Search results for: full fuzzy
2114 Design of Local Interconnect Network Controller for Automotive Applications
Authors: Jong-Bae Lee, Seongsoo Lee
Abstract:
Local interconnect network (LIN) is a communication protocol that combines sensors, actuators, and processors to a functional module in automotive applications. In this paper, a LIN ver. 2.2A controller was designed in Verilog hardware description language (Verilog HDL) and implemented in field-programmable gate array (FPGA). Its operation was verified by making full-scale LIN network with the presented FPGA-implemented LIN controller, commercial LIN transceivers, and commercial processors. When described in Verilog HDL and synthesized in 0.18 μm technology, its gate size was about 2,300 gates.Keywords: local interconnect network, controller, transceiver, processor
Procedia PDF Downloads 2902113 Effectiveness of Centromedullary Fixation by Metaizeau Technique in Challenging Pediatric Fractures
Authors: Mohammad Arshad Ikram
Abstract:
We report three cases of challenging fractures in children treated by intramedullary fixation using the Metaizeau method and achieved anatomical reduction with excellent clinical results. Jean-Paul Metaizeau described the centromedullary fixation for the radial neck in 1980 using K-wires Radial neck fractures are uncommon in children. Treatment of severely displaced fractures is always challenging. Closed reduction techniques are more popular as compared to open reduction due to the low risk of complications. Metaizeau technique of closed reduction with centromedullary pinning is a commonly preferred method of treatment. We present two cases with a severely displaced radial neck fracture, treated by this method and achieved sound union; anatomical position of the radial head and full function were observed two months after surgery. Proximal humerus fractures are another uncommon injury in children accounting for less than 5% of all pediatric fractures. Most of these injuries occur through the growth plate because of its relative weakness. Salter-Harris type I is commonly seen in the younger age group, whereas type II & III occurs in older children and adolescents. In contrast to adults, traumatic glenohumeral dislocation is an infrequently observed condition among children. A combination of proximal humerus fracture and glenohumeral dislocation is extremely rare and occurs in less than 2% of the pediatric population. The management of this injury is always challenging. Treatment ranged from closed reduction with and without internal fixation and open reduction with internal fixation. The children who had closed reduction with centromedullary fixation by the Metaizeau method showed excellent results with the return of full movements at the shoulder in a short time without any complication. We present the case of a child with anterior dislocation of the shoulder associated with a complete displaced proximal humerus metaphyseal fracture. The fracture was managed by closed reduction and then fixation by two centromedullary K-wires using the Metaizeau method, achieving the anatomical reduction of the fracture and dislocation. This method of treatment enables us to achieve excellent radiological and clinical results in a short time.Keywords: glenohumeral, Metaizeau method, pediatric fractures, radial neck
Procedia PDF Downloads 1062112 Chemical Composition of Essential Oil from Lavandula stoechas and Lavandula multifida Growing Wild in Algeria
Authors: Fatima Benchikh-Amiraa, Hocine Laouerb, Smain Amiraa, Guido Flaminic
Abstract:
The essential oils of the aerial parts of Lavandula multifida and L. stoechas were extracted at the full bloom stage by hydrodistillation and theirs chemical compositions were estimated by means of gas chromatography–mass spectrometry (GC–MS). A total of 46 and 67 constituents were identified representing 95.5% and 98.2% of the total oils, respectively. The main components of L. multifida oil were carvacrol (63.8%), beta-bisabolene (8.7%), spathulenol (6.2%), caryophyllene oxide (3.6%) and linalool (2.9%). The oil of L. stoechas was dominated by fenchone (63.9%), camphor (7.8%), 1,8-cineole (5.3%) and myrtenyl acetate (4.2).Keywords: essential oils, Lavandula multifida, Lavandula stoechas, chemical and molecular engineering
Procedia PDF Downloads 4302111 Decision Support System for a Pilot Flash Flood Early Warning System in Central Chile
Authors: D. Pinto, L. Castro, M. L. Cruzat, S. Barros, J. Gironás, C. Oberli, M. Torres, C. Escauriaza, A. Cipriano
Abstract:
Flash floods, together with landslides, are a common natural threat for people living in mountainous regions and foothills. One way to deal with this constant menace is the use of Early Warning Systems, which have become a very important mitigation strategy for natural disasters. In this work, we present our proposal for a pilot Flash Flood Early Warning System for Santiago, Chile, the first stage of a more ambitious project that in a future stage shall also include early warning of landslides. To give a context for our approach, we first analyze three existing Flash Flood Early Warning Systems, focusing on their general architectures. We then present our proposed system, with main focus on the decision support system, a system that integrates empirical models and fuzzy expert systems to achieve reliable risk estimations.Keywords: decision support systems, early warning systems, flash flood, natural hazard
