Search results for: virtual machine migration
4030 Development of Personal and Social Identity in Immigrant Deaf Adolescents
Authors: Marialuisa Gennari, Giancarlo Tamanza, Ilaria Montanari
Abstract:
Identity development in adolescence is characterized by many risks and challenges, and becomes even more complex by the situation of migration and deafness. In particular, the condition of the second generation of migrant adolescents involves the comparison between the family context in which everybody speaks a language and deals with a specific culture (usually parents’ and relatives’ original culture), the social context (school, peer groups, sports groups), where a foreign language is spoken and a new culture is faced, and finally in the context of the “deaf” world. It is a dialectic involving unsolved differences that have to be treated in a discontinuous process, which will give complex outcomes and chances depending on the process of elaboration of the themes of growth and development, culture and deafness. This paper aims to underline the problems and opportunities for each issue which immigrant deaf adolescents must deal with. In particular, it will highlight the importance of a multifactorial approach for the analysis of personal resources (both intra-psychic and relational); the level of integration of the family of origin in the migration context; the elaboration of the migration event, and finally, the tractability of the condition of deafness. Some psycho-educational support objectives will be also highlighted for the identity development of deaf immigrant adolescents, with particular emphasis on the construction of the adolescents’ useful abilities to decode complex emotions, to develop self-esteem and to get critical thoughts about the inevitable attempts to build their identity. Remarkably, and of importance, the construction of flexible settings which support adolescents in a supple, “decentralized” way in order to avoid the regressive defenses that do not allow for the development of an authentic self.Keywords: immigrant deaf adolescents, identity development, personal and social challenges, psycho-educational support
Procedia PDF Downloads 2634029 Induction Motor Eccentricity Fault Recognition Using Rotor Slot Harmonic with Stator Current Technique
Authors: Nouredine Benouzza, Ahmed Hamida Boudinar, Azeddine Bendiabdellah
Abstract:
An algorithm for Eccentricity Fault Detection (EFD) applied to a squirrel cage induction machine is proposed in this paper. This algorithm employs the behavior of the stator current spectral analysis and the localization of the Rotor Slot Harmonic (RSH) frequency to detect eccentricity faults in three phase induction machine. The RHS frequency once obtained is used as a key parameter into a simple developed expression to directly compute the eccentricity fault frequencies in the induction machine. Experimental tests performed for both a healthy motor and a faulty motor with different eccentricity fault severities illustrate the effectiveness and merits of the proposed EFD algorithm.Keywords: squirrel cage motor, diagnosis, eccentricity faults, current spectral analysis, rotor slot harmonic
Procedia PDF Downloads 4894028 Virtual Reality in COVID-19 Stroke Rehabilitation: Preliminary Outcomes
Authors: Kasra Afsahi, Maryam Soheilifar, S. Hossein Hosseini
Abstract:
Background: There is growing evidence that Cerebral Vascular Accident (CVA) can be a consequence of Covid-19 infection. Understanding novel treatment approaches are important in optimizing patient outcomes. Case: This case explores the use of Virtual Reality (VR) in the treatment of a 23-year-old COVID-positive female presenting with left hemiparesis in August 2020. Imaging showed right globus pallidus, thalamus, and internal capsule ischemic stroke. Conventional rehabilitation was started two weeks later, with virtual reality (VR) included. This game-based virtual reality (VR) technology developed for stroke patients was based on upper extremity exercises and functions for stroke. Physical examination showed left hemiparesis with muscle strength 3/5 in the upper extremity and 4/5 in the lower extremity. The range of motion of the shoulder was 90-100 degrees. The speech exam showed a mild decrease in fluency. Mild lower lip dynamic asymmetry was seen. Babinski was positive on the left. Gait speed was decreased (75 steps per minute). Intervention: Our game-based VR system was developed based on upper extremity physiotherapy exercises for post-stroke patients to increase the active, voluntary movement of the upper extremity joints and improve the function. The conventional program was initiated with active exercises, shoulder sanding for joint ROMs, walking shoulder, shoulder wheel, and combination movements of the shoulder, elbow, and wrist joints, alternative flexion-extension, pronation-supination movements, Pegboard and Purdo pegboard exercises. Also, fine movements included smart gloves, biofeedback, finger ladder, and writing. The difficulty of the game increased at each stage of the practice with progress in patient performances. Outcome: After 6 weeks of treatment, gait and speech were normal and upper extremity strength was improved to near normal status. No adverse effects were noted. Conclusion: This case suggests that VR is a useful tool in the treatment of a patient with covid-19 related CVA. The safety of newly developed instruments for such cases provides new approaches to improve the therapeutic outcomes and prognosis as well as increased satisfaction rate among patients.Keywords: covid-19, stroke, virtual reality, rehabilitation
Procedia PDF Downloads 1414027 Enhanced Automated Teller Machine Using Short Message Service Authentication Verification
Authors: Rasheed Gbenga Jimoh, Akinbowale Nathaniel Babatunde
Abstract:
