Search results for: renewable energy engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11222

Search results for: renewable energy engineering

10322 Working Title: Estimating the Power Output of Photovoltaics in Kuwait Using a Monte Carlo Approach

Authors: Mohammad Alshawaf, Rahmat Poudineh, Nawaf Alhajeri

Abstract:

The power generated from photovoltaic (PV) modules is non-dispatchable on demand due to the stochastic nature of solar radiation. The random variations in the measured intensity of solar irradiance are due to clouds and, in the case of arid regions, dust storms which decrease the intensity of intensity of solar irradiance. Therefore, modeling PV power output using average, maximum, or minimum solar irradiance values is inefficient to predict power generation reliably. The overall objective of this paper is to predict the power output of PV modules using Monte Carlo approach based the weather and solar conditions measured in Kuwait. Given the 250 Wp PV module used in study, the average daily power output is 1021 Wh/day. The maximum power was generated in April and the minimum power was generated in January 1187 Wh/day and 823 Wh/day respectively. The certainty of the daily predictions varies seasonally and according to the weather conditions. The output predictions were far more certain in the summer months, for example, the 80% certainty range for August is 89 Wh/day, whereas the 80% certainty range for April is 250 Wh/day.

Keywords: Monte Carlo, solar energy, variable renewable energy, Kuwait

Procedia PDF Downloads 129
10321 Assessment of Green Finance, Financial Technology and Financial Inclusion on Green Energy Efficiency in Pakistan

Authors: Muhammad Irfan

Abstract:

The UN General Assembly has advocated improving energy efficiency by SDG criteria to promote global economic growth. Pakistan is confronted with financial obstacles when it comes to acquiring energy efficiency because of the COVID-19 pandemic, economic and political instability, budgetary strains, and poor financial circumstances. The study examines how cutting-edge financing approaches like FinTech, financial inclusion, and green financing affect Pakistan's energy consumption. It finds noteworthy outcomes. The study's results have demonstrated the important impact of these funding methods on energy conservation. The best and most helpful finance tool for energy efficiency is green financing; yet, because of differences in characteristics, workings, and financial institutions, FinTech, and financial inclusion play a smaller role in Pakistan. The researchers propose that to achieve energy efficiency, FinTech activities and funding criteria such as green bonds should be reviewed. It also advised authorities to create energy system-friendly regulations for green finance in Pakistan.

Keywords: green finance, FinTech, financial inclusion, energy efficiency, Pakistan

Procedia PDF Downloads 49
10320 Remote Sensing Study of Wind Energy Potential in Agsu District

Authors: U. F. Mammadova

Abstract:

Natural resources is the main self-supplying way which is being studied in the paper. Ecologically clean and independent clean energy stock is wind one. This potential is first studied by applying remote sensing way. In any coordinate of the district, wind energy potential has been determined by measuring the potential by applying radar technique which gives a possibility to reveal 2 D view. At several heights, including 10,50,100,150,200 ms, the measurements have been realized. The achievable power generation for m2 in the district was calculated. Daily, hourly, and monthly wind energy potential data were graphed and schemed in the paper. The energy, environmental, and economic advantages of wind energy for the Agsu district were investigated by analyzing radar spectral measurements after the remote sensing process.

Keywords: wind potential, spectral radar analysis, ecological clean energy, ecological safety

Procedia PDF Downloads 84
10319 Analysis of Minimizing Investment Risks in Power and Energy Business Development by Combining Total Quality Management and International Financing Institutions Project Management Tools

Authors: M. Radunovic

Abstract:

Region of Southeastern Europe has a substantial energy resource potential and is witnessing an increasing rate of power and energy project investments. This comes as a result of countries harmonizing their legal framework and market regulations to conform the ones of European Union, enabling direct private investments. Funding in the power and energy market in this region originates from various resources and investment entities, including commercial and institutional ones. Risk anticipation and assessment is crucial to project success, especially given the long exploitation period of project in power and energy domain, as well as the wide range of stakeholders involved. This paper analyzes the possibility of combined application of tools used in total quality management and international financing institutions for project planning, execution and evaluation, with the goal of anticipating, assessing and minimizing the risks that might occur in the development and execution phase of a power and energy project in the market of southeastern Europe. History of successful project management and investments both in the industry and institutional sector provides sufficient experience, guidance and internationally adopted tools to provide proper project assessment for investments in power and energy. Business environment of southeastern Europe provides immense potential for developing power and engineering projects of various magnitudes, depending on stakeholders’ interest. Diversification on investment sources provides assurance that there is interest and commitment to invest in this market. Global economic and political developments will be intensifying the pace of investments in the upcoming period. The proposed approach accounts for key parameters that contribute to the sustainability and profitability of a project which include technological, educational, social and economic gaps between the southeastern European region and western Europe, market trends in equipment design and production on a global level, environment friendly approach to renewable energy sources as well as conventional power generation systems, and finally the effect of the One Belt One Road Initiative led by People’s Republic of China to the power and energy market of this region in the upcoming period on a long term scale. Analysis will outline the key benefits of the approach as well as the accompanying constraints. Parallel to this it will provide an overview of dominant threats and opportunities in present and future business environment and their influence to the proposed application. Through concrete examples, full potential of this approach will be presented along with necessary improvements that need to be implemented. Number of power and engineering projects being developed in southeastern Europe will be increasing in the upcoming period. Proper risk analysis will lead to minimizing project failures. The proposed successful combination of reliable project planning tools from different investment areas can prove to be beneficial in the future power and engineering investments, and guarantee their sustainability and profitability.

