Search results for: forest wastes
638 Preference and Perspective for Gift Over-packaging Solution: A Case Study of Consumers in Shanghai, China
Authors: Heping Wang
Abstract:
Social interaction has increased as a result of rapid economic expansion. Particularly in China, gift exchanges have developed into a social tradition of showing gratitude. Most gifts, on the other hand, are lavishly presented or overpacked to impress or demonstrate respect to the gift receiver. Overpackaging wastes enormous resources and produces a lot of municipal solid waste (MSW), which can seriously harm the environment if it is not handled properly. The purpose of this study is to investigate consumers' perceptions, preferences, and perspectives regarding gifts overpackaging in order to identify potential solutions for reducing gifts overpackaging to achieve sustainable packaging objectives. The research was conducted by means of an online survey focusing on residents in Shanghai, China, and the data was quantitatively analyzed by SPSS software. According to research, consumers' perception of excessive packaging is approximately 3.5 points out of 5, and this perception has a significant impact on consumers' behavioral intentions; The preferences of givers and receivers for gift packaging are significantly different in three aspects; Customers prefer incentives for eco-packaging when it comes to measures to reduce gift overpackaging. Finally, the study also identifies suitable gift packaging options for customers.Keywords: gift packaging, consumer perception, consumer preference, consumer perspective, overpackaging, solutions
Procedia PDF Downloads 68637 Detecting Cyberbullying, Spam and Bot Behavior and Fake News in Social Media Accounts Using Machine Learning
Authors: M. D. D. Chathurangi, M. G. K. Nayanathara, K. M. H. M. M. Gunapala, G. M. R. G. Dayananda, Kavinga Yapa Abeywardena, Deemantha Siriwardana
Abstract:
Due to the growing popularity of social media platforms at present, there are various concerns, mostly cyberbullying, spam, bot accounts, and the spread of incorrect information. To develop a risk score calculation system as a thorough method for deciphering and exposing unethical social media profiles, this research explores the most suitable algorithms to our best knowledge in detecting the mentioned concerns. Various multiple models, such as Naïve Bayes, CNN, KNN, Stochastic Gradient Descent, Gradient Boosting Classifier, etc., were examined, and the best results were taken into the development of the risk score system. For cyberbullying, the Logistic Regression algorithm achieved an accuracy of 84.9%, while the spam-detecting MLP model gained 98.02% accuracy. The bot accounts identifying the Random Forest algorithm obtained 91.06% accuracy, and 84% accuracy was acquired for fake news detection using SVM.Keywords: cyberbullying, spam behavior, bot accounts, fake news, machine learning
Procedia PDF Downloads 40636 Biodegradation Study of Diethyl Phthalate Using Bacteria Isolated from Plastic Industry Wastewater Discharge Site
Authors: Sangram Shamrao Patil, Hara Mohan Jena
Abstract:
Phthalates are among the most common organic pollutant since they have become widespread in the environment and found in sediments, natural waters, soils, plants, landfill leachates, biota including human tissue and aquatic organisms. Diethyl phthalate (DEP) is a low molecular weight phthalate which has wide applications as plasticizer and become a major cause of environmental pollution. Environmental protection agency (EPA) listed DEP as priority pollutant because of its toxicity and they recommended human health ambient water quality criterion for diethyl phthalate (DEP) as 4 mg/l. Therefore, wastes containing phthalates require proper treatment before being discharged into the environment. Biodegradation is attractive and efficient treatment method as it is cost effective and produces non-toxic end products. In the present study, a DEP degrading aerobic bacterium was isolated from soil contaminated with plastic industry wastewater. Morphological and biochemical characteristics of isolate were performed. 16S rRNA sequencing and phylogenetic analysis of isolate was carried out and it was identified as Empedobacter brevis. Isolate has been found to tolerate up to 1650 mg/l of DEP. This study will be significant for exploring an application of microbes for remediation of phthalates and development of a suitable bioreactor.Keywords: diethyl phthalate, plasticizer, pollutant, biodegradation
Procedia PDF Downloads 274635 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies
Authors: Yuanjin Liu
Abstract:
Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model
Procedia PDF Downloads 76634 Adverse Impacts of Poor Wastewater Management Practices on Water Quality in Gebeng Industrial Area, Pahang, Malaysia
Authors: I. M. Sujaul, M. A. Sobahan, A. A. Edriyana, F. M. Yahaya, R. M. Yunus
Abstract:
This study was carried out to investigate the adverse effect of industrial waste water on surface water quality in Gebeng industrial estate, Pahang, Malaysia. Surface water was collected from 6 sampling stations. Physico-chemical parameters were characterized based on in-situ and ex-situ analysis according to standard methods by American Public Health Association (APHA). Selected heavy metals were determined by using Inductively Coupled Plasma Mass Spectrometry (ICP MS). The result reveled that the concentration of heavy metals such as Pb, Cu, Cd, Cr and Hg were high in samples. The result showed that the value of Pb and Hg were higher in the wet season in comparison to dry season. According to Malaysia National Water Quality Standard (NWQS) and Water Quality Index (WQI) all the sampling station were categorized as class IV (highly polluted). The present study reveled that the adverse effects of careless disposal of wastes and directly discharge of effluents affected on surface water quality. Therefore, the authorities should implement the laws to ensure the proper practices of waste water management for environmental sustainability around the study area.Keywords: water, heavy metals, water quality index, Gebeng
Procedia PDF Downloads 379633 Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes
Authors: Vincent Liu
Abstract:
Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission.Keywords: diabetes, machine learning, 30-day readmission, metaheuristic
Procedia PDF Downloads 63632 Sustainable Energy Production from Microalgae in Queshm Island, Persian Gulf
Authors: N. Moazami, R. Ranjbar, A. Ashori
Abstract:
Out of hundreds of microalgal strains reported, only very few of them are capable for production of high content of lipid. Therefore, the key technical challenges include identifying the strains with the highest growth rates and oil contents with adequate composition, which were the main aims of this work. From 147 microalgae screened for high biomass and oil productivity, the Nannochloropsis sp. PTCC 6016, which attained 52% lipid content, was selected for large scale cultivation in Persian Gulf Knowledge Island. Nannochloropsis strain PTCC 6016 belongs to Eustigmatophyceae (Phylum heterokontophyta) isolated from Mangrove forest area of Qheshm Island and Persian Gulf (Iran) in 2008. The strain PTCC 6016 had an average biomass productivity of 2.83 g/L/day and 52% lipid content. The biomass productivity and the oil production potential could be projected to be more than 200 tons biomass and 100000 L oil per hectare per year, in an outdoor algal culture (300 day/year) in the Persian Gulf climate.Keywords: biofuels, microalgae, Nannochloropsis, raceway open pond, bio-jet
Procedia PDF Downloads 476631 Bioremediation of Sea Food Waste in Solid State Fermentation along with Production of Bioactive Agents
Authors: Rahul Warmoota, Aditya Bhardwaj, Steffy Angural, Monika Rana, Sunena Jassal, Neena Puri, Naveen Gupta
Abstract:
Seafood processing generates large volumes of waste products such as skin, heads, tails, shells, scales, backbones, etc. Pollution due to conventional methods of seafood waste disposal causes negative implications on the environment, aquatic life, and human health. Moreover, these waste products can be used for the production of high-value products which are still untapped due to inappropriate management. Paenibacillus sp. AD is known to act on chitinolytic and proteinaceous waste and was explored for its potential to degrade various types of seafood waste in solid-state fermentation. Effective degradation of seafood waste generated from a variety of sources such as fish scales, crab shells, prawn shells, and a mixture of such wastes was observed. 30 to 40 percent degradation in terms of decrease in the mass was achieved. Along with the degradation, chitinolytic and proteolytic enzymes were produced, which can have various biotechnological applications. Apart from this, value-added products such as chitin oligosaccharides and peptides of various degrees of polymerization were also produced, which can be used for various therapeutic purposes. Results indicated that Paenibacillus sp. AD can be used for the development of a process for the infield degradation of seafood waste.Keywords: chitin, chitin-oligosaccharides, chitinase, protease, biodegradation, crab shells, prawn shells, fish scales
Procedia PDF Downloads 99630 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images
Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi
Abstract:
Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.Keywords: hyperspectral, PolSAR, feature selection, SVM
Procedia PDF Downloads 419629 Traditional Practices of Conserving Biodiversity: A Case Study around Jim Corbett National Park, Uttarakhand, India
Authors: Rana Parween, Rob Marchant
Abstract:
With the continued loss of global biodiversity despite the application of modern conservation techniques, it has become crucial to investigate non-conventional methods. Accelerated destruction of ecosystems due to altered land use, climate change, cultural and social change, necessitates the exploration of society-biodiversity attitudes and links. While the loss of species and their extinction is a well-known and well-documented process that attracts much-needed attention from researchers, academics, government and non-governmental organizations, the loss of traditional ecological knowledge and practices is more insidious and goes unnoticed. The growing availability of 'indirect experiences' such as the internet and media are leading to a disaffection towards nature and the 'Extinction of Experience'. Exacerbated by the lack of documentation of traditional practices and skills, there is the possibility for the 'extinction' of traditional practices and skills before they are fully recognized and captured. India, as a mega-biodiverse country, is also known for its historical conservation strategies entwined in traditional beliefs. Indigenous communities hold skillsets, knowledge, and traditions that have accumulated over multiple generations and may play an important role in conserving biodiversity today. This study explores the differences in knowledge and attitudes towards conserving biodiversity, of three different stakeholder groups living around Jim Corbett National Park, based on their age, traditions, and association with the protected area. A triangulation designed multi-strategy investigation collected qualitative and quantitative data through a questionnaire survey of village elders, the general public, and forest officers. Following an inductive approach to analyzing qualitative data, the thematic content analysis was followed. All coding and analysis were completed using NVivo 11. Although the village elders and some general public had vast amounts of traditional knowledge, most of it was related to animal husbandry and the medicinal value of plants. Village elders were unfamiliar with the concept of the term ‘biodiversity’ albeit their way of life and attitudes ensured that they care for the ecosystem without having the scientific basis underpinning biodiversity conservation. Inherently, village elders were keen to conserve nature; the superimposition of governmental policies without any tangible benefit or consultation was seen as detrimental. Alienating villagers and consequently the village elders who are the reservoirs of traditional knowledge would not only be damaging to the social network of the area but would also disdain years of tried and tested techniques held by the elders. Forest officers advocated for biodiversity and conservation education for women and children. Women, across all groups, when questioned about nature conservation, showed more interest in learning and participation. Biodiversity not only has an ethical and cultural value, but also plays a role in ecosystem function and, thus, provides ecosystem services and supports livelihoods. Therefore, underpinning and using traditional knowledge and incorporating them into programs of biodiversity conservation should be explored with a sense of urgency.Keywords: biological diversity, mega-biodiverse countries, traditional ecological knowledge, society-biodiversity links
Procedia PDF Downloads 108628 Machine Learning Automatic Detection on Twitter Cyberbullying
Authors: Raghad A. Altowairgi
Abstract:
With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost
Procedia PDF Downloads 133627 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area
Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna
Abstract:
The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.Keywords: Hyperion, hyperspectral, sensor, Landsat-8
Procedia PDF Downloads 125626 Re-Defining Food Waste and Food Waste Management in the Food Service Sector: A Case Study in a University Food Service Unit
Authors: Boineelo P. Lefadola, Annemarie T. Viljoen, Gerrie E. Du Rand
Abstract:
The food service sector wastes staggering quantities of food. More than one-third of food produced today gets wasted. This is both perplexing and daunting given that not all that is wasted is accounted for when measuring food waste. It is recognised that the present food waste definitions are ambiguous and do not really take into account all food waste generated. The contention is that food waste in the food service sector can be prevented or reduced if we have an explicit food waste definition in the context of food service. This study, therefore, explores the definition of the concept of food waste in the food service sector and its implications on sustainable food waste management strategies. An ethnographic research approach was adopted. A university food service unit was selected as a research site. Data collection techniques employed included document analyses, participant observations, focus group discussions with front-of-house and back-of-house staff, and one-on-one interviews with staff on managerial positions. A grounded theory approach was applied to analyse data. The concept of food waste was constructed differently by different levels of staff. Whereas managers raised discussion from a financial perspective, BOH and FOH staff drew upon socio-cultural implications. This study lays the foundation for a harmonised definition of the concept of food waste in food service.Keywords: food service, food waste, food waste management, sustainability
Procedia PDF Downloads 275625 Radio-Guided Surgery with β− Radiation: Test on Ex-Vivo Specimens
