Search results for: risk optimization
8209 Optimal Tuning of RST Controller Using PSO Optimization for Synchronous Generator Based Wind Turbine under Three-Phase Voltage Dips
Authors: K. Tahir, C. Belfedal, T. Allaoui, C. Gerard, M. Doumi
Abstract:
In this paper, we presented an optimized RST controller using Particle Swarm Optimization (PSO) meta-heuristic technique of the active and reactive power regulation of a grid connected wind turbine based on a wound field synchronous generator. This regulation is achieved below the synchronous speed, by means of a maximum power point tracking algorithm. The control of our system is tested under typical wind variations and parameters variation, fault grid condition by simulation. Some results are presented and discussed to prove simplicity and efficiency of the WRSG control for WECS. On the other hand, according to simulation results, variable speed driven WRSG is not significantly impacted in fault conditions.Keywords: wind energy, particle swarm optimization, wound rotor synchronous generator, power control, RST controller, maximum power point tracking
Procedia PDF Downloads 4518208 Finite-Sum Optimization: Adaptivity to Smoothness and Loopless Variance Reduction
Authors: Bastien Batardière, Joon Kwon
Abstract:
For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaLVR, which combines the AdaGrad algorithm with loopless variance-reduced gradient estimators such as SAGA or L-SVRG that benefits from a straightforward construction and a streamlined analysis. We assess that AdaLVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of L-smooth convex functions we establish a gradient complexity of O(n + (L + √ nL)/ε) without prior knowledge of L. Numerical experiments demonstrate the superiority of AdaLVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence.Keywords: convex optimization, variance reduction, adaptive algorithms, loopless
Procedia PDF Downloads 718207 Experimental Investigation, Analysis and Optimization of Performance and Emission Characteristics of Composite Oil Methyl Esters at 160 bar, 180 bar and 200 bar Injection Pressures by Multifunctional Criteria Technique
Authors: Yogish Huchaiah, Chandrashekara Krishnappa
Abstract:
This study considers the optimization and validation of experimental results using Multi-Functional Criteria Technique (MFCT). MFCT is concerned with structuring and solving decision and planning problems involving multiple variables. Production of biodiesel from Composite Oil Methyl Esters (COME) of Jatropha and Pongamia oils, mixed in various proportions and Biodiesel thus obtained from two step transesterification process were tested for various Physico-Chemical properties and it has been ascertained that they were within limits proposed by ASTME. They were blended with Petrodiesel in various proportions. These Methyl Esters were blended with Petrodiesel in various proportions and coded. These blends were used as fuels in a computerized CI DI engine to investigate Performance and Emission characteristics. From the analysis of results, it was found that 180MEM4B20 blend had the maximum Performance and minimum Emissions. To validate the experimental results, MFCT was used. Characteristics such as Fuel Consumption (FC), Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), Carbon dioxide (CO2), Carbon Monoxide (CO), Hydro Carbon (HC) and Nitrogen oxide (NOx) were considered as dependent variables. It was found from the application of this method that the optimized combination of Injection Pressure (IP), Mix and Blend is 178MEM4.2B24. Overall corresponding variation between optimization and experimental results was found to be 7.45%.Keywords: COME, IP, MFCT, optimization, PI, PN, PV
Procedia PDF Downloads 2118206 Public Participation for an Effective Flood Risk Management: Building Social Capacities in Ribera Alta Del Ebro, Spain
Authors: Alba Ballester Ciuró, Marc Pares Franzi
Abstract:
While coming decades are likely to see a higher flood risk in Europe and greater socio-economic damages, traditional flood risk management has become inefficient. In response to that, new approaches such as capacity building and public participation have recently been incorporated in natural hazards mitigation policy (i.e. Sendai Framework for Action, Intergovernmental Panel on Climate Change reports and EU Floods Directive). By integrating capacity building and public participation, we present a research concerning the promotion of participatory social capacity building actions for flood risk mitigation at the local level. Social capacities have been defined as the resources and abilities available at individual and collective level that can be used to anticipate, respond to, cope with, recover from and adapt to external stressors. Social capacity building is understood as a process of identifying communities’ social capacities and of applying collaborative strategies to improve them. This paper presents a proposal of systematization of participatory social capacity building process for flood risk mitigation, and its implementation in a high risk of flooding area in the Ebro river basin: Ribera Alta del Ebro. To develop this process, we designed and tested a tool that allows measuring and building five types of social capacities: knowledge, motivation, networks, participation and finance. The tool implementation has allowed us to assess social capacities in the area. Upon the results of the assessment we have developed a co-decision process with stakeholders and flood risk management authorities on which participatory activities could be employed to improve social capacities for flood risk mitigation. Based on the results of this process, and focused on the weaker social