviour and assistance to children in reaching their potentials as they will adapt to eating healthier. Nutrition during childhood has the potential to prevent obesity, type 2 diabetes, dental diseases, hypertension and, in later life, cardiovascular disease, osteoporosis and a variety of cancers. In Australia NSW starting from 2016 is expecting a 5% reduction of childhood overweight and obesity by 2025. As for Saudi-Arabia, it is expected to have an, even more, reduction by 2023 as a lot of our children are canteen-dependent. Conclusion: Introducing healthy food in schools is a preventative method that would have significant influence on the reduction of the prevalence of obesity in Saudi-Arabia and improves its general health.Keywords: food, healthy, children, obesity, schools
Procedia PDF Downloads 1944561 Fracture Dislocation of Upper Sacrum in an Adolescent: Case Report and Review of Literature
Authors: S. Alireza Mirghasemi, Narges Rahimi Gabaran
Abstract:
Although sacral fractures in children are rare due to the fact that the occurrence of pelvic fracture is not common in childhood. Sacral fractures present a high risk of neurological damage. This kind of fracture is often missed because the routine pelvic X-rays imaging scarcely show this fracture. Also, the treatment is controversial, and it ranges from fine reduction to conservative treatments without any try to reduce the dislocation. In this article, a case of fracture dislocation of S1 and S2 along with a suggested diagnostic test and treatment based on similar cases are presented. The case investigates a 14-year-old boy who entered the hospital one week after a car accident that knocked him to the ground in crawling position and a rack fell down on his body. Pain and tenderness in the sacral region and a fracture in the left leg were notable--we detected incomplete bilateral palsy of L5, S1 and S2 roots. In radiographs of the spine fracture dislocation of S1, the sacral fracture was seen. The treatment included a skeletal traction with a halo over the patient’s head and two femoral pins. After one week, another surgery was performed in order to stabilize and reduce the fracture, and we employed a posterior approach with CD and a pedicular screw. After two years of follow-up, the fracture is completely cured without any loss of reduction.Keywords: adolescent, fracture in adolescent, fracture dislocation, sacrum
Procedia PDF Downloads 2924560 Study of the Efficacy of Cysteine Protease Inhibitors Alone or Combined with Praziquantel as Chemotherapy for Mice Schistosomiasis mansoni
Authors: Alyaa Ahmed Farid, Aida Ismail, Ibrahim Rabia, Azza Fahmy, Azza El Amir
Abstract:
This study was designed for assessment of 3 types of Cysteine protease inhibitors (CPIs) fluromethylketone (FMK), vinyl sulfone (VS) and sodium nitro prussid (SNP), to define which of them is the best? The experiments aimed to define the protective power of each inhibitor alone or combined with PZQ for curing S. mansoni infection in mice. In vitro, treated S. mansoni adult worms recorded a mortality rate after 1 hr of exposure to 500 ppm of FMK, VS and SNP as 75, 70 and 60%, while, treated cercaria recorded 75, 60 and 50%, respectively. FMK+PZQ treatment recorded the maximum reduction in worm burden (97.2% at 5 wk PI). VS treatment alone or combined with PZQ increases IgM, total IgG, IgG2 and IgG4 levels. In EM study of worm tegument, while only detachment of spines was observed in PZQ treated group, the completely implanted spines were reported in the degenerated tegument of adult worms in all groups treated with CPIs. Treatment with VS+PZQ increased Igs levels but, its effect was different on worm reduction. So, it is not enough to eliminate the infection and FMK+PZQ considered the antischistosomicidal drug of choice.Keywords: praziquantel, fluromethylketone, vinyl sulfone, worm burden, immunoglobulin pattern
Procedia PDF Downloads 3734559 New Insight into Fluid Mechanics of Lorenz Equations
Authors: Yu-Kai Ting, Jia-Ying Tu, Chung-Chun Hsiao
Abstract:
New physical insights into the nonlinear Lorenz equations related to flow resistance is discussed in this work. The chaotic dynamics related to Lorenz equations has been studied in many papers, which is due to the sensitivity of Lorenz equations to initial conditions and parameter uncertainties. However, the physical implication arising from Lorenz equations about convectional motion attracts little attention in the relevant literature. Therefore, as a first step to understand the related fluid mechanics of convectional motion, this paper derives the Lorenz equations again with different forced conditions in the model. Simulation work of the modified Lorenz equations without the viscosity or buoyancy force is discussed. The time-domain simulation results may imply that the states of the Lorenz equations are related to certain flow speed and flow resistance. The flow speed of the underlying fluid system increases as the flow resistance reduces. This observation would be helpful to analyze the coupling effects of different fluid parameters in a convectional model in future work.Keywords: Galerkin method, Lorenz equations, Navier-Stokes equations, convectional motion
