Search results for: fundus images
1531 Harnessing Emerging Creative Technology for Knowledge Discovery of Multiwavelenght Datasets
Authors: Basiru Amuneni
Abstract:
Astronomy is one domain with a rise in data. Traditional tools for data management have been employed in the quest for knowledge discovery. However, these traditional tools become limited in the face of big. One means of maximizing knowledge discovery for big data is the use of scientific visualisation. The aim of the work is to explore the possibilities offered by emerging creative technologies of Virtual Reality (VR) systems and game engines to visualize multiwavelength datasets. Game Engines are primarily used for developing video games, however their advanced graphics could be exploited for scientific visualization which provides a means to graphically illustrate scientific data to ease human comprehension. Modern astronomy is now in the era of multiwavelength data where a single galaxy for example, is captured by the telescope several times and at different electromagnetic wavelength to have a more comprehensive picture of the physical characteristics of the galaxy. Visualising this in an immersive environment would be more intuitive and natural for an observer. This work presents a standalone VR application that accesses galaxy FITS files. The application was built using the Unity Game Engine for the graphics underpinning and the OpenXR API for the VR infrastructure. The work used a methodology known as Design Science Research (DSR) which entails the act of ‘using design as a research method or technique’. The key stages of the galaxy modelling pipeline are FITS data preparation, Galaxy Modelling, Unity 3D Visualisation and VR Display. The FITS data format cannot be read by the Unity Game Engine directly. A DLL (CSHARPFITS) which provides a native support for reading and writing FITS files was used. The Galaxy modeller uses an approach that integrates cleaned FITS image pixels into the graphics pipeline of the Unity3d game Engine. The cleaned FITS images are then input to the galaxy modeller pipeline phase, which has a pre-processing script that extracts, pixel, galaxy world position, and colour maps the FITS image pixels. The user can visualise image galaxies in different light bands, control the blend of the image with similar images from different sources or fuse images for a holistic view. The framework will allow users to build tools to realise complex workflows for public outreach and possibly scientific work with increased scalability, near real time interactivity with ease of access. The application is presented in an immersive environment and can use all commercially available headset built on the OpenXR API. The user can select galaxies in the scene, teleport to the galaxy, pan, zoom in/out, and change colour gradients of the galaxy. The findings and design lessons learnt in the implementation of different use cases will contribute to the development and design of game-based visualisation tools in immersive environment by enabling informed decisions to be made.Keywords: astronomy, visualisation, multiwavelenght dataset, virtual reality
Procedia PDF Downloads 971530 High-Frequency Acoustic Microscopy Imaging of Pellet/Cladding Interface in Nuclear Fuel Rods
Authors: H. Saikouk, D. Laux, Emmanuel Le Clézio, B. Lacroix, K. Audic, R. Largenton, E. Federici, G. Despaux
Abstract:
Pressurized Water Reactor (PWR) fuel rods are made of ceramic pellets (e.g. UO2 or (U,Pu) O2) assembled in a zirconium cladding tube. By design, an initial gap exists between these two elements. During irradiation, they both undergo transformations leading progressively to the closure of this gap. A local and non destructive examination of the pellet/cladding interface could constitute a useful help to identify the zones where the two materials are in contact, particularly at high burnups when a strong chemical bonding occurs under nominal operating conditions in PWR fuel rods. The evolution of the pellet/cladding bonding during irradiation is also an area of interest. In this context, the Institute of Electronic and Systems (IES- UMR CNRS 5214), in collaboration with the Alternative Energies and Atomic Energy Commission (CEA), is developing a high frequency acoustic microscope adapted to the control and imaging of the pellet/cladding interface with high resolution. Because the geometrical, chemical and mechanical nature of the contact interface is neither axially nor radially homogeneous, 2D images of this interface need to be acquired via this ultrasonic system with a highly performing processing signal and by means of controlled displacement of the sample rod along both its axis and its circumference. Modeling the multi-layer system (water, cladding, fuel etc.) is necessary in this present study and aims to take into account all the parameters that have an influence on the resolution of the acquired images. The first prototype of this microscope and the first results of the visualization of the inner face of the cladding will be presented in a poster in order to highlight the potentials of the system, whose final objective is to be introduced in the existing bench MEGAFOX dedicated to the non-destructive examination of irradiated fuel rods at LECA-STAR facility in CEA-Cadarache.Keywords: high-frequency acoustic microscopy, multi-layer model, non-destructive testing, nuclear fuel rod, pellet/cladding interface, signal processing
Procedia PDF Downloads 1931529 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification
Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran
Abstract:
The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM
Procedia PDF Downloads 2541528 Questions of Subjectivity in Establishing Plurality in Indian Women’s Autobiographies
Authors: Angkayarkan Vinayakaselvi
Abstract:
This paper aims at unpacking the questions of subjectivity and their role in altering and redefining the constructed images of self and community as represented in chosen Indian women’s autobiographies. India is a country of plurality and this plurality is further extended by diasporic explorations. As the third world feminism questioned the Euro-American views on homogenizing the socio-cultural condition of women of all over the world, Indian feminism needs to critique the view that all Indian women are one and the same. Similar to the plural nature of nation, the nature and condition of women, too, are plural in India. Indian women are differentiated by caste, class, and region. A critical scrutiny of autobiographies written by Indian women belong to different socio-cultural groups – Northeast Indian, Dalit and Diasporic categories – will assess the impact of education, profession and socio-cultural and economic status on Indian Women. Such a critique would highlight the heterogeneous subjectivity of Indian women. The images/selves of women as represented through these autobiographies are chosen with an aim to unmask and challenge, through ordering and positioning, the capitalist politics of literary representations of Indian women’s formation of 'her-self'. Methodologies and subjects associated with literature are considered essential for understanding and combating women’s oppression and empowerment. The representation of self in personal autobiographical history could be treated as the history of entire nation as personal is always political in feminist writings. The chosen narrators who are well-educated, well-settled, professional women of letters are capable of assessing, critiquing and re/articulating the shifting paradigms of women’s lives. Despite these factors, the textual spaces possess evidences to establish the facts that these women undergo sufferings, and they counter design cultural specific strategies for their empowerment. These metafictional self-conscious synecdoches extend to include the world of entire women. Thus these autobiographical texts could be reinterpreted as a searing critique of Indian society based on woman’s personal life.Keywords: ethnicity and diversity, gender studies, Indian women’s autobiographies, subjectivity