Authors: E. Solfaroli Camillocci, C. Mancini-Terracciano, V. Bocci, A. Carollo, M. Colandrea, F. Collamati, M. Cremonesi, M. E. Ferrari, P. Ferroli, F. Ghielmetti, C. M. Grana, M. Marafini, S. Morganti, M. Patane, G. Pedroli, B. Pollo, L. Recchia, A. Russomando, M. Schiariti, M. Toppi, G. Traini, R. Faccini
Abstract:
A Radio-Guided Surgery technique exploiting β− emitting radio-tracers has been suggested to overcome the impact of the large penetration of γ radiation. The detection of electrons in low radiation background provides a clearer delineation of the margins of lesioned tissues. As a start, the clinical cases were selected between the tumors known to express receptors to a β− emitting radio-tracer: 90Y-labelled DOTATOC. The results of tests on ex-vivo specimens of meningioma brain tumor and abdominal neuroendocrine tumors are presented. Voluntary patients were enrolled according to the standard uptake value (SUV > 2 g/ml) and the expected tumor-to-non-tumor ratios (TNR∼10) estimated from PET images after administration of 68Ga-DOTATOC. All these tests validated this technique yielding a significant signal on the bulk tumor and a negligible background from the nearby healthy tissue. Even injecting as low as 1.4 MBq/kg of radiotracer, tumor remnants of 0.1 ml would be detectable. The negligible medical staff exposure was confirmed and among the biological wastes only urine had a significant activity.Keywords: ex-vivo test, meningioma, neuroendocrine tumor, radio-guided surgery
Procedia PDF Downloads 295624 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children
Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh
Abstract:
Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine
Procedia PDF Downloads 154623 A Study on Aquatic Bycatch Mortality Estimation Due to Prawn Seed Collection and Alteration of Collection Method through Sustainable Practices in Selected Areas of Sundarban Biosphere Reserve (SBR), India
Authors: Samrat Paul, Satyajit Pahari, Krishnendu Basak, Amitava Roy
Abstract:
Fishing is one of the pivotal livelihood activities, especially in developing countries. Today it is considered an important occupation for human society from the era of human settlement began. In simple terms, non-target catches of any species during fishing can be considered as ‘bycatch,’ and fishing bycatch is neither a new fishery management issue nor a new problem. Sundarban is one of the world’s largest mangrove land expanding up to 10,200 sq. km in India and Bangladesh. This largest mangrove biome resource is used by the local inhabitants commercially to run their livelihood, especially by forest fringe villagers (FFVs). In Sundarban, over-fishing, especially post larvae collection of wild Penaeus monodon, is one of the major concerns, as during the collection of P. monodon, different aquatic species are destroyed as a result of bycatch mortality which changes in productivity and may negatively impact entire biodiversity, of the ecosystem. Wild prawn seed collection gear like a small mesh sized net poses a serious threat to aquatic stocks, where the collection isn’t only limited to prawn seed larvae. As prawn seed collection processes are inexpensive, require less monetary investment, and are lucrative; people are easily engaged here as their source of income. Wildlife Trust of India’s (WTI) intervention in selected forest fringe villages of Sundarban Tiger Reserve (STR) was to estimate and reduce the mortality of aquatic bycatches by involving local communities in newly developed release method and their time engagement in prawn seed collection (PSC) by involving them in Alternate Income Generation (AIG). The study was conducted for their taxonomic identification during the period of March to October 2019. Collected samples were preserved in 70% ethyl alcohol for identification, and all the preserved bycatch samples were identified morphologically by the expertise of the Zoological Survey of India (ZSI), Kolkata. Around 74 different aquatic species, where 11 different species are molluscs, 41 fish species, out of which 31 species were identified, and 22 species of crustacean collected, out of which 18 species were identified. Around 13 different species belong to a different order, and families were unable to identify them morphologically as they were collected in the juvenile stage. The study reveals that for collecting one single prawn seed, eight individual life of associated faunas are being lost. Zero bycatch mortality is not practical; rather, collectors should focus on bycatch reduction by avoiding capturing, allowing escaping, and mortality reduction, and must make changes in their fishing method by increasing net mesh size, which will avoid non-target captures. But as the prawns are small in size (generally 1-1.5 inches in length), thus increase net size making economically less or no profit for collectors if they do so. In this case, returning bycatches is considered one of the best ways to a reduction in bycatch mortality which is a more sustainable practice.Keywords: bycatch mortality, biodiversity, mangrove biome resource, sustainable practice, Alternate Income Generation (AIG)