Keywords: capital investments, lean six sigma, logical framework approach, logical framework matrix, one belt one road initiative, project management tools, quality function deployment, Southeastern Europe, total quality management

Procedia PDF Downloads 107
10318 Challenges and Opportunities in Modelling Energy Behavior of Household in Malaysia

Authors: Zuhaina Zakaria, Noraliza Hamzah, Siti Halijjah Shariff, Noor Aizah Abdul Karim

Abstract:

The residential sector in Malaysia has become the single largest energy sector accounting for 21% of the entire energy usage of the country. In the past 10 years, a number of energy efficiency initiatives in the residential sector had been undertaken by the government including. However, there is no clear evidence that the total residential energy consumption has been reduced substantially via these strategies. Household electrical appliances such as air conditioners, refrigerators, lighting and televisions are used depending on the consumers’ activities. The behavior of household occupants played an important role in energy consumption and influenced the operation of the physical devices. Therefore, in order to ensure success in energy efficiency program, it requires not only the technological aspect but also the consumers’ behaviors component. This paper focuses on the challenges and opportunities in modelling residential consumer behavior in Malaysia. A field survey to residential consumers was carried out and responses from the survey were analyzed to determine the consumers’ level of knowledge and awareness on energy efficiency. The analyses will be used in determining a right framework to explain household energy use intentions and behavior. These findings will be beneficial to power utility company and energy regulator in addressing energy efficiency related issues.

Keywords: consumer behavior theories, energy efficiency, household occupants, residential consumer

Procedia PDF Downloads 331
10317 Food Waste Utilization: A Contemporary Prospect of Meeting Energy Crisis Using Microbial Fuel Cell

Authors: Bahareh Asefi, Fereidoun Farzaneh, Ghazaleh Asefi, Chang-Ping Yu

Abstract:

Increased production of food waste (FW) is a global issue that is receiving more attention due to its environmental and economic impacts. The generation of electricity from food waste, known as energy recovery, is one of the effective solutions in food waste management. Food waste has high energy content which seems ideal to achieve dual benefits in terms of energy recovery and waste stabilization. Microbial fuel cell (MFC) is a promising technology for treating food waste and generate electricity. In this work, we will review energy utilization from different kind of food waste using MFC and factors which affected the process. We have studied the key technology of energy generated from food waste using MFC to enhance the food waste management. The power density and electricity production by each kind of food waste and challenges were identified. This work explored the conversion of FW into energy from different type of food waste, which aim to provide a theoretical analysis for energy utilization of food waste.

Keywords: energy generation, food waste, microbial fuel cell, power density

Procedia PDF Downloads 227
10316 Maximaxing the Usage of Solar Energy in an Area of Low Peak Sunlight Hours

Authors: Ohabuiro John Uwabunkeonye

Abstract:

Source of green energy is becoming a concern in developing countries where most energy source in use emits high level of carbon (IV) oxide which contributes to global warming. More so, even with the generation of energy from fossil fuel, the electricity supply is still very inadequate. Therefore, this paper examines different ways of designing and installing photovoltaic (PV) system in terms of optimal sizing of PV array and battery storage in an area of very low peak sunlight hours (PSH) and inadequate supply of electricity from utility companies. Different sample of Peak sunlight hour for selected areas in Nigeria are considered and the lowest of it all is taken. Some means of ensuring that the available solar energy is harnessed properly and converted into electrical energy are discussed for usage in such areas as mentioned above.