The use of Automated Teller Machine (ATM) has become an important tool among commercial banks, customers of banks have come to depend on and trust the ATM conveniently meet their banking needs. Although the overwhelming advantages of ATM cannot be over-emphasized, its alarming fraud rate has become a bottleneck in it’s full adoption in Nigeria. This study examined the menace of ATM in the society another cost of running ATM services by banks in the country. The researcher developed a prototype of an enhanced Automated Teller Machine Authentication using Short Message Service (SMS) Verification. The developed prototype was tested by Ten (10) respondents who are users of ATM cards in the country and the data collected was analyzed using Statistical Package for Social Science (SPSS). Based on the results of the analysis, it is being envisaged that the developed prototype will go a long way in reducing the alarming rate of ATM fraud in Nigeria.Keywords: ATM, ATM fraud, e-banking, prototyping
Procedia PDF Downloads 3224026 The Applicability of General Catholic Canon Law during the Ongoing Migration Crisis in Hungary
Authors: Lorand Ujhazi
Abstract:
The vast majority of existing canonical studies about migration are focused on examining the general pastoral and legal regulations of the Catholic Church. The weakness of this approach is that it ignores a number of important factors; like the financial, legal and personal circumstances of a particular church or the canonical position of certain organizations which actually look after the immigrants. This paper is a case study, which analyses the current and historical migration related policies and activities of the Catholic Church in Hungary. To achieve this goal the study uses canon law, historical publications, various instructions and communications issued by church superiors, Hungarian and foreign media reports and the relevant Hungarian legislation. The paper first examines how the Hungarian Catholic Church assisted migrants like Armenians fleeing from the Ottoman Empire, Poles escaping during the Second World War, East German and Romanian citizens in the 1980s and refugees from the former Yugoslavia in the 1990s. These events underline the importance of past historical experience in the development of contemporary pastoral and humanitarian policy of the Catholic Church in Hungary. Then the paper turns to the events of the ongoing crisis by describing the unique challenges faced by churches in transit countries like Hungary. Then the research contrasts these findings with the typical responsibilities of churches in countries which are popular destinations for immigrants. The next part of the case study focuses on the changes to the pre-crisis legal and canonical framework which influenced the actions of hierarchical and charity organizations in Hungary. Afterwards, the paper illustrates the dangers of operating in an unclear legal environment, where some charitable activities of the church like a fundraising campaign may be interpreted as a national security risk by state authorities. Then the paper presents the reactions of Hungarian academics to the current migration crisis and finally it offers some proposals how to improve parts of Canon Law which govern immigration. The conclusion of the paper is that during the formulation of the central refugee policy of the Catholic Church decision makers must take into consideration the peculiar circumstances of its particular churches. This approach may prevent disharmony between the existing central regulations, the policy of the Vatican and the operations of the local church organizations.Keywords: canon law, Catholic Church, civil law, Hungary, immigration, national security
Procedia PDF Downloads 3084025 Efficiency of Google Translate and Bing Translator in Translating Persian-to-English Texts
Authors: Samad Sajjadi
Abstract:
Machine translation is a new subject increasingly being used by academic writers, especially students and researchers whose native language is not English. There are numerous studies conducted on machine translation, but few investigations have assessed the accuracy of machine translation from Persian to English at lexical, semantic, and syntactic levels. Using Groves and Mundt’s (2015) Model of error taxonomy, the current study evaluated Persian-to-English translations produced by two famous online translators, Google Translate and Bing Translator. A total of 240 texts were randomly selected from different academic fields (law, literature, medicine, and mass media), and 60 texts were considered for each domain. All texts were rendered by the two translation systems and then by four human translators. All statistical analyses were applied using SPSS. The results indicated that Google translations were more accurate than the translations produced by the Bing Translator, especially in the domains of medicine (lexis: 186 vs. 225; semantic: 44 vs. 48; syntactic: 148 vs. 264 errors) and mass media (lexis: 118 vs. 149; semantic: 25 vs. 32; syntactic: 110 vs. 220 errors), respectively. Nonetheless, both machines are reasonably accurate in Persian-to-English translation of lexicons and syntactic structures, particularly from mass media and medical texts.Keywords: machine translations, accuracy, human translation, efficiency
Procedia PDF Downloads 784024 Systematic and Meta-Analysis of Navigation in Oral and Maxillofacial Trauma and Impact of Machine Learning and AI in Management
Authors: Shohreh Ghasemi
Abstract:
Introduction: Managing oral and maxillofacial trauma is a multifaceted challenge, as it can have life-threatening consequences and significant functional and aesthetic impact. Navigation techniques have been introduced to improve surgical precision to meet this challenge. A machine learning algorithm was also developed to support clinical decision-making regarding treating oral and maxillofacial trauma. Given these advances, this systematic meta-analysis aims to assess the efficacy of navigational techniques in treating oral and maxillofacial trauma and explore the impact of machine learning on their management. Methods: A detailed and comprehensive analysis of studies published between January 2010 and September 2021 was conducted through a systematic meta-analysis. This included performing a thorough search of Web of Science, Embase, and PubMed databases to identify studies evaluating the efficacy of navigational techniques and the impact of machine learning in managing oral and maxillofacial trauma. Studies that did not meet established entry criteria were excluded. In addition, the