Procedia PDF Downloads 3954558 Investigation on the Performance and Emission Characteristics of Biodiesel (Animal Oil): Ethanol Blends in a Single Cylinder Diesel Engine
Authors: A. Veeresh Babu, M. Vijay Kumar, P. Ravi Kumar, Katam Ganesh Babu
Abstract:
Biodiesel can be considered as a potential alternative fuel for compression ignition engines. These can be obtained from various resources. However, the usage of biodiesel in high percentage in compression ignition may cause some technical problems because of their higher viscosity, high pour point, and low volatility. Ethanol can be used as a fuel extender to enable use of higher percentage of biodiesel in CI engine. Blends of ethanol-animal fat oil biodiesel-diesel have been prepared and experimental study has been carried out. We have found that B40E20 fuel blend (40% biodiesel and 20 % ethanol in diesel) reduces the specific fuel consumption and improves brake thermal efficiency of engine compared to B40 fuel blend. We observed that fuel characteristics improved considerably with addition of ethanol to biodiesel. Emissions of CO, HC and smoke were reduced while CO2 emissions were increased because of more complete combustion of the blend.Keywords: diesel, biodiesel, ethanol, CI engine, engine performance, exhaust emission
Procedia PDF Downloads 7134557 Optimization of Surface Roughness by Taguchi’s Method for Turning Process
Authors: Ashish Ankus Yerunkar, Ravi Terkar
Abstract:
Study aimed at evaluating the best process environment which could simultaneously satisfy requirements of both quality as well as productivity with special emphasis on reduction of cutting tool flank wear, because reduction in flank wear ensures increase in tool life. The predicted optimal setting ensured minimization of surface roughness. Purpose of this paper is focused on the analysis of optimum cutting conditions to get lowest surface roughness in turning SCM 440 alloy steel by Taguchi method. Design for the experiment was done using Taguchi method and 18 experiments were designed by this process and experiments conducted. The results are analyzed using ANOVA method. Taguchi method has depicted that the depth of cut has significant role to play in producing lower surface roughness followed by feed. The Cutting speed has lesser role on surface roughness from the tests. The vibrations of the machine tool, tool chattering are the other factors which may contribute poor surface roughness to the results and such factors ignored for analyses. The inferences by this method will be useful to other researches for similar type of study and may be vital for further research on tool vibrations, cutting forces etc.Keywords: surface roughness (ra), machining, dry turning, taguchi method, turning process, anova method, mahr perthometer
Procedia PDF Downloads 3674556 Highly Active, Non-Platinum Metal Catalyst Material as Bi-Functional Air Cathode in Zinc Air Battery
Authors: Thirupathi Thippani, Kothandaraman Ramanujam
Abstract:
Current research on energy storage has been paid to metal-air batteries, because of attractive alternate energy source for the future. Metal – air batteries have the probability to significantly increase the power density, decrease the cost of energy storage and also used for a long time due to its high energy density, low-level pollution, light weight. The performance of these batteries mostly restricted by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on cathode during battery discharge and charge. The ORR and OER are conventionally carried out with precious metals (such as Pt) and metal oxides (such as RuO₂ and IrO₂) as catalysts separately. However, these metal-based catalysts are regularly undergoing some difficulties, including high cost, low selectivity, poor stability and unfavorable to environmental effects. So, in order to develop the active, stable, corrosion resistance and inexpensive bi-functional catalyst material is mandatory for the commercialization of zinc-air rechargeable battery technology. We have attempted and synthesized non-precious metal (NPM) catalysts comprising cobalt and N-doped multiwalled carbon nanotubes (N-MWCNTs-Co) were synthesized by the solid-state pyrolysis (SSP) of melamine with Co₃O₄. N-MWCNTs-Co acts as an excellent electrocatalyst for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), and hence can be used in secondary metal-air batteries and in unitized regenerative fuel cells. It is important to study the OER and ORR at high concentrations of KOH as most of the metal-air batteries employ KOH concentrations > 4M. In the first 16 cycles of the zinc-air battery while using N-MWCNTs-Co, 20 wt.% Pt/C or 20 wt.% IrO₂/C as air electrodes. In the ORR regime (the discharge profile of the zinc-air battery), the cell voltage exhibited by N-MWCNTs-Co was 44 and 83 mV higher (based on 5th cycle) in comparison to of 20 wt.% Pt/C and 20 wt.% IrO₂/C respectively. To demonstrate this promise, a zinc-air battery was assembled and tested at a current density of 0.5 Ag⁻¹ for charge-discharge 100 cycles.Keywords: oxygen reduction reaction (ORR), oxygen evolution reaction(OER), non-platinum, zinc air battery