Keywords: green energy, fossil fuel, peak sunlight hour, photovoltaic

Procedia PDF Downloads 642
10315 Biotransformation of Glycerine Pitch as Renewable Carbon Resource into P(3HB-co-4HB) Biopolymer

Authors: Amirul Al-Ashraf Abdullah, Hema Ramachandran, Iszatty Ismail

Abstract:

Oleochemical industry in Malaysia has been diversifying significantly due to the abundant supply of both palm and kernel oils as raw materials as well as the high demand for downstream products such as fatty acids, fatty alcohols and glycerine. However, environmental awareness is growing rapidly in Malaysia because oleochemical industry is one of the palm-oil based industries that possess risk to the environment. Glycerine pitch is one of the scheduled wastes generated from the fatty acid plants in Malaysia and its discharge may cause a serious environmental problem. Therefore, it is imperative to find alternative applications for this waste glycerine. Consequently, the aim of this research is to explore the application of glycerine pitch as direct fermentation substrate in the biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer, aiming to contribute toward the sustainable production of biopolymer in the world. Utilization of glycerine pitch (10 g/l) together with 1,4-butanediol (5 g/l) had resulted in the achievement of 40 mol% 4HB monomer with the highest PHA concentration of 2.91 g/l. Synthesis of yellow pigment which exhibited antimicrobial properties occurred simultaneously with the production of P(3HB-co-4HB) through the use of glycerine pitch as renewable carbon resource. Utilization of glycerine pitch in the biosynthesis of P(3HB-co-4HB) will not only contribute to reducing society’s dependence on non-renewable resources but also will promote the development of cost efficiency microbial fermentation towards biosustainability and green technology.

Keywords: biopolymer, glycerine pitch, natural pigment, P(3HB-co-4HB)

Procedia PDF Downloads 468
10314 Loss Analysis by Loading Conditions of Distribution Transformers

Authors: A. Bozkurt, C. Kocatepe, R. Yumurtaci, İ. C. Tastan, G. Tulun

Abstract:

Efficient use of energy, with the increase in demand of energy and also with the reduction of natural energy sources, has improved its importance in recent years. Most of the losses in the system from electricity produced until the point of consumption is mostly composed by the energy distribution system. In this study, analysis of the resulting loss in power distribution transformer and distribution power cable is realized which are most of the losses in the distribution system. Transformer losses in the real distribution system were analyzed by CYME Power Engineering Software program. These losses are disclosed for different voltage levels and different loading conditions.

Keywords: distribution system, distribution transformer, power cable, technical losses

Procedia PDF Downloads 649
10313 Modeling and Analysis the Effects of Temperature and Pressure on the Gas-Crossover in Polymer Electrolyte Membrane Electrolyzer

Authors: Abdul Hadi Bin Abdol Rahim, Alhassan Salami Tijani

Abstract:

Hydrogen produced by means of polymer electrolyte membrane electrolyzer (PEME) is one of the most promising methods due to clean and renewable energy source. In the process, some energy loss due to mass transfer through a PEM is caused by diffusion, electro-osmotic drag, and the pressure difference between the cathode channel and anode channel. In PEME water molecules and ionic particles transferred between the electrodes from anode to cathode, Extensive mixing of the hydrogen and oxygen at anode channel due to gases cross-over must be avoided. In recent times the consciousness of safety issue in high pressure PEME where the oxygen mix with hydrogen at anode channel could create, explosive conditions have generated a lot of concern. In this paper, the steady state and simulation analysis of gases crossover in PEME on the temperature and pressure effect are presented. The simulations have been analysis in MATLAB based on the well-known Fick’s Law of molecular diffusion. The simulation results indicated that as temperature increases, there is a significant decrease in operating voltage.

Keywords: diffusion, gases crosover, steady state, Fick’s law

Procedia PDF Downloads 328
10312 Modelling and Optimization of a Combined Sorption Enhanced Biomass Gasification with Hydrothermal Carbonization, Hot Gas Cleaning and Dielectric Barrier Discharge Plasma Reactor to Produce Pure H₂ and Methanol Synthesis

Authors: Vera Marcantonio, Marcello De Falco, Mauro Capocelli, Álvaro Amado-Fierro, Teresa A. Centeno, Enrico Bocci

Abstract:

Concerns about energy security, energy prices, and climate change led scientific research towards sustainable solutions to fossil fuel as renewable energy sources coupled with hydrogen as an energy vector and carbon capture and conversion technologies. Among the technologies investigated in the last decades, biomass gasification acquired great interest owing to the possibility of obtaining low-cost and CO₂ negative emission hydrogen production from a large variety of everywhere available organic wastes. Upstream and downstream treatment were then studied in order to maximize hydrogen yield, reduce the content of organic and inorganic contaminants under the admissible levels for the technologies which are coupled with, capture, and convert carbon dioxide. However, studies which analyse a whole process made of all those technologies are still missing. In order to fill this lack, the present paper investigated the coexistence of hydrothermal carbonization (HTC), sorption enhance gasification (SEG), hot gas cleaning (HGC), and CO₂ conversion by dielectric barrier discharge (DBD) plasma reactor for H₂ production from biomass waste by means of Aspen Plus software. The proposed model aimed to identify and optimise the performance of the plant by varying operating parameters (such as temperature, CaO/biomass ratio, separation efficiency, etc.). The carbon footprint of the global plant is 2.3 kg CO₂/kg H₂, lower than the latest limit value imposed by the European Commission to consider hydrogen as “clean”, that was set to 3 kg CO₂/kg H₂. The hydrogen yield referred to the whole plant is 250 gH₂/kgBIOMASS.