Procedia PDF Downloads 154622 Development of Biodegradable Plastic as Mango Fruit Bag
Authors: Andres M. Tuates Jr., Ofero A. Caparino
Abstract:
Plastics have achieved a dominant position in agriculture because of their transparency, lightness in weight, impermeability to water and their resistance to microbial attack. However, this generates a higher quantity of wastes that are difficult to dispose of by farmers. To address these problems, the project aim to develop and evaluate the biodegradable film for mango fruit bag during development. The PBS and starch were melt-blended in a twin-screw extruder and then blown into film extrusion machine. The physic-chemical-mechanical properties of biodegradable fruit bag were done following standard methods of test. Field testing of fruit bag was also conducted to evaluate its durability and efficiency field condition. The PHilMech-FiC fruit bag is made of biodegradable material measuring 6 x 8 inches with a thickness of 150 microns. The tensile strength is within the range of LDPE while the elongation is within the range of HDPE. It is projected that after thirty-six (36) weeks, the film will be totally degraded. Results of field testing show that the quality of harvested fruits using PHilMech-FiC biodegradable fruit bag in terms of percent marketable, non-marketable and export, peel color at the ripe stage, flesh color, TSS, oBrix, percent edible portion is comparable with the existing bagging materials such as Chinese brown paper bag and old newspaper.Keywords: cassava starch, PBS, biodegradable, chemical, mechanical properties
Procedia PDF Downloads 279621 Comparative Analysis of Pit Composting and Vermicomposting in a Tropical Environment
Authors: E. Ewemoje Oluseyi, T. A. Ewemoje, A. A. Adedeji
Abstract:
Biodegradable solid waste disposal and management has been a major problem in Nigeria and indiscriminate dumping of this waste either into watercourses or drains has led to environmental hazards affecting public health. The study investigated the nutrients level of pit composting and vermicomposting. Wooden bins 60 cm × 30 cm × 30 cm3 in size were constructed and bedding materials (sawdust, egg shell, paper and grasses) and red worms (Eisenia fetida) introduced to facilitate the free movement and protection of the worms against harsh weather. A pit of 100 cm × 100 cm × 100 cm3 was dug and worms were introduced into the pit, which was turned every two weeks. Food waste was fed to the red worms in the bin and pit, respectively. The composts were harvested after 100 days and analysed. The analyses gave: nitrogen has average value 0.87 % and 1.29 %; phosphorus 0.66 % and 1.78 %; potassium 4.35 % and 6.27 % for the pit and vermicomposting, respectively. Higher nutrient status of vermicomposting over pit composting may be attributed to the secretions in the intestinal tracts of worms which are more readily available for plant growth. However, iron and aluminium were more in the pit compost than the vermin compost and this may be attributed to the iron and aluminium already present in the soil before the composting took place. Other nutrients in ppm concentrations were aluminium 4,999.50 and 3,989.33; iron 2,131.83 and 633.40 for the pit and vermicomposting, respectively. These nutrients are only needed by plants in small quantities. Hence, vermicomposting has the higher concentration of essential nutrients necessary for healthy plant growth.Keywords: food wastes, pit composting, plant nutrient status, tropical environment, vermicomposting
Procedia PDF Downloads 341620 Marine Litter Dispersion in the Southern Shores of the Caspian Sea (Case Study: Mazandaran Province)
Authors: Siamak Jamshidi
Abstract:
One of the major environmental problems in the southern coasts of the Caspian Sea is that the marine and coastal debris is being deposited and accumulated due to industrial, urban and tourism activities. Study, sampling and analysis on the type, size, amount and origin of human-made (anthropogenic) waste in the coastal areas of this sea can be very effective in implementing management, cultural and informative programs to reduce marine environmental pollutants. Investigation on marine litter distribution under impact of seawater dynamics was performed for the first time in this research. The rate of entry and distribution of marine and coastal pollutants and wastes, which are mainly of urban, tourist and hospital origin, has multiplied on the southern shore of the Caspian Sea in the last decade. According to the results, the two most important sources of hospital waste in the coastal areas are Tonekabon and Mahmoudabad. In this case, the effect of dynamic parameters of seawater such as flow (with speeds of up to about 1 m/s) and waves, as well as the flow of rivers leading to the shoreline are also influential factors in the distribution of marine litter in the region. Marine litters in the southern coastal region were transported from west to east by the shallow waters of the southern Caspian Sea. In other words, the marine debris density has been observed more in the eastern part.Keywords: southern shelf, coastal oceanography, seawater flow, vertical structure, marine environment