overall quality of studies included was evaluated using Cochrane risk of bias tool and the Newcastle-Ottawa scale. Results: Total of 12 studies, including 869 patients with oral and maxillofacial trauma, met the inclusion criteria. An analysis of studies revealed that navigation techniques effectively improve surgical accuracy and minimize the risk of complications. Additionally, machine learning algorithms have proven effective in predicting treatment outcomes and identifying patients at high risk for complications. Conclusion: The introduction of navigational technology has great potential to improve surgical precision in oral and maxillofacial trauma treatment. Furthermore, developing machine learning algorithms offers opportunities to improve clinical decision-making and patient outcomes. Still, further studies are necessary to corroborate these results and establish the optimal use of these technologies in managing oral and maxillofacial traumaKeywords: trauma, machine learning, navigation, maxillofacial, management
Procedia PDF Downloads 584023 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy
Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh
Abstract:
Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography
Procedia PDF Downloads 1564022 A Scoping Study and Stakeholder Consultation on Mental Health Determinants among Arab Immigrants and Refugees in North America
Authors: Sarah Elshahat, Tina Moffat
Abstract:
Suboptimal mental health is a considerable global public health challenge that leads to considerable inequalities worldwide. Newcomers are at elevated risk for developing mental health issues as a result of social exclusion, stigmatization, racism, unequal employment opportunities, and discrimination. The problem can be especially serious amongst Arabic-speaking immigrants and refugees (ASIR) whose mental wellness may have already been affected by exposure to political violence, persecution, hunger or war in their countries of origin. A scoping review was conducted to investigate pre- and post-migration mental health determinants amongst ASIR in North America (the U.S. and Canada), who are a rapidly growing population in both regions. Pertinent peer-reviewed papers and grey literature were located through a systematic search of five electronic databases (Medline, Embase, PsycINFO, Anthropology Plus, and Sociology Database). A stakeholder consultation was implemented to validate the analyzed findings of the included 44 studies. About 80% of the studies were carried out in the US, underscoring a lack of Canadian ASIR-mental health research. A gap in qualitative, mixed-method, and longitudinal research was detected, where approximately two-thirds of the studies adopted a cross-sectional method. Pre-migration determinants of mental health were related to the political unrest, violence and armed conflict in the Arab world, increasing post-traumatic stress disorder and psychological distress levels among ASIR. English language illiteracy and generational variations in acculturation patterns were major post-migration mental health triggering factors. Exposure to domestic violence, stigmatization, poverty, racialization, and harassment were significant post-migration mental health determinants that stem from social inequalities, triggering depression, and distress amongst ASIR. Family conflicts linked to child-rearing and gendered norms were considered as both pre- and post-migration mental health triggering factors. Most post-migration mental health protective factors were socio-culturally related and included the maintenance of positive ethnic identity, faith, family support, and community cohesion. Individual resilience, articulated as self-esteem and hope, was a significant negative predictor of depression and psychological distress among ASIR. Community-engaged, mixed-methods, and longitudinal studies are required to address the current gap in mental health research among ASIR in North America. A more thorough determination of potential mental health triggers and protective factors would help inform the development of mental wellness and resilience-promoting programs that are culturally sensitive to ASIR. On the policy level, the Health in All Policies framework of the World Health Organization can be potentially useful for addressing social and health inequalities among ASIR, reducing mental health challenges.Keywords: depression, post-traumatic stress disorder, psychological distress, resilience
Procedia PDF Downloads 1364021 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 1574020 Gilgel Gibe III: Dam-Induced Displacement in Ethiopia and Kenya
Authors: Jonny Beirne
Abstract:
Hydropower developments have come to assume an important role within the Ethiopian government's overall development strategy for the country during the last ten years. The Gilgel Gibe III on the Omo river, due to become operational in September 2014, represents the most ambitious, and controversial, of these projects to date. Further aspects of the government's national development strategy include leasing vast areas of designated 'unused' land for large-scale commercial agricultural projects and 'voluntarily' villagizing scattered, semi-nomadic agro-pastoralist groups to centralized settlements so as to use land and water more efficiently and to better provide essential social services such as education and healthcare. The Lower Omo valley, along the Omo River, is one of the sites of this villagization programme as well as of these large-scale commercial agricultural projects which are made possible owing to the regulation of the river's flow by Gibe III. Though the Ethiopian government cite many positive aspects of these agricultural and hydropower developments there are still expected to be serious regional and transnational effects, including on migration flows, in an area already characterized by increasing climatic vulnerability with attendant population movements and conflicts over scarce resources. The following paper is an attempt to track actual and anticipated migration flows resulting from the construction of Gibe III in the immediate vicinity of the dam, downstream in the Lower Omo Valley and across the border