Keywords: biomass gasification, hydrogen, aspen plus, sorption enhance gasification

Procedia PDF Downloads 76
10311 Energy Consumption Modeling for Strawberry Greenhouse Crop by Adaptive Nero Fuzzy Inference System Technique: A Case Study in Iran

Authors: Azar Khodabakhshi, Elham Bolandnazar

Abstract:

Agriculture as the most important food manufacturing sector is not only the energy consumer, but also is known as energy supplier. Using energy is considered as a helpful parameter for analyzing and evaluating the agricultural sustainability. In this study, the pattern of energy consumption of strawberry greenhouses of Jiroft in Kerman province of Iran was surveyed. The total input energy required in the strawberries production was calculated as 113314.71 MJ /ha. Electricity with 38.34% contribution of the total energy was considered as the most energy consumer in strawberry production. In this study, Neuro Fuzzy networks was used for function modeling in the production of strawberries. Results showed that the best model for predicting the strawberries function had a correlation coefficient, root mean square error (RMSE) and mean absolute percentage error (MAPE) equal to 0.9849, 0.0154 kg/ha and 0.11% respectively. Regards to these results, it can be said that Neuro Fuzzy method can be well predicted and modeled the strawberry crop function.

Keywords: crop yield, energy, neuro-fuzzy method, strawberry

Procedia PDF Downloads 379
10310 Impact of Social Transfers on Energy Poverty in Turkey

Authors: Julide Yildirim, Nadir Ocal

Abstract:

Even though there are many studies investigating the extent and determinants of poverty, there is paucity of research investigating the issue of energy poverty in Turkey. The aim of this paper is threefold: First to investigate the extend of energy poverty in Turkey by using Household Budget Survey datasets belonging to 2005 - 2016 period. Second, to examine the risk factors for energy poverty. Finally, to assess the impact of social assistance program participation on energy poverty. Existing literature employs alternative methods to measure energy poverty. In this study energy poverty is measured by employing expenditure approach, where people are considered as energy poor if they disburse more than 10 per cent of their income to meet their energy requirements. Empirical results indicate that energy poverty rate is around 20 per cent during the time period under consideration. Since Household Budget Survey panel data is not available for 2005 - 2016 period, a pseudo panel has been constructed. Panel logistic regression method is utilized to determine the risk factors for energy poverty. The empirical results demonstrate that there is a statistically significant impact of work status and education level on energy poverty likelihood. In the final part of the paper the impact of social transfers on energy poverty has been examined by utilizing panel biprobit model, where social transfer participation and energy poverty incidences are jointly modeled. The empirical findings indicate that social transfer program participation reduces energy poverty. The negative association between energy poverty and social transfer program participation is more pronounced in urban areas compared with the rural areas.

Keywords: energy poverty, social transfers, panel data models, Turkey

Procedia PDF Downloads 139
10309 Energy Saving Stove for Stew Coconut Sugar

Authors: Ruedee Niyomrath

Abstract:

The purposes of this research is aim to build the energy saving stove for stew coconut sugar. The research started from explores ceramic raw materials in local area, create the appropriate mixture of ceramic raw materials for construction material of stove, and make it by ceramic process. It includes design and build the energy saving stove, experiment the efficiency of energy saving stove as to thermal efficiency, energy saving, performance of time, and energy cost efficiency, transfer the knowledge for community, stove manufacturers, and technicians. The findings must be useful to the coconut sugar enterprises producing, to reduce the cost of production, preserve natural resources, and environments.

Keywords: ceramic raw material, energy saving stove, stove design, performance of stove, stove for stew coconut sugar

Procedia PDF Downloads 358
10308 Combining Chiller and Variable Frequency Drives

Authors: Nasir Khalid, S. Thirumalaichelvam

Abstract:

In most buildings, according to US Department of Energy Data Book, the electrical consumption attributable to centralized heating and ventilation of air- condition (HVAC) component can be as high as 40-60% of the total electricity consumption for an entire building. To provide efficient energy management for the market today, researchers are finding new ways to develop a system that can save electrical consumption of buildings even more. In this concept paper, a system known as Intelligent Chiller Energy Efficiency (iCEE) System is being developed that is capable of saving up to 25% from the chiller’s existing electrical energy consumption. In variable frequency drives (VFDs), research has found significant savings up to 30% of electrical energy consumption. Together with the VFDs at specific Air Handling Unit (AHU) of HVAC component, this system will save even more electrical energy consumption. The iCEE System is compatible with any make, model or age of centrifugal, rotary or reciprocating chiller air-conditioning systems which are electrically driven. The iCEE system uses engineering principles of efficiency analysis, enthalpy analysis, heat transfer, mathematical prediction, modified genetic algorithm, psychometrics analysis, and optimization formulation to achieve true and tangible energy savings for consumers.