Procedia PDF Downloads 2354555 Role of Honey Bees in Our Ecosystem
Authors: Akhter Hussain Najar
Abstract:
Honey bees are the best insect grown on earth and are taking the lead in the global ecosystem. Life on earth depends upon honey bees pollinating each and every flower in its reign. The global economy is balanced by providing financial attribute due to the use of valuable resources generated from honey bees like honey, royal jelly, bee venom, propolis, bee wax even queens from parent colonies is now in demand. Livelihood stability is also maintained by the rearing of honey bees; beekeeping became a new professional work to be cared for by the experts. Indigenous methodologies are used to rear honey bees. The rearing of honey bees showed variation in different states like Uttar Pradesh, Rajasthan, Haryana, Punjab, Jammu, Kashmir, etc. The production of honey depends upon the area and the availability of crops and the colonies of beekeepers in these states. However, the kind of honey from Jammu and Kashmir, like Accacia and Solai, has different color and odour from the honey generated in the rest of the states. However, the nature and viscosity vary from state to state. But in the last few years, the honey from Jammu and Kashmir has given different shapes when kept at room temperature due to unconditional rainfall during honey peak season in J&K.Keywords: ecosystem pollen, pollination, honey bee
Procedia PDF Downloads 1074554 Partially Aminated Polyacrylamide Hydrogel: A Novel Approach for Temporary Oil and Gas Well Abandonment
Authors: Hamed Movahedi, Nicolas Bovet, Henning Friis Poulsen
Abstract:
Following the advent of the Industrial Revolution, there has been a significant increase in the extraction and utilization of hydrocarbon and fossil fuel resources. However, a new era has emerged, characterized by a shift towards sustainable practices, namely the reduction of carbon emissions and the promotion of renewable energy generation. Given the substantial number of mature oil and gas wells that have been developed inside the petroleum reservoir domain, it is imperative to establish an environmental strategy and adopt appropriate measures to effectively seal and decommission these wells. In general, the cement plug serves as a material for plugging purposes. Nevertheless, there exist some scenarios in which the durability of such a plug is compromised, leading to the potential escape of hydrocarbons via fissures and fractures within cement plugs. Furthermore, cement is often not considered a practical solution for temporary plugging, particularly in the case of well sites that have the potential for future gas storage or CO2 injection. The Danish oil and gas industry has promising potential as a prospective candidate for future carbon dioxide (CO2) injection, hence contributing to the implementation of carbon capture strategies within Europe. The primary reservoir component consists of chalk, a rock characterized by limited permeability. This work focuses on the development and characterization of a novel hydrogel variant. The hydrogel is designed to be injected via a low-permeability reservoir and afterward undergoes a transformation into a high-viscosity gel. The primary objective of this research is to explore the potential of this hydrogel as a new solution for effectively plugging well flow. Initially, the synthesis of polyacrylamide was carried out using radical polymerization inside the confines of the reaction flask. Subsequently, with the application of the Hoffman rearrangement, the polymer chain undergoes partial amination, facilitating its subsequent reaction with the crosslinker and enabling the formation of a hydrogel in the subsequent stage. The organic crosslinker, glutaraldehyde, was employed in the experiment to facilitate the formation of a gel. This gel formation occurred when the polymeric solution was subjected to heat within a specified range of reservoir temperatures. Additionally, a rheological survey and gel time measurements were conducted on several polymeric solutions to determine the optimal concentration. The findings indicate that the gel duration is contingent upon the starting concentration and exhibits a range of 4 to 20 hours, hence allowing for manipulation to accommodate diverse injection strategies. Moreover, the findings indicate that the gel may be generated in environments characterized by acidity and high salinity. This property ensures the suitability of this substance for application in challenging reservoir conditions. The rheological investigation indicates that the polymeric solution exhibits the characteristics of a Herschel-Bulkley fluid with somewhat elevated yield stress prior to solidification.Keywords: polyacrylamide, hofmann rearrangement, rheology, gel time