Procedia PDF Downloads 2221527 ROSgeoregistration: Aerial Multi-Spectral Image Simulator for the Robot Operating System
Authors: Andrew R. Willis, Kevin Brink, Kathleen Dipple
Abstract:
This article describes a software package called ROS-georegistration intended for use with the robot operating system (ROS) and the Gazebo 3D simulation environment. ROSgeoregistration provides tools for the simulation, test, and deployment of aerial georegistration algorithms and is available at github.com/uncc-visionlab/rosgeoregistration. A model creation package is provided which downloads multi-spectral images from the Google Earth Engine database and, if necessary, incorporates these images into a single, possibly very large, reference image. Additionally a Gazebo plugin which uses the real-time sensor pose and image formation model to generate simulated imagery using the specified reference image is provided along with related plugins for UAV relevant data. The novelty of this work is threefold: (1) this is the first system to link the massive multi-spectral imaging database of Google’s Earth Engine to the Gazebo simulator, (2) this is the first example of a system that can simulate geospatially and radiometrically accurate imagery from multiple sensor views of the same terrain region, and (3) integration with other UAS tools creates a new holistic UAS simulation environment to support UAS system and subsystem development where real-world testing would generally be prohibitive. Sensed imagery and ground truth registration information is published to client applications which can receive imagery synchronously with telemetry from other payload sensors, e.g., IMU, GPS/GNSS, barometer, and windspeed sensor data. To highlight functionality, we demonstrate ROSgeoregistration for simulating Electro-Optical (EO) and Synthetic Aperture Radar (SAR) image sensors and an example use case for developing and evaluating image-based UAS position feedback, i.e., pose for image-based Guidance Navigation and Control (GNC) applications.Keywords: EO-to-EO, EO-to-SAR, flight simulation, georegistration, image generation, robot operating system, vision-based navigation
Procedia PDF Downloads 1081526 Parametric Evaluation for the Optimization of Gastric Emptying Protocols Used in Health Care Institutions
Authors: Yakubu Adamu
Abstract:
The aim of this research was to assess the factors contributing to the need for optimisation of the gastric emptying protocols in nuclear medicine and molecular imaging (SNMMI) procedures. The objective is to suggest whether optimisation is possible and provide supporting evidence for the current imaging protocols of gastric emptying examination used in nuclear medicine. The research involved the use of some selected patients with 30 dynamic series for the image processing using ImageJ, and by so doing, the calculated half-time, retention fraction to the 60 x1 minute, 5 minute and 10-minute protocol, and other sampling intervals were obtained. Results from the study IDs for the gastric emptying clearance half-time were classified into normal, abnormal fast, and abnormal slow categories. In the normal category, which represents 50% of the total gastric emptying image IDs processed, their clearance half-time was within the range of 49.5 to 86.6 minutes of the mean counts. Also, under the abnormal fast category, their clearance half-time fell between 21 to 43.3 minutes of the mean counts, representing 30% of the total gastric emptying image IDs processed, and the abnormal slow category had clearance half-time within the range of 138.6 to 138.6 minutes of the mean counts, representing 20%. The results indicated that the calculated retention fraction values from the 1, 5, and 10-minute sampling curves and the measured values of gastric emptying retention fraction from sampling curves of the study IDs had a normal retention fraction of <60% and decreased exponentially with an increase in time and it was evident with low percentages of retention fraction ratios of < 10% after the 4 hours. Thus, this study does not change categories suggesting that these values could feasibly be used instead of having to acquire actual images. Findings from the study suggest that the current gastric emptying protocol can be optimized by acquiring fewer images. The study recommended that the gastric emptying studies should be performed with imaging at a minimum of 0, 1, 2, and 4 hours after meal ingestion.Keywords: gastric emptying, retention fraction, clearance halftime, optimisation, protocol
Procedia PDF Downloads 191525 Brand Tips of Thai Halal Products
Authors: Pibool Waijittragum
Abstract:
The purpose of this research is to analyze the marketing strategies of Thai Halal products which related to the way of life for Thai Muslims. The expected benefit is the marketing strategy for brand building process for Halal products in Thailand. 4 elements of marketing strategies which necessary for the brand identity creation is the research framework: Consists of Attributes, Benefits, Values and Personality. The research methodology was applied using qualitative and quantitative; 19 marketing experts with dynamic roles in Thai consumer products were interviewed. In addition, a field survey of 122 Thai Muslims selected from 175 Muslim communities in Bangkok was studied. Data analysis will be according to 5 categories of Thai Halal product: 1) Meat 2) Vegetable and Fruits 3) Instant foods and Garnishing ingredient 4) Beverages, desserts and snacks 5) Hygienic daily products; such as soap, shampoo and body lotion. The results will explain some suitable representation in the marketing strategies of Thai Halal products as are: 1) Benefit; the characteristics of the product with its benefit. Consumers will purchase this product with the reason of; it is beneficial nutrients product, there are no toxic or chemical residues. Fresh and clean materials 2) Attribute; the exterior images that attract to consumer. Consumers will purchase this product with the reason of; there is a standard proof mark, food and drug secure proof mark and Halal products mark. Packaging and its materials should be draw attention. Use an attractive graphic. Use outstanding images of product, material or ingredients. 3) Value; the value of products that affect to consumers perception; it is healthy products. Accumulate quality of life. It is a product of expertise, manufacturing of research result. Consumers are important. It’s sincere, honest and reliable to all. 4) Personality; reflection of consumers thought. The personality feedback to them after they were consumes this product; they are health care persons. They are the rational person, moral person, justice person and thoughtful person like a progressive thinking.Keywords: marketing strategies, product identity, branding, Thai Halal products