Keywords: variable frequency drives, adjustable speed drives, ac drives, chiller energy system

Procedia PDF Downloads 556
10307 Performance of Environmental Efficiency of Energy Iran and Other Middle East Countries

Authors: Bahram Fathi, Mahdi Khodaparast Mashhadi, Masuod Homayounifar

Abstract:

According to 1404 forecasting documentation, among the most fundamental ways of Iran’s success in competition with other regional countries are innovations, efficiency enhancements and domestic productivity. Therefore, in this study, the energy consumption efficiency of Iran and the neighbor countries has been measured in the period between 2007-2012 considering the simultaneous economic activities, CO2 emission, and consumption of energy through data envelopment analysis of undesirable output. The results of the study indicated that the energy efficiency changes in both Iran and the average neighbor countries has been on a descending trend and Iran’s energy efficiency status is not desirable compared to the other countries in the region.

Keywords: energy efficiency, environmental, undesirable output, data envelopment analysis

Procedia PDF Downloads 446
10306 Passive Greenhouse Systems in Poland

Authors: Magdalena Grudzińska

Abstract:

Passive systems allow solar radiation to be converted into thermal energy thanks to appropriate building construction. Greenhouse systems are particularly worth attention, due to the low costs of their realization and strong architectural appeal. The paper discusses the energy effects of using passive greenhouse systems, such as glazed balconies, in an example residential building. The research was carried out for five localities in Poland, belonging to climatic zones different in terms of external air temperature and insolation: Koszalin, Poznań, Lublin, Białystok and Zakopane The analysed apartment had a floor area of approximately 74 m² Three thermal zones were distinguished in the flat - the balcony, the room adjacent to it, and the remaining space, for which various internal conditions were defined. Calculations of the energy demand were made using the dynamic simulation program, based on the control volume method. The climatic data were represented by Typical Meteorological Years, prepared on the basis of source data collected from 1971 to 2000. In each locality, the introduction of a passive greenhouse system led to a lower demand for heating in the apartment, and the shortening of the heating season. The smallest effectiveness of passive solar energy systems was noted in Białystok. Demand for heating was reduced there by 14.5% and the heating season remained the longest, due to low temperatures of external air and small sums of solar radiation intensity. In Zakopane, energy savings came to 21% and the heating season was reduced to 107 days, thanks to the greatest insolation during winter. The introduction of greenhouse systems caused an increase in cooling demand in the warmer part of the year, but total energy demand declined in each of the discussed places. However, potential energy savings are smaller if the building's annual life cycle is taken into consideration, and amount from 5.6% up to 14%. Koszalin and Zakopane are localities in which the greenhouse system allows the best energy results to be achieved. It should be emphasized that favourable conditions for introducing greenhouse systems are connected with different climatic conditions. In the seaside area (Koszalin) they result from high temperatures in the heating season and the smallest insolation in the summer period, while in the mountainous area (Zakopane) they result from high insolation in the winter and low temperatures in the summer. In the region of middle and middle-eastern Poland active systems (such as solar energy collectors or photovoltaic panels) could be more beneficial, due to high insolation during summer. It is assessed that passive systems do not eliminate the need for traditional heating in Poland. They can, however, substantially contribute to lower use of non-renewable fuels and the shortening of the heating season. The calculations showed diversification in the effectiveness of greenhouse systems resulting from climatic conditions, and allowed to identify areas which are the most suitable for the passive use of solar radiation.

Keywords: solar energy, passive greenhouse systems, glazed balconies, climatic conditions

Procedia PDF Downloads 366
10305 Climate Change and Economic Performance in Selected Oil-Producing African Countries: A Trend Analysis Approach

Authors: Waheed O. Majekodunmi

Abstract:

Climate change is a real global phenomenon and an unquestionable threat to our quest for a healthy and livable planet. It is now regarded as potentially the most monumental environmental challenge people and the planet will be confronted with over the next centuries. Expectedly, climate change mitigation was one of the central themes of COP 28. Despite contributing the least to climate change, Africa is and remains the hardest hit by the negative consequences of climate change including poor growth performance. Currently, it is being hypothesized that the high level of vulnerability and exposure to climate-related disasters, low adaptive capacity against global warming and high mitigation costs of climate change across the continent could be linked to the recent abysmal economic performance of African countries, especially in oil-producing countries where greenhouse gas emissions, is potentially more prevalent. This paper examines the impact of climate change on the economic performance of selected oil-producing countries in Africa using evidence from Nigeria, Algeria and Angola. The objective of the study is to determine whether or not climate change influences the economic performance of oil-producing countries in Africa by examining the nexus between economic growth and climate-related variables. The study seeks to investigate the effect of climate change on the pace of economic growth in African oil-producing countries. To achieve the research objectives, this study utilizes a quantitative approach by using historical and current secondary data sets to determine the relationship between climate-related variables and economic growth variables in the selected countries. The study employed numbers, percentages, tables and trend graphs to explain the trends or common patterns between climate change, economic growth and determinants of economic growth: governance effectiveness, infrastructure, macroeconomic stability and regulatory efficiency. Results from the empirical analysis of data show that the trends of economic growth and climate-related variables in the selected oil-producing countries are in the opposite directions as the increasing share of renewable energy sources in total energy consumption and the reduction in greenhouse gas emissions per capita in the oil-producing countries did not translate to higher economic growth. Further findings show that annual surface temperatures in the selected countries do not share similar trends with the food imports ratio and GDP per capita annual growth rate suggesting that climate change does not impact significantly agricultural productivity and economic growth in oil-producing countries in Africa. Annual surface temperature was also found to not share a similar pattern with governance effectiveness, macroeconomic stability and regulatory efficiency reinforcing the claim that some economic growth variables are independent of climate change. The policy implication of this research is that oil-producing African countries need to focus more on improving the macroeconomic environment and streamlining governance and institutional processes to boost their economic performance before considering the adoption of climate change adaptation and mitigation strategies.

Keywords: climate change, climate vulnerability, economic growth, greenhouse gas emissions per capita, oil-producing countries, share of renewable energy in total energy consumption

Procedia PDF Downloads 51
10304 Comparison of the Performance of a Brake Energy Regeneration System in Hybrid Vehicles

Authors: Miguel Arlenzo Duran Sarmiento, Luis Alfonso Del Portillo Valdés, Carlos Borras Pinilla

Abstract:

Brake energy regeneration systems have the capacity to transform part of the vehicle's kinetic energy during deceleration into useful energy. These systems can be implemented in hybrid vehicles, which can be electric or hydraulic in type, and contribute to reducing the energy required to propel the vehicle thanks to the accumulation of energy. This paper presents the modeling and simulation of a braking energy regeneration system applied in hydraulic hybrid vehicles configured in parallel, the modeling and simulation were performed in Simulink of Matlab, where a performance comparison of the regenerated torque as a function of vehicle load, the displacement of the hydraulic regeneration device and the vehicle speed profile. The speed profiles used in the simulation are standard profiles such as the NEDC and WLTP profiles. The vehicle loads range from 1500 kg to 12000 kg. The results show the comparison of the torque required by the vehicle, the torque regenerated by the system subjected to the different speed and load conditions.

Keywords: braking energy, energy regeneration, hybrid vehicles, kinetic energy, torque

Procedia PDF Downloads 122
10303 Overview of Risk Management in Electricity Markets Using Financial Derivatives

Authors: Aparna Viswanath

Abstract:

Electricity spot prices are highly volatile under optimal generation capacity scenarios due to factors such as non-storability of electricity, peak demand at certain periods, generator outages, fuel uncertainty for renewable energy generators, huge investments and time needed for generation capacity expansion etc. As a result market participants are exposed to price and volume risk, which has led to the development of risk management practices. This paper provides an overview of risk management practices by market participants in electricity markets using financial derivatives.

Keywords: financial derivatives, forward, futures, options, risk management

Procedia PDF Downloads 476
10302 Structural Insulated Panels

Authors: R. Padmini, G. V. Manoj Kumar

Abstract:

Structural insulated panels (SIPs) are a high-performance building system for residential and light commercial construction. The panels consist of an insulating foam core sandwiched between two structural facings, typically oriented strand board (OSB). SIPs are manufactured under factory controlled conditions and can be fabricated to fit nearly any building design. The result is a building system that is extremely strong, energy efficient and cost effective. Building with SIPs will save you time, money and labor. Building with SIPs generally costs about the same as building with wood frame construction when you factor in the labor savings resulting from shorter construction time and less job-site waste. Other savings are realized because smaller heating and cooling systems are required with SIP construction. Structural insulated panels (SIPs) are one of the most airtight and well-insulated building systems available, making them an inherently green product. An airtight SIP building will use less energy to heat and cool, allow for better control over indoor environmental conditions, and reduce construction waste. Green buildings use less energy, reducing carbon dioxide emissions and playing an important role in combating global climate change. Buildings also use a tremendous amount of natural resources to construct and operate. Constructing green buildings that use these resources more efficiently, while minimizing pollution that can harm renewable natural resources, is crucial to a sustainable future.