Procedia PDF Downloads 784553 Investigating the Effects of Thermal and Surface Energy on the Two-Dimensional Flow Characteristics of Oil in Water Mixture between Two Parallel Plates: A Lattice Boltzmann Method Study
Abstract:
A hybrid quasi-steady thermal lattice Boltzmann model was used to study the combined effects of temperature and contact angle on the movement of slugs and droplets of oil in water (O/W) system flowing between two parallel plates. The model static contact angle due to the deposition of the O/W droplet on a flat surface with simulated hydrophilic characteristic at different fluid temperatures, matched very well the proposed theoretical calculation. Furthermore, the model was used to simulate the dynamic behavior of droplets and slugs deposited on the domain’s upper and lower surfaces, while subjected to parabolic flow conditions. The model accurately simulated the contact angle hysteresis for the dynamic droplets cases. It was also shown that at elevated temperatures the required power to transport the mixture diminished remarkably.Keywords: lattice Boltzmann method, Gunstensen model, thermal, contact angle, high viscosity ratio
Procedia PDF Downloads 3714552 Effect of Climate Change on Road Maintenance in Bangladesh
Authors: Mohammed Russedul Islam, Shah M. Muniruzzaman, M. Kamrul-Al-Masud, Syed Sadat Morshed
Abstract:
Bangladesh is one of the most climate vulnerable countries in the world. According to scientists it is predicted that temperature will raise 1-3% and precipitation 20% by 2050 in Bangladesh. Increased temperature and precipitation will deteriorate pavement structure in an accelerated rate. The study has found that pavement life will reduce significantly due to rise in temperature and precipitation in in a coastal road in Bangladesh. It will cause to increase the maintenance cost of the road. The study has found that reduction in pavement life will be caused due the decrease in stiffness and strength parameters of the pavement material due to high temperature and precipitation. It has found that use of new material costlier than the existing one will be necessary to prevent the reduction of pavement life. Eventually it will increase the re-construction cost of the road. The study has used mechanistic-empirical analysis method with a software GAMES (General analysis on multi-layered elastic systems) to find out the effect of temperature and precipitation rise on the pavement life. The study will help to guide road engineers of Bangladesh to prepare in advance to fight with the climate change effect.Keywords: climate change, maintenance cost, mechanistic-empirical method, pavement life
Procedia PDF Downloads 3734551 Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection
Authors: Vikas Kumar
Abstract:
The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. Thus, the obtained results are presented numerically and graphically in the paper.Keywords: axi-symmetric, ferrofluid, magnetic field, porous rotating disk
Procedia PDF Downloads 3974550 Non-Waste Utilization of Copper Smelting Slags for Production of Demanded Products
Authors: V. D. Povolockiy, V. E. Roshchin, Y. Kapelyushin
Abstract:
Smelting of copper matte is followed by production of a large amount of slag. This slag mostly contains silicates and can be utilized in a construction industry. In addition to silicates it also contains Fe; if the Fe content is high, the density of the silicate phases increases and such a slag cannot be used as an additive for the concrete. Furthermore, slags obtained during copper matte production contain copper, sulphur, zinc and some other elements. Fe is the element with the highest price in these slags. An extraction of Fe is possible even using the conventional methods, e.g., the addition of slag to the charge materials during production of sinter for the blast furnace smelting. However, in this case, the blast furnace hot metal would accumulate sulphur and copper which is very harmful impurity for the steelmaking. An accumulation of copper by the blast furnace hot metal is unacceptable, as copper cannot be removed during further steelmaking operations having a critical effect on the properties of steel. In present work, the technological scheme for non-waste utilization of the copper smelting slags has been suggested and experimentally confirmed. This scheme includes a solid state