Procedia PDF Downloads 3911524 Atomic Decomposition Audio Data Compression and Denoising Using Sparse Dictionary Feature Learning
Authors: T. Bryan , V. Kepuska, I. Kostnaic
Abstract:
A method of data compression and denoising is introduced that is based on atomic decomposition of audio data using “basis vectors” that are learned from the audio data itself. The basis vectors are shown to have higher data compression and better signal-to-noise enhancement than the Gabor and gammatone “seed atoms” that were used to generate them. The basis vectors are the input weights of a Sparse AutoEncoder (SAE) that is trained using “envelope samples” of windowed segments of the audio data. The envelope samples are extracted from the audio data by performing atomic decomposition with Gabor or gammatone seed atoms. This process identifies segments of audio data that are locally coherent with the seed atoms. Envelope samples are extracted by identifying locally coherent audio data segments with Gabor or gammatone seed atoms, found by matching pursuit. The envelope samples are formed by taking the kronecker products of the atomic envelopes with the locally coherent data segments. Oracle signal-to-noise ratio (SNR) verses data compression curves are generated for the seed atoms as well as the basis vectors learned from Gabor and gammatone seed atoms. SNR data compression curves are generated for speech signals as well as early American music recordings. The basis vectors are shown to have higher denoising capability for data compression rates ranging from 90% to 99.84% for speech as well as music. Envelope samples are displayed as images by folding the time series into column vectors. This display method is used to compare of the output of the SAE with the envelope samples that produced them. The basis vectors are also displayed as images. Sparsity is shown to play an important role in producing the highest denoising basis vectors.Keywords: sparse dictionary learning, autoencoder, sparse autoencoder, basis vectors, atomic decomposition, envelope sampling, envelope samples, Gabor, gammatone, matching pursuit
Procedia PDF Downloads 2551523 Benign Recurrent Unilateral Abducens (6th) Nerve Palsy in 14 Months Old Girl: A Case Report
Authors: Khaled Alabduljabbar
Abstract:
Background: Benign, isolated, recurrent sixth nerve palsy is very rare in children. Here we report a case of recurrent abducens nerve palsy with no obvious etiology. It is a diagnosis of exclusion. A recurrent benign form of 6th nerve palsy, a rarer still palsy, has been described in the literature, and it is of most likely secondary to inflammatory causes, e.g, following viral and bacterial infections. Purpose: To present a case of 14 months old girl with recurrent attacks of isolated left sixth cranial nerve palsy following upper respiratory tract infection. Observation: The patient presented to opthalmology clinic with sudden onset of inward deviation (esotropia) of the left eye with a compensatory left face turn one week following signs of upper respiratory tract infection. Ophthalmological examination revealed large angle esotropia of the left eye in primary position, with complete limitation of abduction of the left eye, no palpebral fissure changes, and abnormal position of the head (left face turn). Visual acuity was normal, and no significant refractive error on cycloplegic refraction for her age. Fundus examination was normal with no evidence of papilledema. There was no relative afferent pupillary defect (RAPD) and no anisocoria. Past medical history and family history were unremarkable, with no history of convulsion attacks or head trauma. Additional workout include CBC. Erythrocyte sedimentation rate, Urgent magnetic resonance imaging (MRI), and angiography of the brain were performed and demonstrated the absence of intracranial and orbital lesions. Referral to pediatric neurologist was also done and concluded no significant finding. The patient showed improvement of the left sixth cranial nerve palsy and left face turn over a period of two months. Seven months since the first attack, she experienced a recurrent attack of left eye esotropia with left face turn concurrent with URTI. The rest of eye examination was again unremarkable. CT scan and MRI scan of brain and orbit were performed and showed only signs of sinusitis with no intracranial pathology. The palsy resolved spontaneously within two months. A third episode of left 6th nerve palsy occurred 6 months later, whichrecovered over one month. Examination and neuroimagingwere unremarkable. A diagnosis of benign recurrent left 6th cranial nerve palsy was made. Conclusion: Benign sixth cranial nerve palsy is always a diagnosis of exclusion given the more serious and life-threatening alternative causes. It seems to have a good prognosis with only supportive measures. The likelihood of benign 6th cranial nerve palsy to resolve completely and spontaneously is high. Observation for at least 6 months without intervention is advisable.Keywords: 6th nerve pasy, abducens nerve pasy, recurrent nerve palsy, cranial nerve palsy
Procedia PDF Downloads 941522 Experimental Modeling of Spray and Water Sheet Formation Due to Wave Interactions with Vertical and Slant Bow-Shaped Model
Authors: Armin Bodaghkhani, Bruce Colbourne, Yuri S. Muzychka
Abstract:
The process of spray-cloud formation and flow kinematics produced from breaking wave impact on vertical and slant lab-scale bow-shaped models were experimentally investigated. Bubble Image Velocimetry (BIV) and Image Processing (IP) techniques were applied to study the various types of wave-model impacts. Different wave characteristics were generated in a tow tank to investigate the effects of wave characteristics, such as wave phase velocity, wave steepness on droplet velocities, and behavior of the process of spray cloud formation. The phase ensemble-averaged vertical velocity and turbulent intensity were computed. A high-speed camera and diffused LED backlights were utilized to capture images for further post processing. Various pressure sensors and capacitive wave probes were used to measure the wave impact pressure and the free surface profile at different locations of the model and wave-tank, respectively. Droplet sizes and velocities were measured using BIV and IP techniques to trace bubbles and droplets in order to measure their velocities and sizes by correlating the texture in these images. The impact pressure and droplet size distributions were compared to several previously experimental models, and satisfactory agreements were achieved. The distribution of droplets in front of both models are demonstrated. Due to the highly transient process of spray formation, the drag coefficient for several stages of this transient displacement for various droplet size ranges and different Reynolds number were calculated based on the ensemble average method. From the experimental results, the slant model produces less spray in comparison with the vertical model, and the droplet velocities generated from the wave impact with the slant model have a lower velocity as compared with the vertical model.Keywords: spray charachteristics, droplet size and velocity, wave-body interactions, bubble image velocimetry, image processing