Procedia PDF Downloads 3732110 Power Aware Modified I-LEACH Protocol Using Fuzzy IF Then Rules
Authors: Gagandeep Singh, Navdeep Singh
Abstract:
Due to limited battery of sensor nodes, so energy efficiency found to be main constraint in WSN. Therefore the main focus of the present work is to find the ways to minimize the energy consumption problem and will results; enhancement in the network stability period and life time. Many researchers have proposed different kind of the protocols to enhance the network lifetime further. This paper has evaluated the issues which have been neglected in the field of the WSNs. WSNs are composed of multiple unattended ultra-small, limited-power sensor nodes. Sensor nodes are deployed randomly in the area of interest. Sensor nodes have limited processing, wireless communication and power resource capabilities Sensor nodes send sensed data to sink or Base Station (BS). I-LEACH gives adaptive clustering mechanism which very efficiently deals with energy conservations. This paper ends up with the shortcomings of various adaptive clustering based WSNs protocols.Keywords: WSN, I-Leach, MATLAB, sensor
Procedia PDF Downloads 2752109 Computational Cell Segmentation in Immunohistochemically Image of Meningioma Tumor Using Fuzzy C-Means and Adaptive Vector Directional Filter
Authors: Vahid Anari, Leila Shahmohammadi
Abstract:
Diagnosing and interpreting manually from a large cohort dataset of immunohistochemically stained tissue of tumors using an optical microscope involves subjectivity and also is tedious for pathologist specialists. Moreover, digital pathology today represents more of an evolution than a revolution in pathology. In this paper, we develop and test an unsupervised algorithm that can automatically enhance the IHC image of a meningioma tumor and classify cells into positive (proliferative) and negative (normal) cells. A dataset including 150 images is used to test the scheme. In addition, a new adaptive color image enhancement method is proposed based on a vector directional filter (VDF) and statistical properties of filtering the window. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.Keywords: digital pathology, cell segmentation, immunohistochemically, noise reduction
Procedia PDF Downloads 682108 Enhancing Cloud Computing with Security Trust Model
Authors: John Ayoade
Abstract:
Cloud computing is a model that enables the delivery of on-demand computing resources such as networks, servers, storage, applications and services over the internet. Cloud Computing is a relatively growing concept that presents a good number of benefits for its users; however, it also raises some security challenges which may slow down its use. In this paper, we identify some of those security issues that can serve as barriers to realizing the full benefits that cloud computing can bring. One of the key security problems is security trust. A security trust model is proposed that can enhance the confidence that users need to fully trust the use of public and mobile cloud computing and maximize the potential benefits that they offer.Keywords: cloud computing, trust, security, certificate authority, PKI
Procedia PDF Downloads 4852107 A Hybrid Data-Handler Module Based Approach for Prioritization in Quality Function Deployment
Authors: P. Venu, Joeju M. Issac
Abstract:
Quality Function Deployment (QFD) is a systematic technique that creates a platform where the customer responses can be positively converted to design attributes. The accuracy of a QFD process heavily depends on the data that it is handling which is captured from customers or QFD team members. Customized computer programs that perform Quality Function Deployment within a stipulated time have been used by various companies across the globe. These programs heavily rely on storage and retrieval of the data on a common database. This database must act as a perfect source with minimum missing values or error values in order perform actual prioritization. This paper introduces a missing/error data handler module which uses Genetic Algorithm and Fuzzy numbers. The prioritization of customer requirements of sesame oil is illustrated and a comparison is made between proposed data handler module-based deployment and manual deployment.Keywords: hybrid data handler, QFD, prioritization, module-based deployment
Procedia PDF Downloads 2972106 Solving the Quadratic Programming Problem Using a Recurrent Neural Network
Authors: A. A. Behroozpoor, M. M. Mazarei
Abstract:
In this paper, a fuzzy recurrent neural network is proposed for solving the classical quadratic control problem subject to linear equality and bound constraints. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed.Keywords: REFERENCES [1] Xia, Y, A new neural network for solving linear and quadratic programming problems. IEEE Transactions on Neural Networks, 7(6), 1996, pp.1544–1548. [2] Xia, Y., & Wang, J, A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Transactions on Neural Networks, 16(2), 2005, pp. 379–386. [3] Xia, Y., H, Leung, & J, Wang, A projection neural network and its application to constrained optimization problems. IEEE Transactions Circuits and Systems-I, 49(4), 2002, pp.447–458.B. [4] Q. Liu, Z. Guo, J. Wang, A one-layer recurrent neural network for constrained seudoconvex optimization and its application for dynamic portfolio optimization. Neural Networks, 26, 2012, pp. 99-109.