reduction of Fe and smelting for the separation of cast iron and slag. During solid state reduction, the zinc vapor was trapped. After the reduction and smelting operations, the cast iron containing copper was used for the production of metal balls with increased mechanical properties allowing their utilization for milling of ore minerals. Such a cast iron could also be applied in the production of special types of steel with copper. The silicate slag freed from Fe might be used as a propping agent in the oil industry, or granulated for application as an additive for concrete in a construction industry. Thereby, the suggested products for a Mini Mill plant with non-waste utilization of the copper smelting slags are cast iron grinding balls for the ore minerals, special types of steel with copper, silicate slag utilized as an additive for the concrete and propping agents for the oil industry.Keywords: utilization of copper slag, cast iron, grinding balls, propping agents
Procedia PDF Downloads 1584549 Dissociation of Hydrophobic Interactions in Whey Protein Polymers: Molecular Characterization Using Dilute Solution Viscometry
Authors: Ahmed S. Eissa
Abstract:
Whey represents about 85-95% of the milk volume and about 55% of milk nutrients. Whey proteins are of special importance in formulated foods due to their rich nutritional and functional benefits. Whey proteins form large polymers upon heating to a temperature greater than the denaturation temperature. Hydrophobic interactions play an important role in building whey protein polymers. In this study, dissociation of hydrophobic interactions of whey protein polymers was done by adding Sodium Dodecyl Sulphonate (SDS). At low SDS concentrations, protein polymers were dissociated to smaller chains, as revealed by dilution solution viscometry (DSV). Interestingly, at higher SDS concentrations, polymer molecules got larger in size. Intrinsic viscosity was increased to many folds when raising the SDS concentration from 0.5% to 2%. Complex molecular arrangement leads to the formation of larger macromolecules, due to micelle formation. The study opens a venue for manipulating and enhancing whey protein functional properties by manipulating the hydrophobic interactions.Keywords: whey proteins, hydrophobic interactions, SDS
Procedia PDF Downloads 2494548 Reduction of Specific Energy Consumption in Microfiltration of Bacillus velezensis Broth by Air Sparging and Turbulence Promoter
Authors: Jovana Grahovac, Ivana Pajcin, Natasa Lukic, Jelena Dodic, Aleksandar Jokic
Abstract:
To obtain purified biomass to be used in the plant pathogen biocontrol or as soil biofertilizer, it is necessary to eliminate residual broth components at the end of the fermentation process. The main drawback of membrane separation techniques is permeate flux decline due to the membrane fouling. Fouling mitigation measures increase the pressure drop along membrane channel due to the increased resistance to flow of the feed suspension, thus increasing the hydraulic power drop. At the same time, these measures lead to an increase in the permeate flux due to the reduced resistance of the filtration cake on the membrane surface. Because of these opposing effects, the energy efficiency of fouling mitigation measures is limited, and the justification of its application is provided by information on a reducing specific energy consumption compared to a case without any measures employed. In this study, the influence of static mixer (Kenics) and air-sparging (two-phase flow) on reduction of specific energy consumption (ER) was investigated. Cultivation Bacillus velezensis was carried out in the 3-L bioreactor (Biostat® Aplus) containing 2 L working volume with two parallel Rushton turbines and without internal baffles. Cultivation was carried out at 28 °C on at 150 rpm with an aeration rate of 0.75 vvm during 96 h. The experiments were carried out in a conventional cross-flow microfiltration unit. During experiments, permeate and retentate were recycled back to the broth vessel to simulate continuous process. The single channel ceramic membrane (TAMI Deutschland) used had a nominal pore size 200 nm with the length of 250 mm and an inner/external diameter of 6/10 mm. The useful membrane channel surface was 4.33×10⁻³ m². Air sparging was brought by the pressurized air connected by a three-way valve to the feed tube by a simple T-connector without diffusor. The different approaches to flux improvement are compared in terms of energy consumption. Reduction of specific energy consumption compared to microfiltration without fouling mitigation is around 49% and 63%, for use of two-phase flow and a static mixer, respectively. In the case of a combination of these two fouling mitigation methods, ER is 60%, i.e., slightly lower compared to the use of turbulence promoter alone. The reason for this result can be found