capacities, we developed a set of participatory actions in the area oriented to general public and stakeholders: informative sessions on flood risk management plan and flood insurances, interpretative river descents on flood risk management (with journalists, teachers, and general public), interpretative visit to the floodplain, workshop on agricultural insurance, deliberative workshop on project funding, deliberative workshops in schools on flood risk management (playing with a flood risk model). The combination of obtaining data through a mixed-methods approach of qualitative inquiry and quantitative surveys, as well as action research through co-decision processes and pilot participatory activities, show us the significant impact of public participation on social capacity building for flood risk mitigation and contributes to the understanding of which main factors intervene in this process.Keywords: flood risk management, public participation, risk reduction, social capacities, vulnerability assessment
Procedia PDF Downloads 2118205 A Robust Optimization Model for the Single-Depot Capacitated Location-Routing Problem
Authors: Abdolsalam Ghaderi
Abstract:
In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve the customers when the parameters may change under different circumstances. This problem has many applications, especially in the area of supply chain management and distribution systems. To get closer to real-world situations, travel time of vehicles, the fixed cost of vehicles usage and customers’ demand are considered as a source of uncertainty. A combined approach including robust optimization and stochastic programming was presented to deal with the uncertainty in the problem at hand. For this purpose, a mixed integer programming model is developed and a heuristic algorithm based on Variable Neighborhood Search(VNS) is presented to solve the model. Finally, the computational results are presented and future research directions are discussed.Keywords: location-routing problem, robust optimization, stochastic programming, variable neighborhood search
Procedia PDF Downloads 2708204 Assessment-Assisted and Relationship-Based Financial Advising: Using an Empirical Assessment to Understand Personal Investor Risk Tolerance in Professional Advising Relationships
Authors: Jerry Szatko, Edan L. Jorgensen, Stacia Jorgensen
Abstract:
A crucial component to the success of any financial advising relationship is for the financial professional to understand the perceptions, preferences and thought-processes carried by the financial clients they serve. Armed with this information, financial professionals are more quickly able to understand how they can tailor their approach to best match the individual preferences and needs of each personal investor. Our research explores the use of a quantitative assessment tool in the financial services industry to assist in the identification of the personal investor’s consumer behaviors, especially in terms of financial risk tolerance, as it relates to their financial decision making. Through this process, the Unitifi Consumer Insight Tool (UCIT) was created and refined to capture and categorize personal investor financial behavioral categories and the financial personality tendencies of individuals prior to the initiation of a financial advisement relationship. This paper discusses the use of this tool to place individuals in one of four behavior-based financial risk tolerance categories. Our discoveries and research were aided through administration of a web-based survey to a group of over 1,000 individuals. Our findings indicate that it is possible to use a quantitative assessment tool to assist in predicting the behavioral tendencies of personal consumers when faced with consumer financial risk and decisions.Keywords: behavior-based advising, financial relationship building, risk capacity based on behavior, risk tolerance, systematic way to assist in financial relationship building
Procedia PDF Downloads 1678203 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms
Authors: Alper Akin, Ibrahim Aydogdu
Abstract:
This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teaching-learning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.Keywords: optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame
Procedia PDF Downloads 5458202 Human Health Risk Assessment from Metals Present in a Soil Contaminated by Crude Oil
Authors: M. A. Stoian, D. M. Cocarta, A. Badea
Abstract:
The main sources of soil pollution due to petroleum contaminants are industrial processes involve crude oil. Soil polluted with crude oil is toxic for plants, animals, and humans. Human exposure to the contaminated soil occurs through different exposure pathways: Soil ingestion, diet, inhalation, and dermal contact. The present study research is focused on soil contamination with heavy metals as a consequence of soil pollution with petroleum products. Human exposure pathways considered are: Accidentally ingestion of contaminated soil and dermal contact. The purpose of the paper is to identify the human health risk (carcinogenic risk) from soil contaminated with heavy metals. The human exposure and risk were evaluated for five contaminants of concern of the eleven which were identified in soil. Two soil samples were collected from a bioremediation platform from Muntenia Region of Romania. The soil deposited on the bioremediation platform was contaminated through extraction and oil processing. For the research work, two average soil samples from two different plots were analyzed: The first one was slightly contaminated with petroleum products (Total Petroleum Hydrocarbons (TPH) in soil was 1420 mg/kgd.w.), while the second one was