in Kenya around Lake Turkana. In the case of those displaced in the Lower Omo Valley, this will be considered in view of the distinction between voluntary villagization and forced resettlement. The research presented is not primary-source material. Instead, it is drawn from the reports and assessments of the Ethiopian government, rights-based groups, and academic researchers as well as media articles. It is hoped that this will serve to draw greater attention to the issue and encourage further methodological research on the dynamics of dam constructions (and associated large-scale irrigation schemes) on migration flows and on the ultimate experience of displacement and resettlement for environmental migrants in the region.Keywords: forced displacement, voluntary resettlement, migration, human rights, human security, land grabs, dams, commercial agriculture, pastoralism, ecosystem modification, natural resource conflict, livelihoods, development
Procedia PDF Downloads 3814019 The Judiciary as Pacemaker? Considering the Role of Courts in an Expansion of Protection for War Refugees and People Fleeing Natural Disasters
Authors: Charlotte Lülf
Abstract:
Migration flows, resulting from war, climate change or economic crisis cannot be tackled by single states but need to be addressed as a transnational and international responsibility. The traditional architecture surrounding the work of the UNHCR and the 1951 Convention, however, is not equipped to deal with these challenges. Widely excluded from legal protection are people not individually persecuted for the statutory criteria, people that flee from the indiscriminate effects of an armed conflict as well as people fleeing natural disasters. With the lack of explicit legal protection and the political reluctance of nation states worldwide to extend their commitment in new asylum laws, the judiciary must be put in focus: it plays a unique role in interpreting and potentially expanding the application of existing regulations. This paper as part of an ongoing Ph.D. Project deals with the current and partly contradicting approaches to the protection of war- and climate refugees. Changing jurisprudential practice of national and regional courts will be assessed, as will be their dialogue to interpret the international obligations of human rights law, migration laws, and asylum laws in an interacting world. In recent judgments refoulment to an armed conflict as well as countries without adequate disaster relief or health care was argued as violating fundamental human and asylum law rights and therefore prohibited – even for applicants without refugee status: The first step towards access to subsidiary protection could herewith be established. Can one observe similar developments in other parts of the world? This paper will evaluate the role of the judiciary to define, redefine and potentially expand protection for people seeking refuge from armed conflicts and natural disasters.Keywords: human rights law, asylum-seekers, displacement, migration
Procedia PDF Downloads 2754018 Virtual Simulation as a Teaching Method for Community Health Nursing: An Investigation of Student Performance
Authors: Omar Mayyas
Abstract:
Clinical decision-making (CDM) is essential to community health nursing (CHN) education. For this reason, nursing educators are responsible for developing these skills among nursing students because nursing students are exposed to highly critical conditions after graduation. However, due to limited exposure to real-world situations, many nursing students need help developing clinical decision-making skills in this area. Therefore, the impact of Virtual Simulation (VS) on community health nursing students' clinical decision-making in nursing education has to be investigated. This study aims to examine the difference in CDM ability among CHN students who received traditional education compared to those who received VS classes, to identify the factors that may influence CDM ability differences between CHN students who received a traditional education and VS classes, and to provide recommendations for educational programs that can enhance the CDM ability of CHN students and improve the quality of care provided in community settings. A mixed-method study will conduct. A randomized controlled trial will compare the CDM ability of CHN students who received 1hr traditional class with another group who received 1hr VS scenario about diabetic patient nursing care. Sixty-four students in each group will randomly select to be exposed to the intervention from undergraduate nursing students who completed the CHN course at York University. The participants will receive the same Clinical Decision Making in Nursing Scale (CDMNS) questionnaire. The study intervention will follow the Medical Research Council (MRC) approach. SPSS and content analysis will use for data analysis.Keywords: clinical decision-making, virtual simulation, community health nursing students, community health nursing education
Procedia PDF Downloads 674017 Design and Implementation a Virtualization Platform for Providing Smart Tourism Services
Authors: Nam Don Kim, Jungho Moon, Tae Yun Chung
Abstract:
This paper proposes an Internet of Things (IoT) based virtualization platform for providing smart tourism services. The virtualization platform provides a consistent access interface to various types of data by naming IoT devices and legacy information systems as pathnames in a virtual file system. In the other words, the IoT virtualization platform functions as a middleware which uses the metadata for underlying collected data. The proposed platform makes it easy to provide customized tourism information by using tourist locations collected by IoT devices and additionally enables to create new interactive smart tourism services focused on the tourist locations. The proposed platform is very efficient so that the provided tourism services are isolated from changes in raw data and the services can be modified or expanded without changing the underlying data structure.Keywords: internet of things (IoT), IoT platform, serviceplatform, virtual file system (VSF)
Procedia PDF Downloads 5024016 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms
Authors: Sekkal Nawel, Mahammed Nadir
Abstract:
The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network
Procedia PDF Downloads 674015 On the Efficiency of a Double-Cone Gravitational Motor and Generator
Authors: Barenten Suciu, Akio Miyamura
Abstract:
In this paper, following the study-case of an inclined plane gravitational machine, efficiency of a double-cone gravitational motor and generator is evaluated. Two types of efficiency ratios, called translational efficiency and rotational efficiency, are defined relative to the intended duty of the gravitational machine, which can be either the production of translational kinetic energy, or rotational kinetic energy. One proved that, for pure rolling movement of the double- cone, in the absence of rolling friction, the total mechanical energy is conserved. In such circumstances, as the motion of the double-cone progresses along rails, the translational efficiency decreases and the rotational efficiency increases, in such way that sum of the rotational and translational efficiencies remains unchanged and equal to 1. Results obtained allow a comparison of the gravitational machine with other types of motor-generators, in terms of the achievable efficiency.Keywords: efficiency, friction, gravitational motor and generator, rolling and sliding, truncated double-cone
Procedia PDF Downloads 2894014 Biopolitical Border Imagery during the European Migrant Crisis: A Comparative Discourse Analysis between Mediterranean Europe and the Balkans
Authors: Mira Kaneva
Abstract:
The ongoing migration crisis polemic opens up the debate to the ambivalent essence of borders due to both the legality and legitimacy of the displacement of vast masses of people across the European continent. In neoliberal terms, migration is seen as an economic opportunity, or, on the opposite, as a social disparity; in realist terms, it is regarded as a security threat that calls for mobilization; from a critical standpoint, it is a matter of discourse on democratic governance. This paper sets the objective of analyzing borders through the Foucauldian prism of biopolitics. It aims at defining the specifics of the management of the human body by producing both the irregular migrant as a subject (but prevalently as an object in the discourse) and the political subjectivity by exercising state power in repressive practices, including hate speech. The study relies on the conceptual framework of Bigo, Agamben, Huysmans, among others, and applies the methodology of qualitative comparative analysis between the cases of borders (fences, enclaves, camps and other forms of abnormal spatiality) in Italy, Spain, Greece, the Republic of Macedonia, Serbia and Bulgaria. The paper thus tries to throw light on these cross- and intra-regional contexts that share certain similarities and differences. It tries to argue that the governmentality of the masses of refugees and economic immigrants through the speech acts of their exclusion leads to a temporary populist backlash; a tentative finding is that the status-quo in terms of social and economic measures remains relatively balanced, whereas, values such as freedom, openness, and tolerance are consecutively marginalized.Keywords: Balkans, biopolitical borders, cross- and intra-regional discourse analysis, irregular migration, Mediterranean Europe, securitization vs. humanitarianism
Procedia PDF Downloads 2144013 The Effects of Lighting Environments on the Perception and Psychology of Consumers of Different Genders in a 3C Retail Store
Authors: Yu-Fong Lin
Abstract:
The main purpose of this study is to explore the impact of different lighting arrangements that create different visual environments in a 3C retail store on the perception, psychology, and shopping tendencies of consumers of different genders. In recent years, the ‘emotional shopping’ model has been widely accepted in the consumer market; in addition to the emotional meaning and value of a product, the in-store ‘shopping atmosphere’ has also been increasingly regarded as significant. The lighting serves as an important environmental stimulus that influences the atmosphere of a store. Altering the lighting can change the color, the shape, and the atmosphere of a space. A successful retail lighting design can not only attract consumers’ attention and generate their interest in various goods, but it can also affect consumers’ shopping approach, behavior, and desires. 3C electronic products have become mainstream in the current consumer market. Consumers of different genders may demonstrate different behaviors and preferences within a 3C store environment. This study tests the impact of a combination of lighting contrasts and color temperatures in a 3C retail store on the visual perception and psychological reactions of consumers of different genders. The research design employs an experimental method to collect data from subjects and then uses statistical analysis adhering to a 2 x 2 x 2 factorial design to identify the influences of different lighting environments. This study utilizes virtual reality technology as the primary method by which to create four virtual store lighting environments. The four lighting conditions are as follows: high contrast/cool tone, high contrast/warm tone, low contrast/cool tone, and low contrast/warm tone. Differences in the virtual lighting and the environment are used to test subjects’ visual perceptions, emotional reactions, store satisfaction, approach-avoidance intentions, and spatial atmosphere preferences. The findings of our preliminary test indicate that female subjects have a higher pleasure response than male subjects in a 3C retail store. Based on the findings of our preliminary test, the researchers modified the contents of the questionnaires and the virtual 3C retail environment with different lighting conditions in order to conduct the final experiment. The results will provide information about the effects of retail lighting on the environmental psychology and the psychological reactions of consumers of different genders in a 3C retail store lighting environment. These results will enable useful practical guidelines about creating 3C retail store lighting and atmosphere for retailers and interior designers to be established.Keywords: 3C retail store, environmental stimuli, lighting, virtual reality