Procedia PDF Downloads 72619 Counter-Current Extraction of Fish Oil and Toxic Elements from Fish Waste Using Supercritical Carbon Dioxide
Authors: Parvaneh Hajeb, Shahram Shakibazadeh, Md. Zaidul Islam Sarker
Abstract:
High-quality fish oil for human consumption requires low levels of toxic elements. The aim of this study was to develop a method to extract oil from fish wastes with the least toxic elements contamination. Supercritical fluid extraction (SFE) was applied to detoxify fish oils from toxic elements. The SFE unit used consisted of an intelligent HPLC pump equipped with a cooling jacket to deliver CO2. The freeze-dried fish waste sample was extracted by heating in a column oven. Under supercritical conditions, the oil dissolved in CO2 was separated from the supercritical phase using pressure reduction. The SFE parameters (pressure, temperature, CO2 flow rate, and extraction time) were optimized using response surface methodology (RSM) to extract the highest levels of toxic elements. The results showed that toxic elements in fish oil can be reduced using supercritical CO2 at optimum pressure 40 MPa, temperature 61 ºC, CO2 flow rate 3.8 MPa, and extraction time 4.25 hr. There were significant reductions in the mercury (98.2%), cadmium (98.9%), arsenic (96%), and lead contents (99.2%) of the fish oil. The fish oil extracted using this method contained elements at levels that were much lower than the accepted limits of 0.1 μg/g. The reduction of toxic elements using the SFE method was more efficient than that of the conventional methods due to the high selectivity of supercritical CO2 for non-polar compounds.Keywords: food safety, toxic elements, fish oil, supercritical carbon dioxide
Procedia PDF Downloads 423618 Biotransformation of Glycerine Pitch as Renewable Carbon Resource into P(3HB-co-4HB) Biopolymer
Authors: Amirul Al-Ashraf Abdullah, Hema Ramachandran, Iszatty Ismail
Abstract:
Oleochemical industry in Malaysia has been diversifying significantly due to the abundant supply of both palm and kernel oils as raw materials as well as the high demand for downstream products such as fatty acids, fatty alcohols and glycerine. However, environmental awareness is growing rapidly in Malaysia because oleochemical industry is one of the palm-oil based industries that possess risk to the environment. Glycerine pitch is one of the scheduled wastes generated from the fatty acid plants in Malaysia and its discharge may cause a serious environmental problem. Therefore, it is imperative to find alternative applications for this waste glycerine. Consequently, the aim of this research is to explore the application of glycerine pitch as direct fermentation substrate in the biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer, aiming to contribute toward the sustainable production of biopolymer in the world. Utilization of glycerine pitch (10 g/l) together with 1,4-butanediol (5 g/l) had resulted in the achievement of 40 mol% 4HB monomer with the highest PHA concentration of 2.91 g/l. Synthesis of yellow pigment which exhibited antimicrobial properties occurred simultaneously with the production of P(3HB-co-4HB) through the use of glycerine pitch as renewable carbon resource. Utilization of glycerine pitch in the biosynthesis of P(3HB-co-4HB) will not only contribute to reducing society’s dependence on non-renewable resources but also will promote the development of cost efficiency microbial fermentation towards biosustainability and green technology.Keywords: biopolymer, glycerine pitch, natural pigment, P(3HB-co-4HB)
Procedia PDF Downloads 473617 Bioremediation as a Treatment of Aromatic Hydrocarbons in Wastewater
Authors: Hen Friman, Alex Schechter, Yeshayahu Nitzan, Rivka Cahan
Abstract:
The treatment of aromatic hydrocarbons in wastewater resulting from oil spills and chemical manufactories is becoming a key concern in many modern countries. Benzene, ethylbenzene, toluene and xylene (BETX) contaminate groundwater as well as soil. These compounds have an acute effect on human health and are known to be carcinogenic. Conventional removal of these toxic materials involves separation and burning of the wastes, however, the cost of chemical treatment is very high and energy consuming. Bioremediation methods for removal of toxic organic compounds constitute an attractive alternative to the conventional chemical or physical techniques. Bioremediation methods use microorganisms to reduce the concentration and toxicity of various chemical pollutants Toluene is biodegradable both aerobically and anaerobically, it can be growth inhibitory to microorganisms at elevated concentrations, even to those species that can use it as a substrate. In this research culture of Pseudomonas putida was grown in bath bio-reactor (BBR) with toluene 100 mg/l as a single carbon source under constant voltage of 125 mV, 250 mV and 500 mV. The culture grown in BBR reached to 0.8 OD660nm while the control culture that grown without external voltage reached only to 0.6 OD660nm. The residual toluene concentration after 147 h, in the BBR operated under external voltage (125 mV) was 22 % on average, while in the control BBR it was 81 % on average.Keywords: bioremediation, aromatic hydrocarbons, BETX, toluene, pseudomonas putida