highly contaminated (TPH in soil was 24306 mg/kgd.w.). In order to evaluate risks posed by heavy metals due soil pollution with petroleum products, five metals known as carcinogenic were investigated: Arsenic (As), Cadmium (Cd), ChromiumVI (CrVI), Nickel (Ni), and Lead (Pb). Results of the chemical analysis performed on samples collected from the contaminated soil evidence soil contamination with heavy metals as following: As in Site 1 = 6.96 mg/kgd.w; As in Site 2 = 11.62 mg/kgd.w, Cd in Site 1 = 0.9 mg/kgd.w; Cd in Site 2 = 1 mg/kgd.w; CrVI was 0.1 mg/kgd.w for both sites; Ni in Site 1 = 37.00 mg/kgd.w; Ni in Site 2 = 42.46 mg/kgd.w; Pb in Site 1 = 34.67 mg/kgd.w; Pb in Site 2 = 120.44 mg/kgd.w. The concentrations for these metals exceed the normal values established in the Romanian regulation, but are smaller than the alert level for a less sensitive use of soil (industrial). Although, the concentrations do not exceed the thresholds, the next step was to assess the human health risk posed by soil contamination with these heavy metals. Results for risk were compared with the acceptable one (10-6, according to World Human Organization). As, expected, the highest risk was identified for the soil with a higher degree of contamination: Individual Risk (IR) was 1.11×10-5 compared with 8.61×10-6.Keywords: carcinogenic risk, heavy metals, human health risk assessment, soil pollution
Procedia PDF Downloads 4228201 Geometric Optimization of Catalytic Converter
Authors: P. Makendran, M. Pragadeesh, N. Narash, N. Manikandan, A. Rajasri, V. Sanal Kumar
Abstract:
The growing severity of government-obligatory emissions legislation has required continuous improvement in catalysts performance and the associated reactor systems. IC engines emit a lot of harmful gases into the atmosphere. These gases are toxic in nature and a catalytic converter is used to convert these toxic gases into less harmful gases. The catalytic converter converts these gases by Oxidation and reduction reaction. Stoichiometric engines usually use the three-way catalyst (TWC) for simultaneously destroying all of the emissions. CO and NO react to form CO2 and N2 over one catalyst, and the remaining CO and HC are oxidized in a subsequent one. Literature review reveals that typically precious metals are used as a catalyst. The actual reactor is composed of a washcoated honeycomb-style substrate, with the catalyst being contained in the washcoat. The main disadvantage of a catalytic converter is that it exerts a back pressure to the exhaust gases while entering into them. The objective of this paper is to optimize the back pressure developed by the catalytic converter through geometric optimization of catalystic converter. This can be achieved by designing a catalyst with a optimum cone angle and a more surface area of the catalyst substrate. Additionally, the arrangement of the pores in the catalyst substrate can be changed. The numerical studies have been carried out using k-omega turbulence model with varying inlet angle of the catalytic converter and the length of the catalyst substrate. We observed that the geometry optimization is a meaningful objective for the lucrative design optimization of a catalytic converter for industrial applications.Keywords: catalytic converter, emission control, reactor systems, substrate for emission control
Procedia PDF Downloads 9068200 The Relationship between Incidental Emotions, Risk Perceptions and Type of Army Service
Authors: Sharon Garyn-Tal, Shoshana Shahrabani
Abstract:
Military service in general, and in combat units in particular, can be physically and psychologically stressful. Therefore, type of service may have significant implications for soldiers during and after their military service including emotions, judgments and risk perceptions. Previous studies have focused on risk propensity and risky behavior among soldiers, however there is still lack of knowledge on the impact of type of army service on risk perceptions. The current study examines the effect of type of army service (combat versus non-combat service) and negative incidental emotions on risk perceptions. In 2014 a survey was conducted among 153 combat and non-combat Israeli soldiers. The survey was distributed in train stations and central bus stations in various places in Israel among soldiers waiting for the train/bus. Participants answered questions related to the levels of incidental negative emotions they felt, to their risk perceptions (chances to be hurt by terror attack, by violent crime and by car accident), and personal details including type of army service. The data in this research is unique because military service in Israel is compulsory, so that the Israeli population serving in the army is wide and diversified. The results indicate that currently serving combat participants were more pessimistic in their risk perceptions (for all type of risks) compared to the currently serving non-combat participants. Since combat participants probably experienced severe and distressing situations during their service, they became more pessimistic regarding their probabilities of being hurt in different situations in life. This result supports the availability heuristic theory and the findings of previous studies indicating that those who directly experience distressing events tend to overestimate danger. The findings also indicate that soldiers who feel higher levels of incidental fear and anger have pessimistic risk perceptions. In addition, respondents who experienced combat army service also have pessimistic risk perceptions if they feel higher levels of fear. In addition, the findings suggest that higher levels of the incidental emotions of fear and anger are related to more pessimistic risk perceptions. These results can be explained by the compulsory army service in Israel that constitutes a focused threat to soldiers' safety during their period of service. Thus, in this stressful environment, negative incidental emotions even during routine times correlate with higher risk perceptions. In conclusion, the current study results suggest that combat army service shapes risk perceptions and the way young people control their negative incidental emotions in everyday life. Recognizing the factors affecting risk perceptions among soldiers is important for better understanding the impact of army service on young people.Keywords: army service, combat soldiers, incidental emotions, risk perceptions