Procedia PDF Downloads 3904012 The Logistics Equation and Fractal Dimension in Escalators Operations
Authors: Ali Albadri
Abstract:
The logistics equation has never been used or studied in scientific fields outside the field of ecology. It has never been used to understand the behavior of a dynamic system of mechanical machines, like an escalator. We have studied the compatibility of the logistic map against real measurements from an escalator. This study has proven that there is good compatibility between the logistics equation and the experimental measurements. It has discovered the potential of a relationship between the fractal dimension and the non-linearity parameter, R, in the logistics equation. The fractal dimension increases as the R parameter (non-linear parameter) increases. It implies that the fractal dimension increases as the phase of the life span of the machine move from the steady/stable phase to the periodic double phase to a chaotic phase. The fractal dimension and the parameter R can be used as a tool to verify and check the health of machines. We have come up with a theory that there are three areas of behaviors, which they can be classified during the life span of a machine, a steady/stable stage, a periodic double stage, and a chaotic stage. The level of attention to the machine differs depending on the stage that the machine is in. The rate of faults in a machine increases as the machine moves through these three stages. During the double period and the chaotic stages, the number of faults starts to increase and become less predictable. The rate of predictability improves as our monitoring of the changes in the fractal dimension and the parameter R improves. The principles and foundations of our theory in this work have and will have a profound impact on the design of systems, on the way of operation of systems, and on the maintenance schedules of the systems. The systems can be mechanical, electrical, or electronic. The discussed methodology in this paper will give businesses the chance to be more careful at the design stage and planning for maintenance to control costs. The findings in this paper can be implied and used to correlate the three stages of a mechanical system to more in-depth mechanical parameters like wear and fatigue life.Keywords: logistcs map, bifurcation map, fractal dimension, logistics equation
Procedia PDF Downloads 1084011 Transient Stability Improvement in Multi-Machine System Using Power System Stabilizer (PSS) and Static Var Compensator (SVC)
Authors: Khoshnaw Khalid Hama Saleh, Ergun Ercelebi
Abstract:
Increasingly complex modern power systems require stability, especially for transient and small disturbances. Transient stability plays a major role in stability during fault and large disturbance. This paper compares a power system stabilizer (PSS) and static Var compensator (SVC) to improve damping oscillation and enhance transient stability. The effectiveness of a PSS connected to the exciter and/or governor in damping electromechanical oscillations of isolated synchronous generator was tested. The SVC device is a member of the shunt FACTS (flexible alternating current transmission system) family, utilized in power transmission systems. The designed model was tested with a multi-machine system consisting of four machines six bus, using MATLAB/SIMULINK software. The results obtained indicate that SVC solutions are better than PSS.Keywords: FACTS, MATLAB/SIMULINK, multi-machine system, PSS, SVC, transient stability
Procedia PDF Downloads 4554010 Predicting the Frequencies of Tropical Cyclone-Induced Rainfall Events in the US Using a Machine-Learning Model
Authors: Elham Sharifineyestani, Mohammad Farshchin
Abstract:
Tropical cyclones are one of the most expensive and deadliest natural disasters. They cause heavy rainfall and serious flash flooding that result in billions of dollars of damage and considerable mortality each year in the United States. Prediction of the frequency of tropical cyclone-induced rainfall events can be helpful in emergency planning and flood risk management. In this study, we have developed a machine-learning model to predict the exceedance frequencies of tropical cyclone-induced rainfall events in the United States. Model results show a satisfactory agreement with available observations. To examine the effectiveness of our approach, we also have compared the result of our predictions with the exceedance frequencies predicted using a physics-based rainfall model by Feldmann.Keywords: flash flooding, tropical cyclones, frequencies, machine learning, risk management
Procedia PDF Downloads 2474009 A Multi-criteria Decision Support System for Migrating Legacies into Open Systems
Authors: Nasser Almonawer
Abstract:
Timely reaction to an evolving global business environment and volatile market conditions necessitates system and process flexibility, which in turn demands agile and adaptable architecture and a steady infusion of affordable new technologies. On the contrary, a large number of organizations utilize systems characterized by inflexible and obsolete legacy architectures. To effectively respond to the dynamic contemporary business environments, such architectures must be migrated to robust and modular open architectures. To this end, this paper proposes an integrated decision support system for a seamless migration to open systems. The proposed decision support system (DSS) integrates three well-established quantitative and qualitative decision-making models—namely, the Delphi method, Analytic Hierarchy Process (AHP) and Goal Programming (GP) to (1) assess risks and establish evaluation criteria; (2) formulate migration strategy and rank candidate systems; and (3) allocate resources among the selected systems.Keywords: decision support systems, open systems architecture, analytic hierarchy process (AHP), goal programming (GP), delphi method
Procedia PDF Downloads 474008 Investigation on the Effect of Sugarcane Bagasse/HDPE Composition on the Screw Withdrawal Resistance of Injection Molded Parts