Procedia PDF Downloads 6452105 From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications
Procedia PDF Downloads 942104 Treatment of Full-Thickness Rotator Cuff Tendon Tear Using Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Polydeoxyribonucleotides in a Rabbit Model
Authors: Sang Chul Lee, Gi-Young Park, Dong Rak Kwon
Abstract:
Objective: The aim of this study was to investigate regenerative effects of ultrasound (US)-guided injection with human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) and/or polydeoxyribonucleotide (PDRN) injection in a chronic traumatic full-thickness rotator cuff tendon tear (FTRCTT) in a rabbit model. Material and Methods: Rabbits (n = 32) were allocated into 4 groups. After a 5-mm sized FTRCTT just proximal to the insertion site on the subscapularis tendon was created by excision, the wound was immediately covered by silicone tube to prevent natural healing. After 6 weeks, 4 injections (0.2 mL normal saline, G1; 0.2 mL PDRN, G2; 0.2 mL UCB-MSCs, G3; and 0.2 mL UCB-MSCs with 0.2ml PDRN, G4) were injected into FTRCTT under US guidance. We evaluated gross morphologic changes on all rabbits after sacrifice. Masson’s trichrome, anti-type 1 collagen antibody, bromodeoxyuridine, proliferating cell nuclear antigen, vascular endothelial growth factor and platelet endothelial cell adhesion molecule stain were performed to evaluate histological changes. Motion analysis was also performed. Results: The gross morphologic mean tendon tear size in G3 and 4 was significantly smaller than that of G1 and 2 (p < .05). However, there were no significant differences in tendon tear size between G3 and 4. In G4, newly regenerated collagen type 1 fibers, proliferating cells activity, angiogenesis, walking distance, fast walking time, and mean walking speed were greater than in the other three groups on histological examination and motion analysis. Conclusion: Co-injection of UCB-MSCs and PDRN was more effective than UCB-MSCs injection alone in histological and motion analysis in a rabbit model of chronic traumatic FTRCTT. However, there was no significant difference in gross morphologic change of tendon tear between UCB-MSCs with/without PDRN injection. The results of this study regarding the combination of UCB-MSCs and PDRN are worth additional investigations.Keywords: mesenchymal stem cell, umbilical cord, polydeoxyribonucleotides, shoulder, rotator cuff, ultrasonography, injections
Procedia PDF Downloads 1852103 Interpretation and Clustering Framework for Analyzing ECG Survey Data
Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif
Abstract:
As Indo-Pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix
Procedia PDF Downloads 4722102 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.