Procedia PDF Downloads 2348199 Study of the Energy Levels in the Structure of the Laser Diode GaInP
Authors: Abdelali Laid, Abid Hamza, Zeroukhi Houari, Sayah Naimi
Abstract:
This work relates to the study of the energy levels and the optimization of the Parameter intrinsic (a number of wells and their widths, width of barrier of potential, index of refraction etc.) and extrinsic (temperature, pressure) in the Structure laser diode containing the structure GaInP. The methods of calculation used; - method of the empirical pseudo potential to determine the electronic structures of bands, - graphic method for optimization. The found results are in concord with those of the experiment and the theory.Keywords: semi-conductor, GaInP/AlGaInP, pseudopotential, energy, alliages
Procedia PDF Downloads 4928198 Optimization of Processing Parameters of Acrylonitrile–Butadiene–Styrene Sheets Integrated by Taguchi Method
Authors: Fatemeh Sadat Miri, Morteza Ehsani, Seyed Farshid Hosseini
Abstract:
The present research is concerned with the optimization of extrusion parameters of ABS sheets by the Taguchi experimental design method. In this design method, three parameters of % recycling ABS, processing temperature and degassing time on mechanical properties, hardness, HDT, and color matching of ABS sheets were investigated. The variations of this research are the dosage of recycling ABS, processing temperature, and degassing time. According to experimental test data, the highest level of tensile strength and HDT belongs to the sample with 5% recycling ABS, processing temperature of 230°C, and degassing time of 3 hours. Additionally, the minimum level of MFI and color matching belongs to this sample, too. The present results are in good agreement with the Taguchi method. Based on the outcomes of the Taguchi design method, degassing time has the most effect on the mechanical properties of ABS sheets.Keywords: ABS, process optimization, Taguchi, mechanical properties
Procedia PDF Downloads 738197 An Improved Discrete Version of Teaching–Learning-Based Optimization for Supply Chain Network Design
Authors: Ehsan Yadegari
Abstract:
While there are several metaheuristics and exact approaches to solving the Supply Chain Network Design (SCND) problem, there still remains an unfilled gap in using the Teaching-Learning-Based Optimization (TLBO) algorithm. The algorithm has demonstrated desirable results with problems with complicated combinational optimization. The present study introduces a Discrete Self-Study TLBO (DSS-TLBO) with priority-based solution representation that can solve a supply chain network configuration model to lower the total expenses of establishing facilities and the flow of materials. The network features four layers, namely suppliers, plants, distribution centers (DCs), and customer zones. It is designed to meet the customer’s demand through transporting the material between layers of network and providing facilities in the best economic Potential locations. To have a higher quality of the solution and increase the speed of TLBO, a distinct operator was introduced that ensures self-adaptation (self-study) in the algorithm based on the four types of local search. In addition, while TLBO is used in continuous solution representation and priority-based solution representation is discrete, a few modifications were added to the algorithm to remove the solutions that are infeasible. As shown by the results of experiments, the superiority of DSS-TLBO compared to pure TLBO, genetic algorithm (GA) and firefly Algorithm (FA) was established.Keywords: supply chain network design, teaching–learning-based optimization, improved metaheuristics, discrete solution representation
Procedia PDF Downloads 528196 Energy Benefits of Urban Platooning with Self-Driving Vehicles
Authors: Eduardo F. Mello, Peter H. Bauer
Abstract:
The primary focus of this paper is the generation of energy-optimal speed trajectories for heterogeneous electric vehicle platoons in urban driving conditions. Optimal speed trajectories are generated for individual vehicles and for an entire platoon under the assumption that they can be executed without errors, as would be the case for self-driving vehicles. It is then shown that the optimization for the “average vehicle in the platoon” generates similar transportation energy savings to optimizing speed trajectories for each vehicle individually. The introduced approach only requires the lead vehicle to run the optimization software while the remaining vehicles are only required to have adaptive cruise control capability. The achieved energy savings are typically between 30% and 50% for stop-to-stop segments in cities. The prime motivation of urban platooning comes from the fact that urban platoons efficiently utilize the available space and the minimization of transportation energy in cities is important for many reasons, i.e., for environmental, power, and range considerations.Keywords: electric vehicles, energy efficiency, optimization, platooning, self-driving vehicles, urban traffic