Keywords: high performance, under factory controlled, wood frame, carbon dioxide emissions, natural resources

Procedia PDF Downloads 435
10301 An Approach towards Designing an Energy Efficient Building through Embodied Energy Assessment: A Case of Apartment Building in Composite Climate

Authors: Ambalika Ekka

Abstract:

In today’s world, the growing demand for urban built forms has resulted in the production and consumption of building materials i.e. embodied energy in building construction, leading to pollution and greenhouse gas (GHG) emissions. Therefore, new buildings will offer a unique opportunity to implement more energy efficient building without compromising on building performance of the building. Embodied energy of building materials forms major contribution to embodied energy in buildings. The paper results in an approach towards designing an energy efficient apartment building through embodied energy assessment. This paper discusses the trend of residential development in Rourkela, which includes three case studies of the contemporary houses, followed by architectural elements, number of storeys, predominant material use and plot sizes using primary data. It results in identification of predominant material used and other characteristics in urban area. Further, the embodied energy coefficients of various dominant building materials and alternative materials manufactured in Indian Industry is taken in consideration from secondary source i.e. literature study. The paper analyses the embodied energy by estimating materials and operational energy of proposed building followed by altering the specifications of the materials based on the building components i.e. walls, flooring, windows, insulation and roof through res build India software and comparison of different options is assessed with consideration of sustainable parameters. This paper results that autoclaved aerated concrete block only reaches the energy performance Index benchmark i.e. 69.35 kWh/m2 yr i.e. by saving 4% of operational energy and as embodied energy has no particular index, out of all materials it has the highest EE 23206202.43  MJ.

Keywords: energy efficient, embodied energy, EPI, building materials

Procedia PDF Downloads 194
10300 Energy Efficient Assessment of Energy Internet Based on Data-Driven Fuzzy Integrated Cloud Evaluation Algorithm

Authors: Chuanbo Xu, Xinying Li, Gejirifu De, Yunna Wu

Abstract:

Energy Internet (EI) is a new form that deeply integrates the Internet and the entire energy process from production to consumption. The assessment of energy efficient performance is of vital importance for the long-term sustainable development of EI project. Although the newly proposed fuzzy integrated cloud evaluation algorithm considers the randomness of uncertainty, it relies too much on the experience and knowledge of experts. Fortunately, the enrichment of EI data has enabled the utilization of data-driven methods. Therefore, the main purpose of this work is to assess the energy efficient of park-level EI by using a combination of a data-driven method with the fuzzy integrated cloud evaluation algorithm. Firstly, the indicators for the energy efficient are identified through literature review. Secondly, the artificial neural network (ANN)-based data-driven method is employed to cluster the values of indicators. Thirdly, the energy efficient of EI project is calculated through the fuzzy integrated cloud evaluation algorithm. Finally, the applicability of the proposed method is demonstrated by a case study.

Keywords: energy efficient, energy internet, data-driven, fuzzy integrated evaluation, cloud model

Procedia PDF Downloads 202
10299 A One Dimensional Particle in Cell Model for Excimer Lamps

Authors: W. Benstaali, A. Belasri

Abstract:

In this work we study a planar lamp filled with neon-xenon gas. We use a one-dimensional particle in a cell with Monte Carlo simulation (PIC-MCC) to investigate the effect xenon concentration on the energy deposited on excitation, ionization and ions. A Xe-Ne discharge is studied for a gas pressure of 400 torr. The results show an efficient Xe20-Ne mixture with an applied voltage of 1.2KV; the xenon excitation energy represents 65% form total energy dissipated in the discharge. We have also studied electrical properties and the energy balance a discharge for Xe50-Ne which needs a voltage of 2kv; the xenon energy is than more important.

Keywords: dielectric barrier discharge, efficiency, excitation, lamps

Procedia PDF Downloads 164
10298 Performance of Photovoltaic Thermal Greenhouse Dryer in Composite Climate of India

Authors: G. N. Tiwari, Shyam

Abstract:

Photovoltaic thermal (PVT) roof type greenhouse dryer installed above the wind tower of SODHA BERS COMPLEX, Varanasi has been analyzed for all types of weather conditions. The product to be dried has been kept at three different trays. The upper tray receives energy from the PV cover while the bottom tray receives thermal energy from the hot air of the wind tower. The annual energy estimation has been done for the all types of weather condition of composite climate of northern India. It has been found that maximum energy saving is observed for c type of weather condition whereas minimum energy saving is observed for a type of weather condition. The energy saving on overall thermal energy basis and exergy basis are 1206.8 kWh and 360 kWh respectively for c type of weather condition. The energy saving from all types of weather condition are found to be 3175.3 kWh and 957.6 kWh on overall thermal energy and overall exergy basis respectively.