in the fact that flux increase is more affected by the presence of a Kenics static mixer while sparging results in an increase of energy used during microfiltration. By comparing combined method with turbulence promoter flux enhancement method ER is negative (-7%) which can be explained by increased power consumption for air flow with moderate contribution to the flux increase. Another confirmation for this fact can be found by comparing energy consumption values for combined method with energy consumption in the case of two-phase flow. In this instance energy reduction (ER) is 22% that demonstrates that turbulence promoter is more efficient compared to two phase flow. Antimicrobial activity of Bacillus velezensis biomass against phytopathogenic isolates Xanthomonas campestris was preserved under different fouling reduction methods.Keywords: Bacillus velezensis, microfiltration, static mixer, two-phase flow
Procedia PDF Downloads 1184547 Date Pits Oil Used as Potential Source for Synthesizing Jet Fuel and Green Diesel Fractions
Authors: Farrukh Jamil, Ala'a H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai
Abstract:
Date pits are major agricultural waste produced in Oman. Current work was conducted to produce jet fuel and green diesel from hydrodeoxygenation of Date pits oil in the presence of Pd/C catalyst. The hydrodeoxygenation of Date pits oil occurred to be highly efficient at following mild operating conditions such as conditions temperature 300°C pressure 10bar with continuous stirring at 500rpm. Detailed product characterization revealed that large fraction of paraffinic hydrocarbons was found which accounts up to 91.1 % which attributed due to efficient hydrodeoxygenation. Based on the type of components in product oil, it was calculated that the maximum fraction of hydrocarbons formed lies within the range of green diesel 72.0 % then jet fuel 30.4% by using Pd/C catalysts. The densities of product oil were 0.88 kg/m³, the viscosity of products calculated was 3.49 mm²/s. Calorific values for products obtained were 44.11 MJ/kg when Pd/C catalyst was used for hydrodeoxygenation. Based on products analysis it can conclude that Date pits oil could successfully utilize for synthesizing green diesel and jet fuel fraction.Keywords: biomass, jet fuel, green diesel, catalyst
Procedia PDF Downloads 2944546 Inhibition of Crystallization Lithiasis Phosphate (Struvite) by Extracts Zea mays
Authors: N. Benahmed, A. Cheriti
Abstract:
Kidney stones of infectious origin, in particular, the phosphate amoniaco-magnesian hexahydrate or struvite are one of the risk factors that most often leads of renal insufficiency. Many plants species, described in pharmacopoeias of several countries is used as a remedy for urinary stones, the latter is a disease resulting from the presence of stones in the kidneys or urinary tract. Our research is based on the existing relationship between the effect of extracts of medicinal plant used for the cure of urinary tract diseases in the region of Algeria south-west on urolithiasis especially Ammonium-Magnesium Phosphate Hexahydrate (Struvite). We have selected Zea mays L. (POACEAE) for this study. On the first stage, we have studied the crystallisation of struvite 'in vitro' without inhibitors, after we have compared to crystallization with inhibitors. Most of The organic and aqueous extracts of this plant give an effect on the crystal size of struvite. It is a very significant reduction in the size of the crystals of struvite in the presence of hexane and ethanol extract (12 to 5-6 μm). We’ve observed a decrease in the size of the aggregates in the presence of all the extracts. This reduction is important for the aqueous, acetone and chloroform extract (45 to 10-16μm). Finally, a deep study was conducted on the effective extract of Zea mays L.; for determine the influence of inhibitory phytochemical compounds.Keywords: medicinal plants, struvite, urolithiasis, zea mays
Procedia PDF Downloads 4504545 Establish Co-Culture System of Dehalococcoides and Sulfate-Reducing Bacteria to Generate Ferrous Sulfide for Reversing Sulfide-Inhibited Reductive Dechlorination
Authors: Po-Sheng Kuo, Che-Wei Lu, Ssu-Ching Chen
Abstract:
Chlorinated ethenes (CEs) constitute a predominant contaminant in Taiwan's native polluted sites, particularly in groundwater inundated with sulfate salts that substantially impede remediation efforts. The reduction of sulfate by sulfate-reducing bacteria (SRB) impairs the dechlorination efficiency of Dehalococcoides by generating hydrogen sulfide (H₂S), resulting in incomplete chloride degradation and thereby leading to the failure of bioremediation. In order to elucidate interactions between sulfate reduction and dechlorination, this study aims to establish a co-culture system of Dehalococcoides and SRB, overcoming H₂S inhibition by employing the synthesis of ferrous sulfide (FeS), which is commonly utilized in chemical remediation due to its high reduction potential. Initially, the study demonstrates that the addition of ferrous chloride (FeCl₂) effectively removed H₂S production from SRB and enhanced the degradation of trichloroethylene to ethene. This process overcomes the inhibition caused by H₂S produced by SRB in high sulfate environments. Compared to different concentrations of ferrous dosages for the biogenic generation of FeS, the efficiency was optimized by adding FeCl₂ at an equal ratio to the concentration of sulfate in the environment. This was more effective in removing H₂S and crystal particles under 10 times smaller than those synthesized under excessive FeCl₂ dosages, addressing clogging issues in situ remediation. Finally, utilizing Taiwan's indigenous dechlorinating consortium in a simulated high sulfate-contaminated environment, the biodiversity of microbial species was analyzed to reveal a higher species richness within the FeS group, conducive to ecological stability. This study validates the potential of the co-culture system in generating biogenic FeS under sulfate and CEs co-contamination, removing sulfate-reducing products, and improving CE remediation through integrated chemical and biological remediations.Keywords: biogenic ferrous sulfide, chlorinated ethenes, Dehalococcoides, sulfate-reducing bacteria, sulfide inhibition
Procedia PDF Downloads 524544 Migration as a Climate Change Adaptation Strategy: A Conceptual Equation for Analysis
Authors: Elisha Kyirem
Abstract:
Undoubtedly, climate change is a major global challenge that could threaten the very foundation upon which life on earth is anchored, with its impacts on human mobility attracting the attention of policy makers and researchers. There is an increasing body of literature and case studies suggesting that migration could be a way through which the vulnerable move away from areas exposed to climate extreme events to improve their lives and that of their families. This presents migration as a way through which people voluntarily move to seek opportunities that could help reduce their exposure and avoid danger from climate events. Thus, migration is seen as a proactive adaptation strategy aimed at building resilience and improving livelihoods to enable people to adapt to future changing events. However, there has not been any mathematical equation linking migration and climate change adaptation. Drawing from literature in development studies, this paper develops an equation that seeks to link the relationship between migration and climate change adaptation. The mathematical equation establishes the linkages between migration, resilience, poverty reduction and vulnerability, and these the paper maintains, are the key variables for conceptualizing the migration-climate change adaptation nexus. The paper then tests the validity of the equation using the sustainable livelihood framework and publicly available data on migration and tourism in Ghana.Keywords: migration, adaptation, climate change, adaptation, poverty reduction
Procedia PDF Downloads 3974543 A Study on the Influence of Internal Sulfate on the Properties of Self-Compacting Concrete
Authors: Abbas S. Al-Ameeri Rawaa H. Issa
Abstract:
The internal sulfate attack is considered as a very important problem of concrete manufacture in Iraq and Middle East countries. Sulfate drastically influences the properties of concrete. This experimental study is aimed at investigating the effect of internal sulfates on fresh and some of the hardened properties of self compacting concrete (SCC) made from locally available materials. Tests were conducted on five mixes, with five SO3 levels (3.9, 5, 6, 7 and 8) (% by wt. of cement). The last four SO3 levels are outside the limits of the Iraqi specifications (IQS NO.45/1984). The results indicated that sulfate passively influenced the fresh properties such as decreased workability, and effect on hardened properties of the self compacting concrete. Also, the result indicated the optimum SO3 content which gives maximum strength and little tendency to expanding, which showed up at a content equal to 5% (by wt of cement), is more than acceptable limits of Iraqi specifications. Further increase in sulfates content in concrete after this optimum value showed a considerable reduction in mechanical properties of self-compacting concrete, and increment in expansion of concrete. The percentages of reduction in compressive strength, splitting tensile strength, flexural strength, static modulus of elasticity and ultrasonic pulse velocity at their later age were ranged between 10.89-36.14%, 12.90-33.33%, 7.98-36.35%, 16.36 -38.37% and 1.03-10.88% respectively.Keywords: self-compacting concrete, sulfate attack, internal sulfate attack, fresh properties, harden properties, optimum SO3 content
Procedia PDF Downloads 270