Procedia PDF Downloads 1828195 Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator
Authors: Mamidi Ramakrishna Rao, Jagdish Mamidi
Abstract:
With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design.Keywords: offshore wind generator, PMSM, PSO optimization, design optimization
Procedia PDF Downloads 1558194 Enhanced Production of Endo-β-1,4-Xylanase from a Newly Isolated Thermophile Geobacillus stearothermophilus KIBGE-IB29 for Prospective Industrial Applications
Authors: Zainab Bibi, Afsheen Aman, Shah Ali Ul Qader
Abstract:
Endo-β-1,4-xylanases [EC 3.2.1.8] are one of the major groups of enzymes that are involved in degradation process of xylan and have several applications in food, textile and paper processing industries. Due to broad utility of endo-β-1,4-xylanase, researchers are focusing to increase the productivity of this hydrolase from various microbial species. Harsh industrial condition, faster reaction rate and efficient hydrolysis of xylan with low risk of contamination are critical requirements of industry that can be fulfilled by synthesizing the enzyme with efficient properties. In the current study, a newly isolated thermophile Geobacillus stearothermophilus KIBGE-IB29 was used in order to attain the maximum production of endo-1,4-β-xylanase. Bacterial culture was isolated from soil, collected around the blast furnace site of a steel processing mill, Karachi. Optimization of various nutritional and physical factors resulted the maximum synthesis of endo-1,4-β-xylanase from a thermophile. High production yield was achieved at 60°C and pH-6.0 after 24 hours of incubation period. Various nitrogen sources viz. peptone, yeast extract and meat extract improved the enzyme synthesis with 0.5%, 0.2% and 0.1% optimum concentrations. Dipotassium hydrogen phosphate (0.25%), potassium dihydrogen phosphate (0.05%), ammonium sulfate (0.05%) and calcium chloride (0.01%) were noticed as valuable salts to improve the production of enzyme. The thermophilic nature of isolate, with its broad pH stability profile and reduced fermentation time indicates its importance for effective xylan saccharification and for large scale production of endo-1,4-β-xylanase.Keywords: geobacillus, optimization, production, xylanase
Procedia PDF Downloads 3088193 Fault Diagnosis of Manufacturing Systems Using AntTreeStoch with Parameter Optimization by ACO
Authors: Ouahab Kadri, Leila Hayet Mouss
Abstract:
In this paper, we present three diagnostic modules for complex and dynamic systems. These modules are based on three ant colony algorithms, which are AntTreeStoch, Lumer & Faieta and Binary ant colony. We chose these algorithms for their simplicity and their wide application range. However, we cannot use these algorithms in their basement forms as they have several limitations. To use these algorithms in a diagnostic system, we have proposed three variants. We have tested these algorithms on datasets issued from two industrial systems, which are clinkering system and pasteurization system.Keywords: ant colony algorithms, complex and dynamic systems, diagnosis, classification, optimization
Procedia PDF Downloads 2988192 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme
Authors: Andrey V. Timofeev, Dmitry V. Egorov
Abstract:
This paper introduces an original method of parametric optimization of the structure for multimodal decision-level fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.Keywords: classification accuracy, fusion solution, total error rate, multimodal fusion classifier
Procedia PDF Downloads 4668191 Pavement Maintenance and Rehabilitation Scheduling Using Genetic Algorithm Based Multi Objective Optimization Technique
Authors: Ashwini Gowda K. S, Archana M. R, Anjaneyappa V
Abstract:
This paper presents pavement maintenance and management system (PMMS) to obtain optimum pavement maintenance and rehabilitation strategies and maintenance scheduling for a network using a multi-objective genetic algorithm (MOGA). Optimal pavement maintenance & rehabilitation strategy is to maximize the pavement condition index of the road section in a network with minimum maintenance and rehabilitation cost during the planning period. In this paper, NSGA-II is applied to perform maintenance optimization; this maintenance approach was expected to preserve and improve the existing condition of the highway network in a cost-effective way. The proposed PMMS is applied to a network that assessed pavement based on the pavement condition index (PCI). The minimum and maximum maintenance cost for a planning period of 20 years obtained from the non-dominated solution was found to be 5.190x10¹⁰ ₹ and 4.81x10¹⁰ ₹, respectively.Keywords: genetic algorithm, maintenance and rehabilitation, optimization technique, pavement condition index
Procedia PDF Downloads 1508190 Lower Risk of Ischemic Stroke in Hormone Therapy Users with Use of Chinese Herbal Medicine
Authors: Shu-Hui Wen, Wei-Chuan Chang, Hsien-Chang Wu
Abstract:
Background: Little is known about the benefits and risks of use of Chinese herbal medicine (CHM) in conditions related to hormone therapy (HT) use on the risk of ischemic stroke (IS). The aim of this study is to explore the risk of IS in menopausal women treated with HT and CHM. Materials and methods: A total of 32,441 menopausal women without surgical menopause aged 40- 65 years were selected from 2003 to 2010 using the 2-million random samples of the National Health Insurance Research Database in Taiwan. According to the medication usage of HT and CHM, we divided the current and recent users into two groups: an HT use-only group (n = 4,989) and an HT/CHM group (n = 9,265). Propensity-score matching samples (4,079 pairs) were further created to deal with confounding by indication. The adjusted hazard ratios (HR) of IS during HT or CHM treatment were estimated by the robust Cox proportional hazards model. Results: The incidence rate of IS in the HT/CHM group was significantly lower than in the HT group (4.5 vs. 12.8 per 1000 person-year, p < 0.001). Multivariate analysis results indicated that additional CHM use was significant with a lower risk of IS (HR = 0.3; 95% confidence interval, 0.21-0.43). Further subgroup analyses and sensitivity analyses had similar findings. Conclusion: We found that combined use of HT and CHM was associated with a lower risk for IS than HT use only. Further study is needed to examine possible mechanism underlying this association.Keywords: Chinese herbal medicine, hormone therapy, ischemic stroke, menopause
Procedia PDF Downloads 3548189 Failure Inference and Optimization for Step Stress Model Based on Bivariate Wiener Model
Authors: Soudabeh Shemehsavar
Abstract:
In this paper, we consider the situation under a life test, in which the failure time of the test units are not related deterministically to an observable stochastic time varying covariate. In such a case, the joint distribution of failure time and a marker value would be useful for modeling the step stress life test. The problem of accelerating such an experiment is considered as the main aim of this paper. We present a step stress accelerated model based on a bivariate Wiener process with one component as the latent (unobservable) degradation process, which determines the failure times and the other as a marker process, the degradation values of which are recorded at times of failure. Parametric inference based on the proposed model is discussed and the optimization procedure for obtaining the optimal time for changing the stress level is presented. The optimization criterion is to minimize the approximate variance of the maximum likelihood estimator of a percentile of the products’ lifetime distribution.Keywords: bivariate normal, Fisher information matrix, inverse Gaussian distribution, Wiener process
Procedia PDF Downloads 3178188 A Model of Human Security: A Comparison of Vulnerabilities and Timespace
Authors: Anders Troedsson
Abstract:
For us humans, risks are intimately linked to human vulnerabilities - where there is vulnerability, there is potentially insecurity, and risk. Reducing vulnerability through compensatory measures means increasing security and decreasing risk. The paper suggests that a meaningful way to approach the study of risks (including threats, assaults, crisis etc.), is to understand the vulnerabilities these external phenomena evoke in humans. As is argued, the basis of risk evaluation, as well as responses, is the more or less subjective perception by the individual person, or a group of persons, exposed to the external event or phenomena in question. This will be determined primarily by the vulnerability or vulnerabilities that the external factor are perceived to evoke. In this way, risk perception is primarily an inward dynamic, rather than an outward one. Therefore, a route towards an understanding of the perception of risks, is a closer scrutiny of the vulnerabilities which they can evoke, thereby approaching an understanding of what in the paper is called the essence of risk (including threat, assault etc.), or that which a certain perceived risk means to an individual or group of individuals. As a necessary basis for gauging the wide spectrum of potential risks and their meaning, the paper proposes a model of human vulnerabilities, drawing from i.a. a long tradition of needs theory. In order to account for the subjectivity factor, which mediates between the innate vulnerabilities on the one hand, and the event or phenomenon out there on the other hand, an ensuing ontological discussion about the timespace characteristics of risk/threat/assault as perceived by humans leads to the positing of two dimensions. These two dimensions are applied on the vulnerabilities, resulting in a modelling effort featuring four realms of vulnerabilities which are related to each other and together represent a dynamic whole. In approaching the problem of risk perception, the paper thus defines the relevant realms of vulnerabilities, depicting them as a dynamic whole. With reference to a substantial body of literature and a growing international policy trend since the 1990s, this model is put in the language of human security - a concept relevant not only for international security studies and policy, but also for other academic disciplines and spheres of human endeavor.Keywords: human security, timespace, vulnerabilities, risk perception
Procedia PDF Downloads 3368187 Evaluating the Effects of Weather and Climate Change to Risks in Crop Production
Authors: Marcus Bellett-Travers
Abstract:
Different modelling approaches have been used to determine or predict yield of crops in different geographies. Central to the methodologies are the presumption that it is the absolute yield of the crop in a given location that is of the highest priority to those requiring information on crop productivity. Most individuals, companies and organisations within the agri-food sector need to be able to balance the supply of crops with the demand for them. Different modelling approaches have been used to determine and predict crop yield. The growing need to ensure certainty of supply and stability of prices requires an approach that describes the risk in producing a crop. A review of current methodologies to evaluate the risk to food production from changes in the weather and climate is presented.Keywords: crop production, risk, climate, modelling