Keywords: exergy, greenhouse, photovoltaic thermal, solar dryer

Procedia PDF Downloads 407
10297 Reduce of the Consumption of Industrial Kilns a Pottery Kiln as Example, Recovery of Lost Energy Using a System of Heat Exchangers and Modeling of Heat Transfer Through the Walls of the Kiln

Authors: Maha Bakkari, Fatiha Lemmeni, Rachid Tadili

Abstract:

In this work, we present some characteristics of the furnace studied, its operating principle and the experimental measurements of the evolutions of the temperatures inside and outside the walls of the This work deals with the problem of energy consumption of pottery kilns whose energy consumption is relatively too high. In this work, we determined the sources of energy loss by studying the heat transfer of a pottery furnace, we proposed a recovery system to reduce energy consumption, and then we developed a numerical model modeling the transfers through the walls of the furnace and to optimize the insulation (reduce heat losses) by testing multiple insulators. The recovery and reuse of energy recovered by the recovery system will present a significant gain in energy consumption of the oven and cooking time. This research is one of the solutions that helps reduce the greenhouse effect of the planet earth, a problem that worries the world.

Keywords: recovery lost energy, energy efficiency, modeling, heat transfer

Procedia PDF Downloads 84
10296 A Theoretical Study of Accelerating Neutrons in LINAC Using Magnetic Gradient Method

Authors: Chunduru Amareswara Prasad

Abstract:

The main aim of this proposal it to reveal the secrets of the universe by accelerating neutrons. The proposal idea in its abridged version speaks about the possibility of making neutrons accelerate with help of thermal energy and magnetic energy under controlled conditions. Which is helpful in revealing the hidden secrets of the universe namely dark energy and in finding properties of Higgs boson. The paper mainly speaks about accelerating neutrons to near velocity of light in a LINAC, using magnetic energy by magnetic pressurizers. The center of mass energy of two colliding neutron beams is 94 GeV (~0.5c) can be achieved using this method. The conventional ways to accelerate neutrons has some constraints in accelerating them electromagnetically as they need to be separated from the Tritium or Deuterium nuclei. This magnetic gradient method provides efficient and simple way to accelerate neutrons.

Keywords: neutron, acceleration, thermal energy, magnetic energy, Higgs boson

Procedia PDF Downloads 325
10295 The Role of Uncertainty in the Integration of Environmental Parameters in Energy System Modeling

Authors: Alexander de Tomás, Miquel Sierra, Stefan Pfenninger, Francesco Lombardi, Ines Campos, Cristina Madrid

Abstract:

Environmental parameters are key in the definition of sustainable energy systems yet excluded from most energy system optimization models. Still, decision-making may be misleading without considering them. Environmental analyses of the energy transition are a key part of industrial ecology but often are performed without any input from the users of the information. This work assesses the systemic impacts of energy transition pathways in Portugal. Using the Calliope energy modeling framework, 250+ optimized energy system pathways are generated. A Delphi study helps to identify the relevant criteria for the stakeholders as regards the environmental assessment, which is performed with ENBIOS, a python package that integrates life cycle assessment (LCA) with a metabolic analysis based on complex relations. Furthermore, this study focuses on how the uncertainty propagates through the model’s consortium. With the aim of doing so, a soft link between the Calliope/ENBIOS cascade and Brightway’s data capabilities is built to perform Monte Carlo simulations. These findings highlight the relevance of including uncertainty analysis as a range of values rather than informing energy transition results with a single value.

Keywords: energy transition, energy modeling, uncertainty, sustainability

Procedia PDF Downloads 81
10294 Re-Analyzing Energy-Conscious Design

Authors: Svetlana Pushkar, Oleg Verbitsky

Abstract:

An energy-conscious design for a classroom in a hot-humid climate is reanalyzed. The hypothesis of this study is that use of photovoltaic (PV) electricity generation in building operation energy consumption will lead to re-analysis of the energy-conscious design. Therefore, the objective of this study is to reanalyze the energy-conscious design by evaluating the environmental impact of operational energy with PV electrical generation. Using the hierarchical design structure of Eco-indicator 99, the alternatives for energy-conscious variables are statistically evaluated by applying a two-stage nested (hierarchical) ANOVA. The recommendations for the preferred solutions for application of glazing types, wall insulation, roof insulation, window size, roof mass, and window shading design alternatives were changed (for example, glazing type recommendations were changed from low-emissivity glazing, green, and double- glazed windows to low-emissivity glazing only), whereas the applications for the lighting control system and infiltration are not changed. Such analysis of operational energy can be defined as environment-conscious analysis.

Keywords: ANOVA, Eco-Indicator 99, energy-conscious design, hot–humid climate, photovoltaic

Procedia PDF Downloads 186
10293 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment

Authors: Said Alshukri, Mazhar Hussain Malik

Abstract:

Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.

Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest

Procedia PDF Downloads 78