Authors: Seyed Abdol Mohammad Rezavand, Mohammad Nikbakhsh
Abstract:
Withdrawal resistance of screws driven into HDPE/Sugarcane Bagasse injection molded parts was investigated. After chemical treatment and drying, SCB was pre-mixed with HDPE using twin extruder. The resulting granules are used in producing samples in injection molding machine. SCB with the quantity of %10, %20, and %30 was used. By using a suitable fixture, screw heads can take with tensile test machine grips. Parts with screws in the center and edge were fasten together. Then, withdrawal resistance was measured with tensile test machine. Injection gate is at the one edge of the part. The results show that by increasing SCB content in composite, the withdrawal resistance is decreased. Furthermore, the withdrawal resistance at the edges (near injection gate and the end of the filling path of mold cavity) is more than that of the center.Keywords: polyethylene, sugarcane bagasse, wood plastic, screw, withdrawal resistance
Procedia PDF Downloads 5834007 Influence of Machine Resistance Training on Selected Strength Variables among Two Categories of Body Composition
Authors: Hassan Almoslim
Abstract:
Background: The machine resistance training is an exercise that uses the equipment as loads to strengthen and condition the musculoskeletal system and improving muscle tone. The machine resistance training is easy to use, allow the individual to train with heavier weights without assistance, useful for beginners and elderly populations and specific muscle groups. Purpose: The purpose of this study was to examine the impact of nine weeks of machine resistance training on maximum strength among lean and normal weight male college students. Method: Thirty-six male college students aged between 19 and 21 years from King Fahd University of petroleum & minerals participated in the study. The subjects were divided into two an equal groups called Lean Group (LG, n = 18) and Normal Weight Group (NWG, n = 18). The subjects whose body mass index (BMI) is less than 18.5 kg / m2 is considered lean and who is between 18.5 to 24.9 kg / m2 is normal weight. Both groups performed machine resistance training nine weeks, twice per week for 40 min per training session. The strength measurements, chest press, leg press and abdomen exercises were performed before and after the training period. 1RM test was used to determine the maximum strength of all subjects. The training program consisted of several resistance machines such as leg press, abdomen, chest press, pulldown, seated row, calf raises, leg extension, leg curls and back extension. The data were analyzed using independent t-test (to compare mean differences) and paired t-test. The level of significance was set at 0.05. Results: No change was (P ˃ 0.05) observed in all body composition variables between groups after training. In chest press, the NWG recorded a significantly greater mean different value than the LG (19.33 ± 7.78 vs. 13.88 ± 5.77 kg, respectively, P ˂ 0.023). In leg press and abdomen exercises, both groups revealed similar mean different values (P ˃ 0.05). When the post-test was compared with the pre-test, the NWG showed significant increases in the chest press by 47% (from 41.16 ± 12.41 to 60.49 ± 11.58 kg, P ˂ 001), abdomen by 34% (from 45.46 ± 6.97 to 61.06 ± 6.45 kg, P ˂ 0.001) and leg press by 23.6% (from 85.27 ± 15.94 to 105.48 ± 21.59 kg, P ˂ 0.001). The LG also illustrated significant increases by 42.6% in the chest press (from 32.58 ± 7.36 to 46.47 ± 8.93 kg, P ˂ 0.001), the abdomen by 28.5% (from 38.50 ± 7.84 to 49.50 ± 7.88 kg, P ˂ 0.001) and the leg press by 30.8% (from 70.2 ± 20.57 to 92.01 ± 22.83 kg, P ˂ 0.001). Conclusion: It was concluded that the lean and the normal weight male college students can benefit from the machine resistance-training program remarkably.Keywords: body composition, lean, machine resistance training, normal weight
Procedia PDF Downloads 3564006 Technique and Use of Machine Readable Dictionary: In Special Reference to Hindi-Marathi Machine Translation
Authors: Milind Patil
Abstract:
Present paper is a discussion on Hindi-Marathi Morphological Analysis and generating rules for Machine Translation on the basis of Machine Readable Dictionary (MRD). This used Transformative Generative Grammar (TGG) rules to design the MRD. As per TGG rules, the suffix of a particular root word is based on its Tense, Aspect, Modality and Voice. That's why the suffix is very important for the word meanings (or root meanings). The Hindi and Marathi Language both have relation with Indo-Aryan language family. Both have been derived from Sanskrit language and their script is 'Devnagari'. But there are lots of differences in terms of semantics and grammatical level too. In Marathi, there are three genders, but in Hindi only two (Masculine and Feminine), the Natural gender is absent in Hindi. Likewise other grammatical categories also differ in their level of use. For MRD the suffixes (or Morpheme) are of particular root word for GNP (Gender, Number and Person) are based on its natural phenomena. A particular Suffix and Morphine change as per the need of person, number and gender. The design of MRD also based on this format. In first, Person, Number, Gender and Tense are key points than root words and suffix of particular Person, Number Gender (PNG). After that the inferences are drawn on the basis of rules that is (V.stem) (Pre.T/Past.T) (x) + (Aux-Pre.T) (x) → (V.Stem.) + (SP.TM) (X).Keywords: MRD, TGG, stem, morph, morpheme, suffix, PNG, TAM&V, root
Procedia PDF Downloads 3244005 Review Paper on an Algorithm Enhancing Privacy and Security in Online Meeting Platforms Using a Secured Encryption
Authors: Tonderai Muchenje, Mkhatshwa Phethile
Abstract:
Humans living in this current situation know that communication with one another is necessary for themselves. There are many ways to communicate with each other; during unexpected natural disasters and outbreak of epidemics and pandemics, the need for online meeting platforms are considered most important. Apparently, the development in the telecommunication sector also played an important role. Therefore, the epidemic of the Covid-19 Pandemic and the new normal situation resulted in the overwhelming production of online meeting platforms to prevent the situation. This software is commonly used in business communications in the beginning. Rapidly the COVID-19 pandemic changed the situation. At present-day, these virtual meeting applications are not only used to have informal meetings with friends and relatives but also to be used to have formal meetings in the business and education (universities) sector. In this article, an attempt has been made to list out the useful secured ways for using online meeting platforms.Keywords: virtual background, zoom, secure online algorithm, RingCentral, Pexip Pexip, TeamViewer, microsoft teams
Procedia PDF Downloads 1164004 Introduction of an Approach of Complex Virtual Devices to Achieve Device Interoperability in Smart Building Systems
Authors: Thomas Meier
Abstract:
One of the major challenges for sustainable smart building systems is to support device interoperability, i.e. connecting sensor or actuator devices from different vendors, and present their functionality to the external applications. Furthermore, smart building systems are supposed to connect with devices that are not available yet, i.e. devices that become available on the market sometime later. It is of vital importance that a sustainable smart building platform provides an appropriate external interface that can be leveraged by external applications and smart services. An external platform interface must be stable and independent of specific devices and should support flexible and scalable usage scenarios. A typical approach applied in smart home systems is based on a generic device interface used within the smart building platform. Device functions, even of rather complex devices, are mapped to that generic base type interface by means of specific device drivers. Our new approach, presented in this work, extends that approach by using the smart building system’s rule engine to create complex virtual devices that can represent the most diverse properties of real devices. We examined and evaluated both approaches by means of a practical case study using a smart building system that we have developed. We show that the solution we present allows the highest degree of flexibility without affecting external application interface stability and scalability. In contrast to other systems our approach supports complex virtual device configuration on application layer (e.g. by administration users) instead of device configuration at platform layer (e.g. platform operators). Based on our work, we can show that our approach supports almost arbitrarily flexible use case scenarios without affecting the external application interface stability. However, the cost of this approach is additional appropriate configuration overhead and additional resource consumption at the IoT platform level that must be considered by platform operators. We conclude that the concept of complex virtual devices presented in this work can be applied to improve the usability and device interoperability of sustainable intelligent building systems significantly.Keywords: Internet of Things, smart building, device interoperability, device integration, smart home
Procedia PDF Downloads 2714003 Integrating Neural Linguistic Programming with Exergaming
Authors: Shyam Sajan, Kamal Bijlani
Abstract:
The widespread effects of digital media help people to explore the world more and get entertained with no effort. People became fond of these kind of sedentary life style. The increase in sedentary time and a decrease in physical activities has negative impacts on human health. Even though the addiction to video games has been exploited in exergames, to make people exercise and enjoy game challenges, the contribution is restricted only to physical wellness. This paper proposes creation and implementation of a game with the help of digital media in a virtual environment. The game is designed by collaborating ideas from neural linguistic programming and Stroop effect that can also be used to identify a person’s mental state, to improve concentration and to eliminate various phobias. The multiplayer game is played in a virtual environment created with Kinect sensor, to make the game more motivating and interactive.Keywords: exergaming, Kinect Sensor, Neural Linguistic Programming, Stroop Effect
Procedia PDF Downloads 4364002 Soil Degradation Resulting from Migration of Ion Leachate in Gosa Dumpsite, Abuja
Authors: S. Ebisintei, M. A. Olutoye, A. S. Kovo, U. G. Akpan
Abstract:
The effect of soil degradation due to ion leachate migration using dumpsite located at Idu industrial area of Abuja was investigated. It was done to assess the health and environmental pollution consequences caused by heavy metals’ concentration in the soil on inhabitants around the settlement. Soil samples collected from four cardinal points and at the center during the dry and wet season were pretreated, digested and heavy metal concentrations present were analyzed using Atomic Absorption Spectrophotometer. The concentrations of Pb, Cu, Mn, Ni, and Cr, were determined and also for control sample obtained 300 m away from the dumpsite. Water samples were collected from three wells to test for physiochemical properties of pH, COD, BOD, DO, hardness, conductivity, and alkalinity. The result showed a significant difference in concentration of toxic heavy metals in the dumpsite as compared to the control sample. A mathematical model was developed to predict the heavy metal concentrations beyond the sampling point. The results indicate that metal concentrations in both dry and wet season were above the WHO, and SON set standards. The trend, if unrestrained, portends danger to human life, reduces agricultural productivity and sustainability.Keywords: soil degradation, ion leachate, productivity, environment, sustainability
Procedia PDF Downloads 3474001 Integration of Big Data to Predict Transportation for Smart Cities
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system. The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.Keywords: big data, machine learning, smart city, social cost, transportation network
Procedia PDF Downloads 260