Procedia PDF Downloads 317616 Effect of Thermal Pretreatment on Functional Properties of Chicken Protein Hydrolysate
Authors: Nutnicha Wongpadungkiat, Suwit Siriwatanayotin, Aluck Thipayarat, Punchira Vongsawasdi, Chotika Viriyarattanasak
Abstract:
Chicken products are major export product of Thailand. With a dramatically increasing consumption of chicken product in the world, there are abundant wastes from chicken meat processing industry. Recently, much research in the development of value-added products from chicken meat industry has focused on the production of protein hydrolysate, utilized as food ingredients for human diet and animal feed. The present study aimed to determine the effect of thermal pre-treatment on functional properties of chicken protein hydrolysate. Chicken breasts were heated at 40, 60, 80 and 100ºC prior to hydrolysis by Alcalase at 60ºC, pH 8 for 4 hr. The hydrolysate was freeze-dried, and subsequently used for assessment of its functional properties molecular weight by gel electrophoresis (SDS-PAGE). The obtained results show that increasing the pre-treatment temperature increased oil holding capacity and emulsion stability while decreasing antioxidant activity and water holding capacity. The SDS-PAGE analysis showed the evidence of protein aggregation in the hydrolysate treated at the higher pre-treatment temperature. These results suggest the connection between molecular weight of the hydrolysate and its functional properties.Keywords: chicken protein hydrolysate, enzymatic hydrolysis, thermal pretreatment, functional properties
Procedia PDF Downloads 271615 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines
Authors: Kamyar Tolouei, Ehsan Moosavi
Abstract:
In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization
Procedia PDF Downloads 107614 The Effectiveness of Sulfate Reducing Bacteria in Minimizing Methane and Sludge Production from Palm Oil Mill Effluent (POME)
Authors: K. Abdul Halim, E. L. Yong
Abstract:
Palm oil industry is a major revenue earner in Malaysia, despite the growth of the industry is synonymous with a massive production of agro-industrial wastewater. Through the oil extraction processes, palm oil mill effluent (POME) contributes to the largest liquid wastes generated. Due to the high amount of organic compound, POME can cause inland water pollution if discharged untreated into the water course as well as affect the aquatic ecosystem. For more than 20 years, Malaysia adopted the conventional biological treatment known as lagoon system that apply biological treatment. Besides having difficulties in complying with the standard, a large build up area is needed and retention time is higher. Although anaerobic digester is more favorable, this process comes along with enormous volumes of sludge and methane gas, demanding attention from the mill operators. In order to reduce the sludge production, denitrifiers are to be removed first. Sulfate reducing bacteria has shown the capability to inhibit the growth of methanogens. This is expected to substantially reduce both the sludge and methane production in anaerobic digesters. In this paper, the effectiveness of sulfate reducing bacteria in minimizing sludge and methane will be examined.Keywords: methane reduction, palm oil mill effluent, sludge minimization, sulfate reducing bacteria, sulfate reduction
Procedia PDF Downloads 433613 Investigation of Dissolution in Diammonium Hydrogen Phosphate Solutions of Gypsum
Authors: Turan Çalban, Nursel Keskin, Sabri Çolak, Soner Kuşlu
Abstract:
Gypsum (CaSO4.2H2O) is a mineral that is found in large quantities in the Turkey and in the World. The dissolution of this mineral in the diammonium hydrogen phosphate solutions has not been studied so far. Investigation of the dissolution and dissolution kinetics gypsum in diammonium hydrogen phosphate solutions will be useful for evaluating of solid wastes containing gypsum. In this study, parameters such as diammonium hydrogen phosphate concentration, temperature and stirring speed affecting on the dissolution rate of the gypsum in diammonium hydrogen phosphate solutions were investigated. In experimental studies have researched effectiveness of the selected parameters. The dissolution of gypsum were examined in two parts at low and high temperatures. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. The activation energy was found to be 34.58 kJ/mol and 44.45 kJ/mol for the low and the high temperatures. The dissolution of gypsum was controlled by chemical reaction both low temperatures and high temperatures. Reaction rate expressions of dissolution of gypsum at the low temperatures and the high temperatures controlled by chemical reaction are as follows, respectively. = k1.e-5159.5/T.t = k2.e-5346.8/T.t Where k1 and k2 are constants depending on the diammonium hydrogen phosphate solution concentration, the solid/liquid ratio, the stirring speed and the particle size.Keywords: diammonium hydrogen phosphate, dissolution kinetics, gypsum, kinetics.