Abstract:
In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means
Procedia PDF Downloads 5602101 Chemical Reaction Algorithm for Expectation Maximization Clustering
Authors: Li Ni, Pen ManMan, Li KenLi
Abstract:
Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.Keywords: chemical reaction optimization, expection maimization, initia, objective function clustering
Procedia PDF Downloads 7152100 Inverterless Grid Compatible Micro Turbine Generator
Authors: S. Ozeri, D. Shmilovitz
Abstract:
Micro‐Turbine Generators (MTG) are small size power plants that consist of a high speed, gas turbine driving an electrical generator. MTGs may be fueled by either natural gas or kerosene and may also use sustainable and recycled green fuels such as biomass, landfill or digester gas. The typical ratings of MTGs start from 20 kW up to 200 kW. The primary use of MTGs is for backup for sensitive load sites such as hospitals, and they are also considered a feasible power source for Distributed Generation (DG) providing on-site generation in proximity to remote loads. The MTGs have the compressor, the turbine, and the electrical generator mounted on a single shaft. For this reason, the electrical energy is generated at high frequency and is incompatible with the power grid. Therefore, MTGs must contain, in addition, a power conditioning unit to generate an AC voltage at the grid frequency. Presently, this power conditioning unit consists of a rectifier followed by a DC/AC inverter, both rated at the full MTG’s power. The losses of the power conditioning unit account to some 3-5%. Moreover, the full-power processing stage is a bulky and costly piece of equipment that also lowers the overall system reliability. In this study, we propose a new type of power conditioning stage in which only a small fraction of the power is processed. A low power converter is used only to program the rotor current (i.e. the excitation current which is substantially lower). Thus, the MTG's output voltage is shaped to the desired amplitude and frequency by proper programming of the excitation current. The control is realized by causing the rotor current to track the electrical frequency (which is related to the shaft frequency) with a difference that is exactly equal to the line frequency. Since the phasor of the rotation speed and the phasor of the rotor magnetic field are multiplied, the spectrum of the MTG generator voltage contains the sum and the difference components. The desired difference component is at the line frequency (50/60 Hz), whereas the unwanted sum component is at about twice the electrical frequency of the stator. The unwanted high frequency component can be filtered out by a low-pass filter leaving only the low-frequency output. This approach allows elimination of the large power conditioning unit incorporated in conventional MTGs. Instead, a much smaller and cheaper fractional power stage can be used. The proposed technology is also applicable to other high rotation generator sets such as aircraft power units.Keywords: gas turbine, inverter, power multiplier, distributed generation
Procedia PDF Downloads 2402099 Analysis of ECGs Survey Data by Applying Clustering Algorithm
Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif
Abstract:
As Indo-pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring the prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix
Procedia PDF Downloads 3522098 Atomistic Study of Structural and Phases Transition of TmAs Semiconductor, Using the FPLMTO Method
Authors: Rekab Djabri Hamza, Daoud Salah
Abstract:
We report first-principles calculations of structural and magnetic properties of TmAs compound in zinc blende(B3) and CsCl(B2), structures employing the density functional theory (DFT) within the local density approximation (LDA). We use the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the LMTART-MINDLAB code (Calculation). Results are given for lattice parameters (a), bulk modulus (B), and its first derivatives(B’) in the different structures NaCl (B1) and CsCl (B2). The most important result in this work is the prediction of the possibility of transition; from cubic rocksalt (NaCl)→ CsCl (B2) (32.96GPa) for TmAs. These results use the LDA approximation.Keywords: LDA, phase transition, properties, DFT
Procedia PDF Downloads 1202097 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study
Authors: Salima Smiti, Ines Gasmi, Makram Soui
Abstract:
Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.Keywords: credit risk assessment, classification algorithms, data mining, rule extraction
Procedia PDF Downloads 1832096 Integrating Inference, Simulation and Deduction in Molecular Domain Analysis and Synthesis with Peculiar Attention to Drug Discovery
Authors: Diego Liberati
Abstract:
Standard molecular modeling is traditionally done through Schroedinger equations via the help of powerful tools helping to manage them atom by atom, often needing High Performance Computing. Here, a full portfolio of new tools, conjugating statistical inference in the so called eXplainable Artificial Intelligence framework (in the form of Machine Learning of understandable rules) to the more traditional modeling and simulation control theory of mixed dynamic logic hybrid processes, is offered as quite a general purpose even if making an example to a popular chemical physics set of problems.Keywords: understandable rules ML, k-means, PCA, PieceWise Affine Auto Regression with eXogenous input