Procedia PDF Downloads 3868186 Telling the Truth to Patients Before Hip Fracture Surgery
Authors: Rawan Masarwa, Merav Ben Natan, Yaron Berkovich
Abstract:
Background: Hip fracture repair surgery carries a certain mortality risk, yet evidence suggests that orthopedic surgeons often refrain from discussing this issue with patients prior to surgery. Aim: This study aims to examine whether orthopedic surgeons address the issue of one-year post-surgery mortality before hip fracture repair surgery and to explore the factors influencing this decision. Method: The study uses a cross-sectional design, administering validated digital questionnaires to 150 orthopedic surgeons. Results: A minority of orthopedic surgeons reported consistently informing patients about the risk of mortality in the year following hip fracture surgery. The primary reasons for not discussing this risk were a desire to avoid frightening patients, time constraints, and concerns about undermining patient hope. Surgeons reported a medium-high level of perceived self-efficacy, with higher self-efficacy linked to a reduced likelihood of discussing one-year mortality risk. In contrast, older age and holding a specialist status in orthopedic surgery were associated with a higher likelihood of discussing this risk with patients. Conclusions: The findings suggest a need for interventions to address communication barriers and ensure consistent provision of essential information to patients undergoing hip fracture surgery. Additionally, they emphasize the importance of considering individual factors such as self-efficacy, age, and expertise in developing strategies to enhance patient-provider communication in orthopedic care settings.Keywords: orthopedic surgeons, hip fracture surgery, mortality risk communication, patient information
Procedia PDF Downloads 258185 Probabilistic Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Repeatedly Used Edible Oils and Finger Foods
Authors: Suraj Sam Issaka, Anita Asamoah, Abass Gibrilla, Joseph Richmond Fianko
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds that can form in edible oils during repeated frying and accumulate in fried foods. This study assesses the chances of health risks (carcinogenic and non-carcinogenic) due to PAHs levels in popular finger foods (bean cakes, plantain chips, doughnuts) fried in edible oils (mixed vegetable, sunflower, soybean) from the Ghanaian market. Employing probabilistic health risk assessment that considers variability and uncertainty in exposure and risk estimates provides a more realistic representation of potential health risks. Monte Carlo simulations with 10,000 iterations were used to estimate carcinogenic, mutagenic, and non-carcinogenic risks for different age groups (A: 6-10 years, B: 11-20 years, C: 20-70 years), food types (bean cake, plantain chips, doughnut), oil types (soybean, mixed vegetable, sunflower), and re-usage frying oil frequencies (once, twice, thrice). Our results suggest that, for age Group A, doughnuts posed the highest probability of carcinogenic risk (91.55%) exceeding the acceptable threshold, followed by bean cakes (43.87%) and plantain chips (7.72%), as well as the highest probability of unacceptable mutagenic risk (89.2%), followed by bean cakes (40.32%). Among age Group B, doughnuts again had the highest probability of exceeding carcinogenic risk limits (51.16%) and mutagenic risk limits (44.27%). At the same time, plantain chips exhibited the highest maximum carcinogenic risk. For adults age Group C, bean cakes had the highest probability of unacceptable carcinogenic (50.88%) and mutagenic risks (46.44%), though plantain chips showed the highest maximum values for both carcinogenic and mutagenic risks in this age group. Also, on non-carcinogenic risks across different age groups, it was found that age Group A) who consumed doughnuts had a 68.16% probability of a hazard quotient (HQ) greater than 1, suggesting potential cognitive impairment and lower IQ scores due to early PAH exposure. This group also faced risks from consuming plantain chips and bean cake. For age Group B, the consumption of plantain chips was associated with a 36.98% probability of HQ greater than 1, indicating a potential risk of reduced lung function. In age Group C, the consumption of plantain chips was linked to a 35.70% probability of HQ greater than 1, suggesting a potential risk of cardiovascular diseases.Keywords: PAHs, fried foods, carcinogenic risk, non-carcinogenic risk, Monte Carlo simulations
Procedia PDF Downloads 138184 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization
Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati
Abstract:
In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network
Procedia PDF Downloads 3808183 Entropy Risk Factor Model of Exchange Rate Prediction
Authors: Darrol Stanley, Levan Efremidze, Jannie Rossouw
Abstract:
We investigate the predictability of the USD/ZAR (South African Rand) exchange rate with sample entropy analytics for the period of 2004-2015. We calculate sample entropy based on the daily data of the exchange rate and conduct empirical implementation of several market timing rules based on these entropy signals. The dynamic investment portfolio based on entropy signals produces better risk adjusted performance than a buy and hold strategy. The returns are estimated on the portfolio values in U.S. dollars. These results are preliminary and do not yet account for reasonable transactions costs, although these are very small in currency markets.Keywords: currency trading, entropy, market timing, risk factor model
Procedia PDF Downloads 2718182 A Novel Approach of NPSO on Flexible Logistic (S-Shaped) Model for Software Reliability Prediction