Procedia PDF Downloads 391612 Different Formula of Mixed Bacteria as a Bio-Treatment for Sewage Wastewater
Authors: E. Marei, A. Hammad, S. Ismail, A. El-Gindy
Abstract:
This study aims to investigate the ability of different formula of mixed bacteria as a biological treatments of wastewater after primary treatment as a bio-treatment and bio-removal and bio-adsorbent of different heavy metals in natural circumstances. The wastewater was collected from Sarpium forest site-Ismailia Governorate, Egypt. These treatments were mixture of free cells and mixture of immobilized cells of different bacteria. These different formulas of mixed bacteria were prepared under Lab. condition. The obtained data indicated that, as a result of wastewater bio-treatment, the removal rate was found to be 76.92 and 76.70% for biological oxygen demand, 79.78 and 71.07% for chemical oxygen demand, 32.45 and 36.84 % for ammonia nitrogen as well as 91.67 and 50.0% for phosphate after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. Moreover, the bio-removals of different heavy metals were found to reach 90.0 and 50. 0% for Cu ion, 98.0 and 98.5% for Fe ion, 97.0 and 99.3% for Mn ion, 90.0 and 90.0% Pb, 80.0% and 75.0% for Zn ion after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. The results indicated that 13.86 and 17.43% of removal efficiency and reduction of total dissolved solids were achieved after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively.Keywords: wastewater bio-treatment , bio-sorption heavy metals, biological desalination, immobilized bacteria, free cell bacteria
Procedia PDF Downloads 204611 Mechanical Properties and Chloride Diffusion of Ceramic Waste Aggregate Mortar Containing Ground Granulated Blast-Furnace Slag
Authors: H. Higashiyama, M. Sappakittipakorn, M. Mizukoshi, O. Takahashi
Abstract:
Ceramic waste aggregates (CWAs) were made from electric porcelain insulator wastes supplied from an electric power company, which were crushed and ground to fine aggregate sizes. In this study, to develop the CWA mortar as an eco–efficient, ground granulated blast–furnace slag (GGBS) as a supplementary cementitious material (SCM) was incorporated. The water–to–binder ratio (W/B) of the CWA mortars was varied at 0.4, 0.5, and 0.6. The cement of the CWA mortar was replaced by GGBS at 20 and 40% by volume (at about 18 and 37% by weight). Mechanical properties of compressive and splitting tensile strengths, and elastic modulus were evaluated at the age of 7, 28, and 91 days. Moreover, the chloride ingress test was carried out on the CWA mortars in a 5.0% NaCl solution for 48 weeks. The chloride diffusion was assessed by using an electron probe microanalysis (EPMA). To consider the relation of the apparent chloride diffusion coefficient and the pore size, the pore size distribution test was also performed using a mercury intrusion porosimetry at the same time with the EPMA. The compressive strength of the CWA mortars with the GGBS was higher than that without the GGBS at the age of 28 and 91 days. The resistance to the chloride ingress of the CWA mortar was effective in proportion to the GGBS replacement level.Keywords: ceramic waste aggregate, chloride diffusion, GGBS, pore size distribution
Procedia PDF Downloads 345610 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities
Authors: Anudeep Appe, Bhanu Poluparthi, Lakshmi Kasivajjula, Udai Mv, Sobha Bagadi, Punya Modi, Aditya Singh, Hemanth Gunupudi, Spenser Troiano, Jeff Paul, Justin Stovall, Justin Yamamoto
Abstract:
The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data is considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since its data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for ex. quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP (SHapley Additive exPlanations), a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.Keywords: competition, DAGs, facility, healthcare, machine learning, market share, random forest, SHAP
Procedia PDF Downloads 92609 Thermodynamic Performance Tests for 3D Printed Steel Slag Powder Concrete Walls
Authors: Li Guoyou, Zhang Tao, Ji Wenzhan, Huo Liang, Lin Xiqiang, Zhang Nan
Abstract:
The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is possible to print engineering structures. 3D printing buildings use wastes from constructions, industries and mine tailings as “ink”, and mix it with property improved materials, such as cement, fiber etc. This paper presents a study of the Thermodynamic performance of 3D printed walls using cement and steel slag powder. Analyses the thermal simulation regarding 3D printed walls and solid brick wall by the way of the hot-box methods and the infrared technology, and the results were contrasted with theoretical calculation. The results show that the excellent thermodynamic performance of 3D printed concrete wall made it suitable as the partial materials for self-thermal insulation walls in residential buildings. The thermodynamic performance of 3D printed concrete walls depended on the density of materials, distribution of holes, and the filling materials. Decreasing the density of materials, increasing the number of holes or replacing the filling materials with foamed concrete could improve its thermodynamic performance significantly. The average of heat transfer coefficient and thermal inertia index of 3D printed steel slag powder concrete wall all better than the traditional solid brick wall with a thickness of 240mm.Keywords: concrete, 3D printed walls, thermodynamic performance, steel slag powder
Procedia PDF Downloads 185