Procedia PDF Downloads 3021521 Application of Optical Method for Calcul of Deformed Object Samples
Authors: R. Daira
Abstract:
The electronic speckle interferometry technique used to measure the deformations of scatterers process is based on the subtraction of interference patterns. A speckle image is first recorded before deformation of the object in the RAM of a computer, after a second deflection. The square of the difference between two images showing correlation fringes observable in real time directly on monitor. The interpretation these fringes to determine the deformation. In this paper, we present experimental results of deformation out of the plane of two samples in aluminum, electronic boards and stainless steel.Keywords: optical method, holography, interferometry, deformation
Procedia PDF Downloads 4081520 A Single Feature Probability-Object Based Image Analysis for Assessing Urban Landcover Change: A Case Study of Muscat Governorate in Oman
Authors: Salim H. Al Salmani, Kevin Tansey, Mohammed S. Ozigis
Abstract:
The study of the growth of built-up areas and settlement expansion is a major exercise that city managers seek to undertake to establish previous and current developmental trends. This is to ensure that there is an equal match of settlement expansion needs to the appropriate levels of services and infrastructure required. This research aims at demonstrating the potential of satellite image processing technique, harnessing the utility of single feature probability-object based image analysis technique in assessing the urban growth dynamics of the Muscat Governorate in Oman for the period 1990, 2002 and 2013. This need is fueled by the continuous expansion of the Muscat Governorate beyond predicted levels of infrastructural provision. Landsat Images of the years 1990, 2002 and 2013 were downloaded and preprocessed to forestall appropriate radiometric and geometric standards. A novel approach of probability filtering of the target feature segment was implemented to derive the spatial extent of the final Built-Up Area of the Muscat governorate for the three years period. This however proved to be a useful technique as high accuracy assessment results of 55%, 70%, and 71% were recorded for the Urban Landcover of 1990, 2002 and 2013 respectively. Furthermore, the Normalized Differential Built – Up Index for the various images were derived and used to consolidate the results of the SFP-OBIA through a linear regression model and visual comparison. The result obtained showed various hotspots where urbanization have sporadically taken place. Specifically, settlement in the districts (Wilayat) of AL-Amarat, Muscat, and Qurayyat experienced tremendous change between 1990 and 2002, while the districts (Wilayat) of AL-Seeb, Bawshar, and Muttrah experienced more sporadic changes between 2002 and 2013.Keywords: urban growth, single feature probability, object based image analysis, landcover change
Procedia PDF Downloads 2771519 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging
Procedia PDF Downloads 911518 3D-Mesh Robust Watermarking Technique for Ownership Protection and Authentication
Authors: Farhan A. Alenizi
Abstract:
Digital watermarking has evolved in the past years as an important means for data authentication and ownership protection. The images and video watermarking was well known in the field of multimedia processing; however, 3D objects' watermarking techniques have emerged as an important means for the same purposes, as 3D mesh models are in increasing use in different areas of scientific, industrial, and medical applications. Like the image watermarking techniques, 3D watermarking can take place in either space or transform domains. Unlike images and video watermarking, where the frames have regular structures in both space and temporal domains, 3D objects are represented in different ways as meshes that are basically irregular samplings of surfaces; moreover, meshes can undergo a large variety of alterations which may be hard to tackle. This makes the watermarking process more challenging. While the transform domain watermarking is preferable in images and videos, they are still difficult to implement in 3d meshes due to the huge number of vertices involved and the complicated topology and geometry, and hence the difficulty to perform the spectral decomposition, even though significant work was done in the field. Spatial domain watermarking has attracted significant attention in the past years; they can either act on the topology or on the geometry of the model. Exploiting the statistical characteristics in the 3D mesh models from both geometrical and topological aspects was useful in hiding data. However, doing that with minimal surface distortions to the mesh attracted significant research in the field. A 3D mesh blind watermarking technique is proposed in this research. The watermarking method depends on modifying the vertices' positions with respect to the center of the object. An optimal method will be developed to reduce the errors, minimizing the distortions that the 3d object may experience due to the watermarking process, and reducing the computational complexity due to the iterations and other factors. The technique relies on the displacement process of the vertices' locations depending on the modification of the variances of the vertices’ norms. Statistical analyses were performed to establish the proper distributions that best fit each mesh, and hence establishing the bins sizes. Several optimizing approaches were introduced in the realms of mesh local roughness, the statistical distributions of the norms, and the displacements in the mesh centers. To evaluate the algorithm's robustness against other common geometry and connectivity attacks, the watermarked objects were subjected to uniform noise, Laplacian smoothing, vertices quantization, simplification, and cropping. Experimental results showed that the approach is robust in terms of both perceptual and quantitative qualities. It was also robust against both geometry and connectivity attacks. Moreover, the probability of true positive detection versus the probability of false-positive detection was evaluated. To validate the accuracy of the test cases, the receiver operating characteristics (ROC) curves were drawn, and they’ve shown robustness from this aspect. 3D watermarking is still a new field but still a promising one.Keywords: watermarking, mesh objects, local roughness, Laplacian Smoothing
Procedia PDF Downloads 1631517 YOLO-Based Object Detection for the Automatic Classification of Intestinal Organoids
Authors: Luana Conte, Giorgio De Nunzio, Giuseppe Raso, Donato Cascio
Abstract:
The intestinal epithelium serves as a pivotal model for studying stem cell biology and diseases such as colorectal cancer. Intestinal epithelial organoids, which replicate many in vivo features of the intestinal epithelium, are increasingly used as research models. However, manual classification of organoids is labor-intensive and prone to subjectivity, limiting scalability. In this study, we developed an automated object-detection algorithm to classify intestinal organoids in transmitted-light microscopy images. Our approach utilizes the YOLOv10 medium model (YOLO10m), a state-of-the-art object-detection algorithm, to predict and classify objects within labeled bounding boxes. The model was fine-tuned on a publicly available dataset containing 840 manually annotated images with 23,066 total annotations, averaging 28.2 annotations per image (median: 21; range: 1–137). It was trained to identify four categories: cysts, early organoids, late organoids, and spheroids, using a 90:10 train-validation split over 150 epochs. Model performance was assessed using mean average precision (mAP), precision, and recall metrics. The mAP, a standard metric ranging from 0 to 1 (with 1 indicating perfect agreement with manual labeling), was calculated at a 50% overlap threshold (mAP=0.5). Optimal performance was achieved at epoch 80, with an mAP of 0.85, precision of 0.78, and recall of 0.80 on the validation dataset. Classspecific mAP values were highest for cysts (0.87), followed by late organoids (0.83), early organoids (0.76), and spheroids (0.68). Additionally, the model demonstrated the ability to measure organoid sizes and classify them with accuracy comparable to expert scientists, while operating significantly faster. This automated pipeline represents a robust tool for large-scale, high-throughput analysis of intestinal organoids, paving the way for more efficient research in organoid biology and related fields.Keywords: intestinal organoids, object detection, YOLOv10, transmitted-light microscopy
Procedia PDF Downloads 101516 Applications of Hyperspectral Remote Sensing: A Commercial Perspective
Authors: Tuba Zahra, Aakash Parekh
Abstract:
Hyperspectral remote sensing refers to imaging of objects or materials in narrow conspicuous spectral bands. Hyperspectral images (HSI) enable the extraction of spectral signatures for objects or materials observed. These images contain information about the reflectance of each pixel across the electromagnetic spectrum. It enables the acquisition of data simultaneously in hundreds of spectral bands with narrow bandwidths and can provide detailed contiguous spectral curves that traditional multispectral sensors cannot offer. The contiguous, narrow bandwidth of hyperspectral data facilitates the detailed surveying of Earth's surface features. This would otherwise not be possible with the relatively coarse bandwidths acquired by other types of imaging sensors. Hyperspectral imaging provides significantly higher spectral and spatial resolution. There are several use cases that represent the commercial applications of hyperspectral remote sensing. Each use case represents just one of the ways that hyperspectral satellite imagery can support operational efficiency in the respective vertical. There are some use cases that are specific to VNIR bands, while others are specific to SWIR bands. This paper discusses the different commercially viable use cases that are significant for HSI application areas, such as agriculture, mining, oil and gas, defense, environment, and climate, to name a few. Theoretically, there is n number of use cases for each of the application areas, but an attempt has been made to streamline the use cases depending upon economic feasibility and commercial viability and present a review of literature from this perspective. Some of the specific use cases with respect to agriculture are crop species (sub variety) detection, soil health mapping, pre-symptomatic crop disease detection, invasive species detection, crop condition optimization, yield estimation, and supply chain monitoring at scale. Similarly, each of the industry verticals has a specific commercially viable use case that is discussed in the paper in detail.Keywords: agriculture, mining, oil and gas, defense, environment and climate, hyperspectral, VNIR, SWIR
Procedia PDF Downloads 831515 Spectral Dual Layer CT for Choledocholithiasis: A Blinded Comparison Study
Authors: Cheng Hong YEO
Abstract:
Introduction: Objective: To evaluate the effectiveness of Spectral Dual Layer CT (DECT) in diagnosing choledocholithiasis, specifically focusing on its accuracy in detecting small biliary stones compared to other imaging modalities. Background: DECT has shown promise in improving the detection and characterization of gallstones in the common bile duct, offering potential advantages over traditional imaging methods like standard CT and ultrasonography. Methodology: Study Design: Single-blinded retrospective study conducted at a teaching hospital. Patient Selection: Reviewed records of patients who underwent DECT for suspected choledocholithiasis and had follow-up MRCP, ERCP, or IOC within 8 weeks. 23 patients with proven choledocholithiasis and 23 controls without biliary filling defects were included. DECT Protocol: Used a Philips IQ 256-slice dual-energy CT scanner with standard protocols including 120 kVp and 40 keV mono-E images. Assessment: Four radiologists, blinded to the study question, evaluated images for the presence of choledocholithiasis. Sensitivity, specificity, PPV, and NPV were calculated based on consensus diagnoses. Results: Diagnostic Performance: DECT showed an overall sensitivity of 47.8% and specificity of 78.3% for detecting choledocholithiasis. The accuracy of the diagnosis ranged from 54% to 63% among observers. Stone Detection: Of the identified stones, 6 were calcified and 17 non-calcified. Detection of calcified stones was more accurate (83.3%) compared to non-calcified stones (35.3%). Differences in signal between stones and bile were noted in certain imaging parameters. Interobserver Agreement: The agreement among radiologists was fair, with a Fleiss Kappa coefficient of 0.30. Conclusion: This is the first study to specifically analyse the performance of spectral CT in choledocholithiasis detection using a control group and blinding of reviewers. Our modest results demonstrating lower overall sensitivity than had been reported previously at 47.8% overall while identifying 40% of non-calcified stones <9 mm. We believe further research and development on advancements in spectral CT technology or newer techniques such as photon counting CT is warranted.Keywords: dual energy CT, choledocholithiasis, gallstones, body imaging
Procedia PDF Downloads 51514 Adapting an Accurate Reverse-time Migration Method to USCT Imaging
Authors: Brayden Mi
Abstract:
Reverse time migration has been widely used in the Petroleum exploration industry to reveal subsurface images and to detect rock and fluid properties since the early 1980s. The seismic technology involves the construction of a velocity model through interpretive model construction, seismic tomography, or full waveform inversion, and the application of the reverse-time propagation of acquired seismic data and the original wavelet used in the acquisition. The methodology has matured from 2D, simple media to present-day to handle full 3D imaging challenges in extremely complex geological conditions. Conventional Ultrasound computed tomography (USCT) utilize travel-time-inversion to reconstruct the velocity structure of an organ. With the velocity structure, USCT data can be migrated with the “bend-ray” method, also known as migration. Its seismic application counterpart is called Kirchhoff depth migration, in which the source of reflective energy is traced by ray-tracing and summed to produce a subsurface image. It is well known that ray-tracing-based migration has severe limitations in strongly heterogeneous media and irregular acquisition geometries. Reverse time migration (RTM), on the other hand, fully accounts for the wave phenomena, including multiple arrives and turning rays due to complex velocity structure. It has the capability to fully reconstruct the image detectable in its acquisition aperture. The RTM algorithms typically require a rather accurate velocity model and demand high computing powers, and may not be applicable to real-time imaging as normally required in day-to-day medical operations. However, with the improvement of computing technology, such a computational bottleneck may not present a challenge in the near future. The present-day (RTM) algorithms are typically implemented from a flat datum for the seismic industry. It can be modified to accommodate any acquisition geometry and aperture, as long as sufficient illumination is provided. Such flexibility of RTM can be conveniently implemented for the application in USCT imaging if the spatial coordinates of the transmitters and receivers are known and enough data is collected to provide full illumination. This paper proposes an implementation of a full 3D RTM algorithm for USCT imaging to produce an accurate 3D acoustic image based on the Phase-shift-plus-interpolation (PSPI) method for wavefield extrapolation. In this method, each acquired data set (shot) is propagated back in time, and a known ultrasound wavelet is propagated forward in time, with PSPI wavefield extrapolation and a piece-wise constant velocity model of the organ (breast). The imaging condition is then applied to produce a partial image. Although each image is subject to the limitation of its own illumination aperture, the stack of multiple partial images will produce a full image of the organ, with a much-reduced noise level if compared with individual partial images.Keywords: illumination, reverse time migration (RTM), ultrasound computed tomography (USCT), wavefield extrapolation
Procedia PDF Downloads 771513 Microstructure Characterization of the Ball Milled Fe50Al30Ni20 (%.wt) Powder
Authors: C. Nakib, N. Ammouchi, A. Otmani, A. Djekoun, J. M. Grenèche
Abstract:
B2-structured FeAl was synthesized by an abrupt reaction during mechanical alloying (MA) of the elemental powders of Fe, Al and Ni. The structural, microstructural and morphological changes occurring in the studied material during MA were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Two crystalline phases were found, the major one corresponding to FeAl bcc phase with a crystallite size less than 10 nm, a lattice strain up to 1.6% and a dislocation density of about 2.3 1016m-2. The other phase in low proportion was corresponding to Fe (Al,Ni) solid solution. SEM images showed an irregular morphology of powder particles.Keywords: mechanical alloying, ternary composition, dislocation density, structural properties
Procedia PDF Downloads 2791512 Sparse Representation Based Spatiotemporal Fusion Employing Additional Image Pairs to Improve Dictionary Training
Authors: Dacheng Li, Bo Huang, Qinjin Han, Ming Li
Abstract:
Remotely sensed imagery with the high spatial and temporal characteristics, which it is hard to acquire under the current land observation satellites, has been considered as a key factor for monitoring environmental changes over both global and local scales. On a basis of the limited high spatial-resolution observations, challenged studies called spatiotemporal fusion have been developed for generating high spatiotemporal images through employing other auxiliary low spatial-resolution data while with high-frequency observations. However, a majority of spatiotemporal fusion approaches yield to satisfactory assumption, empirical but unstable parameters, low accuracy or inefficient performance. Although the spatiotemporal fusion methodology via sparse representation theory has advantage in capturing reflectance changes, stability and execution efficiency (even more efficient when overcomplete dictionaries have been pre-trained), the retrieval of high-accuracy dictionary and its response to fusion results are still pending issues. In this paper, we employ additional image pairs (here each image-pair includes a Landsat Operational Land Imager and a Moderate Resolution Imaging Spectroradiometer acquisitions covering the partial area of Baotou, China) only into the coupled dictionary training process based on K-SVD (K-means Singular Value Decomposition) algorithm, and attempt to improve the fusion results of two existing sparse representation based fusion models (respectively utilizing one and two available image-pair). The results show that more eligible image pairs are probably related to a more accurate overcomplete dictionary, which generally indicates a better image representation, and is then contribute to an effective fusion performance in case that the added image-pair has similar seasonal aspects and image spatial structure features to the original image-pair. It is, therefore, reasonable to construct multi-dictionary training pattern for generating a series of high spatial resolution images based on limited acquisitions.Keywords: spatiotemporal fusion, sparse representation, K-SVD algorithm, dictionary learning
Procedia PDF Downloads 2641511 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System Under Uncertainty
Authors: Ben Khayut, Lina Fabri, Maya Avikhana
Abstract:
The models of the modern Artificial Narrow Intelligence (ANI) cannot: a) independently and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, cognize, infer, and more in state of Uncertainty, and changes in situations, and environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU) using a neural network as its computational memory, operating under uncertainty, and activating its functions by perception, identification of real objects, fuzzy situational control, forming images of these objects, modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, and images, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, Wisdom, analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge in the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of Situational Control, Fuzzy Logic, Psycholinguistics, Informatics, and modern possibilities of Data Science were applied. The proposed self-controlled System of Brain and Mind is oriented on use as a plug-in in multilingual subject Applications.Keywords: computational brain, mind, psycholinguistic, system, under uncertainty
Procedia PDF Downloads 1821510 Maturity Classification of Oil Palm Fresh Fruit Bunches Using Thermal Imaging Technique
Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Reza Ehsani, Hawa Ze Jaffar, Ishak Aris
Abstract:
Ripeness estimation of oil palm fresh fruit is important processes that affect the profitableness and salability of oil palm fruits. The adulthood or ripeness of the oil palm fruits influences the quality of oil palm. Conventional procedure includes physical grading of Fresh Fruit Bunches (FFB) maturity by calculating the number of loose fruits per bunch. This physical classification of oil palm FFB is costly, time consuming and the results may have human error. Hence, many researchers try to develop the methods for ascertaining the maturity of oil palm fruits and thereby, deviously the oil content of distinct palm fruits without the need for exhausting oil extraction and analysis. This research investigates the potential of infrared images (Thermal Images) as a predictor to classify the oil palm FFB ripeness. A total of 270 oil palm fresh fruit bunches from most common cultivar of oil palm bunches Nigresens according to three maturity categories: under ripe, ripe and over ripe were collected. Each sample was scanned by the thermal imaging cameras FLIR E60 and FLIR T440. The average temperature of each bunches were calculated by using image processing in FLIR Tools and FLIR ThermaCAM researcher pro 2.10 environment software. The results show that temperature content decreased from immature to over mature oil palm FFBs. An overall analysis-of-variance (ANOVA) test was proved that this predictor gave significant difference between underripe, ripe and overripe maturity categories. This shows that the temperature as predictors can be good indicators to classify oil palm FFB. Classification analysis was performed by using the temperature of the FFB as predictors through Linear Discriminant Analysis (LDA), Mahalanobis Discriminant Analysis (MDA), Artificial Neural Network (ANN) and K- Nearest Neighbor (KNN) methods. The highest overall classification accuracy was 88.2% by using Artificial Neural Network. This research proves that thermal imaging and neural network method can be used as predictors of oil palm maturity classification.Keywords: artificial neural network, maturity classification, oil palm FFB, thermal imaging
Procedia PDF Downloads 3651509 3D Microscopy, Image Processing, and Analysis of Lymphangiogenesis in Biological Models
Authors: Thomas Louis, Irina Primac, Florent Morfoisse, Tania Durre, Silvia Blacher, Agnes Noel
Abstract:
In vitro and in vivo lymphangiogenesis assays are essential for the identification of potential lymphangiogenic agents and the screening of pharmacological inhibitors. In the present study, we analyse three biological models: in vitro lymphatic endothelial cell spheroids, in vivo ear sponge assay, and in vivo lymph node colonisation by tumour cells. These assays provide suitable 3D models to test pro- and anti-lymphangiogenic factors or drugs. 3D images were acquired by confocal laser scanning and light sheet fluorescence microscopy. Virtual scan microscopy followed by 3D reconstruction by image aligning methods was also used to obtain 3D images of whole large sponge and ganglion samples. 3D reconstruction, image segmentation, skeletonisation, and other image processing algorithms are described. Fixed and time-lapse imaging techniques are used to analyse lymphatic endothelial cell spheroids behaviour. The study of cell spatial distribution in spheroid models enables to detect interactions between cells and to identify invasion hierarchy and guidance patterns. Global measurements such as volume, length, and density of lymphatic vessels are measured in both in vivo models. Branching density and tortuosity evaluation are also proposed to determine structure complexity. Those properties combined with vessel spatial distribution are evaluated in order to determine lymphangiogenesis extent. Lymphatic endothelial cell invasion and lymphangiogenesis were evaluated under various experimental conditions. The comparison of these conditions enables to identify lymphangiogenic agents and to better comprehend their roles in the lymphangiogenesis process. The proposed methodology is validated by its application on the three presented models.Keywords: 3D image segmentation, 3D image skeletonisation, cell invasion, confocal microscopy, ear sponges, light sheet microscopy, lymph nodes, lymphangiogenesis, spheroids
Procedia PDF Downloads 3821508 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes
Authors: Madushani Rodrigo, Banuka Athuraliya
Abstract:
In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16
Procedia PDF Downloads 1291507 Detecting the Palaeochannels Based on Optical Data and High-Resolution Radar Data for Periyarriver Basin
Authors: S. Jayalakshmi, Gayathri S., Subiksa V., Nithyasri P., Agasthiya
Abstract:
Paleochannels are the buried part of an active river system which was separated from the active river channel by the process of cutoff or abandonment during the dynamic evolution of the active river. Over time, they are filled by young unconsolidated or semi-consolidated sediments. Additionally, it is impacted by geo morphological influences, lineament alterations, and other factors. The primary goal of this study is to identify the paleochannels in Periyar river basin for the year 2023. Those channels has a high probability in the presence of natural resources, including gold, platinum,tin,an duranium. Numerous techniques are used to map the paleochannel. Using the optical data, Satellite images were collected from various sources, which comprises multispectral satellite images from which indices such as Normalized Difference Vegetation Index (NDVI),Normalized Difference Water Index (NDWI), Soil Adjusted Vegetative Index (SAVI) and thematic layers such as Lithology, Stream Network, Lineament were prepared. Weights are assigned to each layer based on its importance, and overlay analysis has done, which concluded that the northwest region of the area has shown some paleochannel patterns. The results were cross-verified using the results obtained using microwave data. Using Sentinel data, Synthetic Aperture Radar (SAR) Image was extracted from European Space Agency (ESA) portal, pre-processed it using SNAP 6.0. In addition to that, Polarimetric decomposition technique has incorporated to detect the paleochannels based on its scattering property. Further, Principal component analysis has done for enhanced output imagery. Results obtained from optical and microwave radar data were compared and the location of paleochannels were detected. It resulted six paleochannels in the study area out of which three paleochannels were validated with the existing data published by Department of Geology and Environmental Science, Kerala. The other three paleochannels were newly detected with the help of SAR image.Keywords: paleochannels, optical data, SAR image, SNAP
Procedia PDF Downloads 951506 Satellite Images to Determine Levels of Fire Severity in a Native Chilean Forest: Assessing the Responses of Soil Mesofauna Diversity to a Fire Event
Authors: Carolina Morales, Ricardo Castro-Huerta, Enrique A. Mundaca
Abstract:
The edaphic fauna is the main factor involved in the transformation of nutrients and soil decomposition processes. Edaphic organisms are highly sensitive to soil disturbances, which normally causes changes in the composition and abundance of such organisms. Fire is known to be a disturbing factor since it affects the physical, chemical and biological properties of the soil and the whole ecosystem. During the summer (December-March) of 2017, Chile suffered the major fire events recorded in its modern history, which affected a vast area and a number of ecosystem types. The objective of this study was first to use remote sensing satellite images and GIS (Geographic Information Systems) to assess and identify levels of fire severity in disturbed areas and to compare the responses of the soil mesofauna diversity among such areas. We identified four areas (treatments) with an ascending level of severity, namely: mild, medium, high severity, and free of fire. A non-affected patch of forest was established as a control. Three samples from each treatment were collected in the form of a soil cube (10x10x10 cm). Edaphic mesofauna was obtained from each sample through the Berlese-Tullgren funnel method. Collected specimens were quantified and identified, using the RTU (Recognisable Taxonomic Unit) criterion. Diversity was analysed using inferential statistics to compare Simpson and Shannon-Wiener indexes across treatments. As predicted, the unburned forest patch (control) exhibited higher diversity values than the treatments. Significantly higher diversity values were recorded in those treatments subjected to lower fire severity. We conclude that remote sensing zoning is an adequate tool to identify different levels of fire severity and that an edaphic mesofauna is a group of organisms that qualify as good bioindicators for monitoring soil recovery after fire events.Keywords: bioindicator, Chile, fire severity level, soil
Procedia PDF Downloads 1631505 Perceptual Image Coding by Exploiting Internal Generative Mechanism
Authors: Kuo-Cheng Liu
Abstract:
In the perceptual image coding, the objective is to shape the coding distortion such that the amplitude of distortion does not exceed the error visibility threshold, or to remove perceptually redundant signals from the image. While most researches focus on color image coding, the perceptual-based quantizer developed for luminance signals are always directly applied to chrominance signals such that the color image compression methods are inefficient. In this paper, the internal generative mechanism is integrated into the design of a color image compression method. The internal generative mechanism working model based on the structure-based spatial masking is used to assess the subjective distortion visibility thresholds that are visually consistent to human eyes better. The estimation method of structure-based distortion visibility thresholds for color components is further presented in a locally adaptive way to design quantization process in the wavelet color image compression scheme. Since the lowest subband coefficient matrix of images in the wavelet domain preserves the local property of images in the spatial domain, the error visibility threshold inherent in each coefficient of the lowest subband for each color component is estimated by using the proposed spatial error visibility threshold assessment. The threshold inherent in each coefficient of other subbands for each color component is then estimated in a local adaptive fashion based on the distortion energy allocation. By considering that the error visibility thresholds are estimated using predicting and reconstructed signals of the color image, the coding scheme incorporated with locally adaptive perceptual color quantizer does not require side information. Experimental results show that the entropies of three color components obtained by using proposed IGM-based color image compression scheme are lower than that obtained by using the existing color image compression method at perceptually lossless visual quality.Keywords: internal generative mechanism, structure-based spatial masking, visibility threshold, wavelet domain
Procedia PDF Downloads 2521504 Emotion Recognition in Video and Images in the Wild
Authors: Faizan Tariq, Moayid Ali Zaidi
Abstract:
Facial emotion recognition algorithms are expanding rapidly now a day. People are using different algorithms with different combinations to generate best results. There are six basic emotions which are being studied in this area. Author tried to recognize the facial expressions using object detector algorithms instead of traditional algorithms. Two object detection algorithms were chosen which are Faster R-CNN and YOLO. For pre-processing we used image rotation and batch normalization. The dataset I have chosen for the experiments is Static Facial Expression in Wild (SFEW). Our approach worked well but there is still a lot of room to improve it, which will be a future direction.Keywords: face recognition, emotion recognition, deep learning, CNN
Procedia PDF Downloads 1911503 Mesoporous Material Nanofibers by Electrospinning
Authors: Sh. Sohrabnezhad, A. Jafarzadeh
Abstract:
In this paper, MCM-41 mesoporous material nanofibers were synthesized by an electrospinning technique. The nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption–desorption measurement. Tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA) were used as a silica source and fiber forming source, respectively. TEM and SEM images showed synthesis of MCM-41 nanofibers with a diameter of 200 nm. The pore diameter and surface area of calcined MCM-41 nanofibers was 2.2 nm and 970 m2/g, respectively. The morphology of the MCM-41 nanofibers depended on spinning voltages.Keywords: electrospinning, electron microscopy, fiber technology, porous materials, X-ray techniques
Procedia PDF Downloads 2521502 Development of Multi-Leaf Collimator-Based Isocenter Verification Tool Using Electrical Portal Imaging Device for Stereotactic Radiosurgery
Authors: Panatda Intanin, Sangutid Thongsawad, Chirapha Tannanonta, Todsaporn Fuangrod
Abstract:
Stereotactic radiosurgery (SRS) is a highly precision delivery technique that requires comprehensive quality assurance (QA) tests prior to treatment delivery. An isocenter of delivery beam plays a critical role that affect the treatment accuracy. The uncertainty of isocenter is traditionally accessed using circular cone equipment, Winston-Lutz (WL) phantom and film. This technique is considered time consuming and highly dependent on the observer. In this work, the development of multileaf collimator (MLC)-based isocenter verification tool using electronic portal imaging device (EPID) was proposed and evaluated. A mechanical isocenter alignment with ball bearing diameter 5 mm and circular cone diameter 10 mm fixed to gantry head defines the radiation field was set as the conventional WL test method. The conventional setup was to compare to the proposed setup; using MLC (10 x 10 mm) to define the radiation filed instead of cone. This represents more realistic delivery field than using circular cone equipment. The acquisition from electronic portal imaging device (EPID) and radiographic film were performed in both experiments. The gantry angles were set as following: 0°, 90°, 180° and 270°. A software tool was in-house developed using MATLAB/SIMULINK programming to determine the centroid of radiation field and shadow of WL phantom automatically. This presents higher accuracy than manual measurement. The deviation between centroid of both cone-based and MLC-based WL tests were quantified. To compare between film and EPID image, the deviation for all gantry angle was 0.26±0.19mm and 0.43±0.30 for cone-based and MLC-based WL tests. For the absolute deviation calculation on EPID images between cone and MLC-based WL test was 0.59±0.28 mm and the absolute deviation on film images was 0.14±0.13 mm. Therefore, the MLC-based isocenter verification using EPID present high sensitivity tool for SRS QA.Keywords: isocenter verification, quality assurance, EPID, SRS
Procedia PDF Downloads 156