Procedia PDF Downloads 322095 A Modified Diminishing Partnership for Home Financing
Authors: N. Yachou, R. Aboulaich
Abstract:
Home is a basic necessity for human life, that why home financing takes a large chunk of people’s income. Therefore, Islamic and Conventional Banks try to offer new product in order to respond to customer needs related to home financing. Basing on this fact, we propose a Modified Diminishing Partnership model based on profit and loss sharing to reduce the duration of getting the full shares in the house property. Our proposition will be represented by the rental that customer has to give every month to the bank with redemption to increase his shares on the property of the house.Keywords: home financing, interest rate, rental rate, modified diminishing partnership
Procedia PDF Downloads 3492094 Analyzing the Causes of Amblyopia among Patients in Tertiary Care Center: Retrospective Study in King Faisal Specialist Hospital and Research Center
Authors: Hebah M. Musalem, Jeylan El-Mansoury, Lin M. Tuleimat, Selwa Alhazza, Abdul-Aziz A. Al Zoba
Abstract:
Background: Amblyopia is a condition that affects the visual system triggering a decrease in visual acuity without a known underlying pathology. It is due to abnormal vision development in childhood or infancy. Most importantly, vision loss is preventable or reversible with the right kind of intervention in most of the cases. Strabismus, sensory defects, and anisometropia are all well-known causes of amblyopia. However, ocular misalignment in Strabismus is considered the most common form of amblyopia worldwide. The risk of developing amblyopia increases in premature children, developmentally delayed or children who had brain lesions affecting the visual pathway. The prevalence of amblyopia varies between 2 to 5 % in the world according to the literature. Objective: To determine the different causes of Amblyopia in pediatric patients seen in ophthalmology clinic of a tertiary care center, i.e. King Faisal Specialist Hospital and Research Center (KFSH&RC). Methods: This is a hospital based, random retrospective, based on reviewing patient’s files in the Ophthalmology Department of KFSH&RC in Riyadh city, Kingdom of Saudi Arabia. Inclusion criteria: amblyopic pediatric patients who attended the clinic from 2015 to 2016, who are between 6 months and 18 years old. Exclusion Criteria: patients above 18 years of age and any patient who is uncooperative to obtain an accurate vision or a proper refraction. Detailed ocular and medical history are recorded. The examination protocol includes a full ocular exam, full cycloplegic refraction, visual acuity measurement, ocular motility and strabismus evaluation. All data were organized in tables and graphs and analyzed by statistician. Results: Our preliminary results will be discussed on spot by our corresponding author. Conclusions: We focused on this study on utilizing various examination techniques which enhanced our results and highlighted a distinguished correlation between amblyopia and its’ causes. This paper recommendation emphasizes on critical testing protocols to be followed among amblyopic patient, especially in tertiary care centers.Keywords: amblyopia, amblyopia causes, amblyopia diagnostic criterion, amblyopia prevalence, Saudi Arabia
Procedia PDF Downloads 1602093 The Appraisal of Construction Sites Productivity: In Kendall’s Concordance
Authors: Abdulkadir Abu Lawal
Abstract:
For the dearth of reliable cardinal numerical data, the linked phenomena in productivity indices such as operational costs and company turnovers, etc. could not be investigated. This would not give us insight to the root of productivity problems at unique sites. So, ordinal ranking by professionals who were most directly involved with construction sites was applied for Kendall’s concordance. Responses gathered from independent architects, builders/engineers, and quantity surveyors were herein analyzed. They were responses based on factors that affect sites productivity, and these factors were categorized as head office factors, resource management effectiveness factors, motivational factors, and training/skill development factors. It was found that productivity is low and has to be improved in order to facilitate Nigerian efforts in bridging its infrastructure deficit. The significance of this work is underlined with the Kendall’s coefficient of concordance of 0.78, while remedial measures must be emphasized to stimulate better productivity. Further detailed study can be undertaken by using Fuzzy logic analysis on wider Delphi survey.Keywords: factors, Kendall's coefficient of concordance, magnitude of agreement, percentage magnitude of dichotomy, ranking variables
Procedia PDF Downloads 6302092 Impact of Electric Vehicles on Energy Consumption and Environment
Authors: Amela Ajanovic, Reinhard Haas
Abstract:
Electric vehicles (EVs) are considered as an important means to cope with current environmental problems in transport. However, their high capital costs and limited driving ranges state major barriers to a broader market penetration. The core objective of this paper is to investigate the future market prospects of various types of EVs from an economic and ecological point of view. Our method of approach is based on the calculation of total cost of ownership of EVs in comparison to conventional cars and a life-cycle approach to assess the environmental benignity. The most crucial parameters in this context are km driven per year, depreciation time of the car and interest rate. The analysis of future prospects it is based on technological learning regarding investment costs of batteries. The major results are the major disadvantages of battery electric vehicles (BEVs) are the high capital costs, mainly due to the battery, and a low driving range in comparison to conventional vehicles. These problems could be reduced with plug-in hybrids (PHEV) and range extenders (REXs). However, these technologies have lower CO₂ emissions in the whole energy supply chain than conventional vehicles, but unlike BEV they are not zero-emission vehicles at the point of use. The number of km driven has a higher impact on total mobility costs than the learning rate. Hence, the use of EVs as taxis and in car-sharing leads to the best economic performance. The most popular EVs are currently full hybrid EVs. They have only slightly higher costs and similar operating ranges as conventional vehicles. But since they are dependent on fossil fuels, they can only be seen as energy efficiency measure. However, they can serve as a bridging technology, as long as BEVs and fuel cell vehicle do not gain high popularity, and together with PHEVs and REX contribute to faster technological learning and reduction in battery costs. Regarding the promotion of EVs, the best results could be reached with a combination of monetary and non-monetary incentives, as in Norway for example. The major conclusion is that to harvest the full environmental benefits of EVs a very important aspect is the introduction of CO₂-based fuel taxes. This should ensure that the electricity for EVs is generated from renewable energy sources; otherwise, total CO₂ emissions are likely higher than those of conventional cars.Keywords: costs, mobility, policy, sustainability,
Procedia PDF Downloads 2262091 Design and Study of a DC/DC Converter for High Power, 14.4 V and 300 A for Automotive Applications
Authors: Júlio Cesar Lopes de Oliveira, Carlos Henrique Gonçalves Treviso
Abstract:
The shortage of the automotive market in relation to options for sources of high power car audio systems, led to development of this work. Thus, we developed a source with stabilized voltage with 4320 W effective power. Designed to the voltage of 14.4 V and a choice of two currents: 30 A load option in battery banks and 300 A at full load. This source can also be considered as a source of general use dedicated commercial with a simple control circuit in analog form based on discrete components. The assembly of power circuit uses a methodology for higher power than the initially stipulated.Keywords: DC-DC power converters, converters, power conversion, pulse width modulation converters
Procedia PDF Downloads 3862090 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based on Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling
Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König
Abstract:
As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focuses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.Keywords: auto-ID, construction logistic, fuzzy, monitoring, RFID, scheduling
Procedia PDF Downloads 5162089 Risk Prioritization in Tunneling Construction Projects
Authors: David Nantes, George Gilbert
Abstract:
There are a lot of risks that might crop up as a tunneling project develops, and it's crucial to be aware of them. Due to the unexpected nature of tunneling projects and the interconnectedness of risk occurrences, the risk assessment approach presents a significant challenge. The purpose of this study is to provide a hybrid FDEMATEL-ANP model to help prioritize risks during tunnel construction projects. The ambiguity in expert judgments and the relative severity of interdependencies across risk occurrences are both taken into consideration by this model, thanks to the Fuzzy Decision-Making Trial and Evaluation Laboratory (FDEMATEL). The Analytic Network Process (ANP) method is used to rank priorities and assess project risks. The authors provide a case study of a subway tunneling construction project to back up the validity of their methodology. The results showed that the proposed method successfully isolated key risk factors and elucidated their interplay in the case study. The proposed method has the potential to become a helpful resource for evaluating dangers associated with tunnel construction projects.Keywords: risk, prioritization, FDEMATEL, ANP, tunneling construction projects
Procedia PDF Downloads 932088 Modelling Fluidization by Data-Based Recurrence Computational Fluid Dynamics
Authors: Varun Dongre, Stefan Pirker, Stefan Heinrich