Authors: Pooja Rani, G. S. Mahapatra, S. K. Pandey
Abstract:
In this paper, we propose a novel approach of Neural Network and Particle Swarm Optimization methods for software reliability prediction. We first explain how to apply compound function in neural network so that we can derive a Flexible Logistic (S-shaped) Growth Curve (FLGC) model. This model mathematically represents software failure as a random process and can be used to evaluate software development status during testing. To avoid trapping in local minima, we have applied Particle Swarm Optimization method to train proposed model using failure test data sets. We drive our proposed model using computational based intelligence modeling. Thus, proposed model becomes Neuro-Particle Swarm Optimization (NPSO) model. We do test result with different inertia weight to update particle and update velocity. We obtain result based on best inertia weight compare along with Personal based oriented PSO (pPSO) help to choose local best in network neighborhood. The applicability of proposed model is demonstrated through real time test data failure set. The results obtained from experiments show that the proposed model has a fairly accurate prediction capability in software reliability.Keywords: software reliability, flexible logistic growth curve model, software cumulative failure prediction, neural network, particle swarm optimization
Procedia PDF Downloads 3448181 Spatial Analysis as a Tool to Assess Risk Management in Peru
Authors: Josué Alfredo Tomas Machaca Fajardo, Jhon Elvis Chahua Janampa, Pedro Rau Lavado
Abstract:
A flood vulnerability index was developed for the Piura River watershed in northern Peru using Principal Component Analysis (PCA) to assess flood risk. The official methodology to assess risk from natural hazards in Peru was introduced in 1980 and proved effective for aiding complex decision-making. This method relies in part on decision-makers defining subjective correlations between variables to identify high-risk areas. While risk identification and ensuing response activities benefit from a qualitative understanding of influences, this method does not take advantage of the advent of national and international data collection efforts, which can supplement our understanding of risk. Furthermore, this method does not take advantage of broadly applied statistical methods such as PCA, which highlight central indicators of vulnerability. Nowadays, information processing is much faster and allows for more objective decision-making tools, such as PCA. The approach presented here develops a tool to improve the current flood risk assessment in the Peruvian basin. Hence, the spatial analysis of the census and other datasets provides a better understanding of the current land occupation and a basin-wide distribution of services and human populations, a necessary step toward ultimately reducing flood risk in Peru. PCA allows the simplification of a large number of variables into a few factors regarding social, economic, physical and environmental dimensions of vulnerability. There is a correlation between the location of people and the water availability mainly found in rivers. For this reason, a comprehensive vision of the population location around the river basin is necessary to establish flood prevention policies. The grouping of 5x5 km gridded areas allows the spatial analysis of flood risk rather than assessing political divisions of the territory. The index was applied to the Peruvian region of Piura, where several flood events occurred in recent past years, being one of the most affected regions during the ENSO events in Peru. The analysis evidenced inequalities for the access to basic services, such as water, electricity, internet and sewage, between rural and urban areas.Keywords: assess risk, flood risk, indicators of vulnerability, principal component analysis
Procedia PDF Downloads 1868180 Optimal Design of Linear Generator to Recharge the Smartphone Battery
Authors: Jin Ho Kim, Yujeong Shin, Seong-Jin Cho, Dong-Jin Kim, U-Syn Ha
Abstract:
Due to the development of the information industry and technologies, cellular phones have must not only function to communicate, but also have functions such as the Internet, e-banking, entertainment, etc. These phones are called smartphones. The performance of smartphones has improved, because of the various functions of smartphones, and the capacity of the battery has been increased gradually. Recently, linear generators have been embedded in smartphones in order to recharge the smartphone's battery. In this study, optimization is performed and an array change of permanent magnets is examined in order to increase efficiency. We propose an optimal design using design of experiments (DOE) to maximize the generated induced voltage. The thickness of the poleshoe and permanent magnet (PM), the height of the poleshoe and PM, and the thickness of the coil are determined to be design variables. We made 25 sampling points using an orthogonal array according to four design variables. We performed electromagnetic finite element analysis to predict the generated induced voltage using the commercial electromagnetic analysis software ANSYS Maxwell. Then, we made an approximate model using the Kriging algorithm, and derived optimal values of the design variables using an evolutionary algorithm. The commercial optimization software PIAnO (Process Integration, Automation, and Optimization) was used with these algorithms. The result of the optimization shows that the generated induced voltage is improved.Keywords: smartphone, linear generator, design of experiment, approximate model, optimal design
Procedia PDF Downloads 345