Abstract:
Over the last decades, the numerical modelling of fluidized bed processes has become feasible even for industrial processes. Commonly, continuous two-fluid models are applied to describe large-scale fluidization. In order to allow for coarse grids novel two-fluid models account for unresolved sub-grid heterogeneities. However, computational efforts remain high – in the order of several hours of compute-time for a few seconds of real-time – thus preventing the representation of long-term phenomena such as heating or particle conversion processes. In order to overcome this limitation, data-based recurrence computational fluid dynamics (rCFD) has been put forward in recent years. rCFD can be regarded as a data-based method that relies on the numerical predictions of a conventional short-term simulation. This data is stored in a database and then used by rCFD to efficiently time-extrapolate the flow behavior in high spatial resolution. This study will compare the numerical predictions of rCFD simulations with those of corresponding full CFD reference simulations for lab-scale and pilot-scale fluidized beds. In assessing the predictive capabilities of rCFD simulations, we focus on solid mixing and secondary gas holdup. We observed that predictions made by rCFD simulations are highly sensitive to numerical parameters such as diffusivity associated with face swaps. We achieved a computational speed-up of four orders of magnitude (10,000 time faster than classical TFM simulation) eventually allowing for real-time simulations of fluidized beds. In the next step, we apply the checkerboarding technique by introducing gas tracers subjected to convection and diffusion. We then analyze the concentration profiles by observing mixing, transport of gas tracers, insights about the convective and diffusive pattern of the gas tracers, and further towards heat and mass transfer methods. Finally, we run rCFD simulations and calibrate them with numerical and physical parameters compared with convectional Two-fluid model (full CFD) simulation. As a result, this study gives a clear indication of the applicability, predictive capabilities, and existing limitations of rCFD in the realm of fluidization modelling.Keywords: multiphase flow, recurrence CFD, two-fluid model, industrial processes
Procedia PDF Downloads 752087 Modeling and Analyzing Controversy in Large-Scale Cyber-Argumentation
Authors: Najla Althuniyan
Abstract:
Online discussions take place across different platforms. These discussions have the potential to extract crowd wisdom and capture the collective intelligence from a different perspective. However, certain phenomena, such as controversy, often appear in online argumentation that makes the discussion between participants heated. Heated discussions can be used to extract new knowledge. Therefore, detecting the presence of controversy is an essential task to determine if collective intelligence can be extracted from online discussions. This paper uses existing measures for estimating controversy quantitatively in cyber-argumentation. First, it defines controversy in different fields, and then it identifies the attributes of controversy in online discussions. The distributions of user opinions and the distance between opinions are used to calculate the controversial degree of a discussion. Finally, the results from each controversy measure are discussed and analyzed using an empirical study generated by a cyber-argumentation tool. This is an improvement over the existing measurements because it does not require ground-truth data or specific settings and can be adapted to distribution-based or distance-based opinions.Keywords: online argumentation, controversy, collective intelligence, agreement analysis, collaborative decision-making, fuzzy logic
Procedia PDF Downloads 1172086 Modulation of the Europay, MasterCard, and VisaCard Authentications by Using Avispa Tool
Authors: Ossama Al-Maliki
Abstract:
The Europay, MasterCard, and Visa (EMV) is the transaction protocol for most of the world and especially in Europe and the UK. EMV protocol consists of three main stages which are: card authentication, cardholder verification methods, and transaction authorization. This paper details in full the EMV card authentications. We have used AVISPA and SPAN tools to do our modulization for the EMV card authentications. The code for each type of the card authentication was written by using CAS+ language. The results showed that our modulations were successfully addressed all the steps of the EMV card authentications and the entire process of the EMV card authentication are secured. Also, our modulations were successfully addressed all the main goals behind the EMV card authentications according to the EMV specifications.Keywords: EMV, card authentication, contactless card, SDA, DDA, CDA AVISPA
Procedia PDF Downloads 1782085 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot
Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin
Abstract:
Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.Keywords: balance control, speed control, intelligent controller, two wheel inverted pendulum
Procedia PDF Downloads 224