Search results for: direct methanol fuel cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8337

Search results for: direct methanol fuel cell

7437 Comparison of Different in vitro Models of the Blood-Brain Barrier for Study of Toxic Effects of Engineered Nanoparticles

Authors: Samir Dekali, David Crouzier

Abstract:

Due to their new physico-chemical properties engineered nanoparticles (ENPs) are increasingly employed in numerous industrial sectors (such as electronics, textile, aerospace, cosmetics, pharmaceuticals, food industry, etc). These new physico-chemical properties can also represent a threat for the human health. Consumers can notably be exposed involuntarily by different routes such as inhalation, ingestion or through the skin. Several studies recently reported a possible biodistribution of these ENPs on the blood-brain barrier (BBB). Consequently, there is a great need for developing BBB in vitro models representative of the in vivo situation and capable of rapidly and accurately assessing ENPs toxic effects and their potential translocation through this barrier. In this study, several in vitro models established with micro-endothelial brain cell lines of different origins (bEnd.3 mouse cell line or a new human cell line) co-cultivated or not with astrocytic cells (C6 rat or C8-B4 mouse cell lines) on Transwells® were compared using different endpoints: trans-endothelial resistance, permeability of the Lucifer yellow and protein junction labeling. Impact of NIST diesel exhaust particles on BBB cell viability is also discussed.

Keywords: nanoparticles, blood-brain barrier, diesel exhaust particles, toxicology

Procedia PDF Downloads 430
7436 In vitro Investigation of Genotoxic and Antigenotoxic Properties of Gunnera perpensa Roots Extracts

Authors: P. H. Mfengwana, S. S. Mashele, L. Verschaeve, R. Anthonissen, I. T. Manduna

Abstract:

Gunnera perpensa is traditionally used mostly by women for the treatment of different gynaecological related conditions due to its proven uterine contractility effects. The uses of this plant include menstrual pain relief, treatment of infertility and promotion of easy labour. However, even though this plant species has been reported to possess numerous medicinal properties, to author’s best knowledge, its safety has not been investigated. Thus, this study was aimed at investigating the genotoxicity and antigenotoxicity of Gunnera perpensa aqueous, methanol and dichloromethane extracts. The in vitro toxicity of the plant extracts was assessed with the neutral red uptake (NRU) test. Genotoxic and antigenotoxic properties of Gunnera perpensa were investigated using high-throughput assays: bacterial Vitotox test and the alkaline comet assay with and without S9 activation on human C3A cells. Ethyl Methanesulfonate (EMS) and 4-nitroquinoline-oxide (4-NQO) were used as positive controls, respectively. All extracts showed toxicity in a dose-dependent manner; however, that does not mean they were all genotoxic. Methanol extract did show genotoxicity with S9 (metabolism) only at the highest concentration of 500 µg/ml due to increased DNA damage observed, however, no genotoxicity was observed from other concentrations. Therefore, the results show that Gunnera perpensa extracts are genotoxic and not safe for human use.

Keywords: antigenotoxicity, comet test, genotoxicity, Gunnera perpensa, vitotox assay

Procedia PDF Downloads 125
7435 Regulation of Water Balance of the Plant from the Different Geo-Environmental Locations

Authors: Astghik R. Sukiasyan

Abstract:

Under the drought stress condition, the plants would grow slower. Temperature is one of the most important abiotic factors which suppress the germination processes. However, the processes of transpiration are regulated directly by the cell water, which followed to an increase in volume of vacuoles. During stretching under the influence of water pressure, the cell goes into the state of turgor. In our experiments, lines of the semi-dental sweet maize of Armenian population from various zones of growth under mild and severe drought stress were tested. According to results, the value of the water balance of the plant cells may reflect the ability of plants to adapt to drought stress. It can be assumed that the turgor allows evaluating the number of received dissolved substance in cell.

Keywords: turgor, drought stress, plant growth, Armenian Zea Maize Semidentata

Procedia PDF Downloads 248
7434 Arc Plasma Thermochemical Preparation of Coal to Effective Combustion in Thermal Power Plants

Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

This work presents plasma technology for solid fuel ignition and combustion. Plasma activation promotes more effective and environmentally friendly low-rank coal ignition and combustion. To realise this technology at coal fired power plants plasma-fuel systems (PFS) were developed. PFS improve efficiency of power coals combustion and decrease harmful emission. PFS is pulverized coal burner equipped with arc plasma torch. Plasma torch is the main element of the PFS. Plasma forming gas is air. It is blown through the electrodes forming plasma flame. Temperature of this flame is varied from 5000 to 6000 K. Plasma torch power is varied from 100 to 350 kW and geometrical sizes are the following: the height is 0.4-0.5 m and diameter is 0.2-0.25 m. The base of the PFS technology is plasma thermochemical preparation of coal for burning. It consists of heating of the pulverized coal and air mixture by arc plasma up to temperature of coal volatiles release and char carbon partial gasification. In the PFS coal-air mixture is deficient in oxygen and carbon is oxidised mainly to carbon monoxide. As a result, at the PFS exit a highly reactive mixture is formed of combustible gases and partially burned char particles, together with products of combustion, while the temperature of the gaseous mixture is around 1300 K. Further mixing with the air promotes intensive ignition and complete combustion of the prepared fuel. PFS have been tested for boilers start up and pulverized coal flame stabilization in different countries at power boilers of 75 to 950 t/h steam productivity. They were equipped with different types of pulverized coal burners (direct flow, muffle and swirl burners). At PFS testing power coals of all ranks (lignite, bituminous, anthracite and their mixtures) were incinerated. Volatile content of them was from 4 to 50%, ash varied from 15 to 48% and heat of combustion was from 1600 to 6000 kcal/kg. To show the advantages of the plasma technology before conventional technologies of coal combustion numerical investigation of plasma ignition, gasification and thermochemical preparation of a pulverized coal for incineration in an experimental furnace with heat capacity of 3 MW was fulfilled. Two computer-codes were used for the research. The computer simulation experiments were conducted for low-rank bituminous coal of 44% ash content. The boiler operation has been studied at the conventional mode of combustion and with arc plasma activation of coal combustion. The experiments and computer simulation showed ecological efficiency of the plasma technology. When a plasma torch operates in the regime of plasma stabilization of pulverized coal flame, NOX emission is reduced twice and amount of unburned carbon is reduced four times. Acknowledgement: This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.613.21.0005, project RFMEFI61314X0005).

Keywords: coal, ignition, plasma-fuel system, plasma torch, thermal power plant

Procedia PDF Downloads 269
7433 SOCS3 Reverses Multidrug Resistance by Inhibiting MDR1 in Mammary Cell Carcinoma

Authors: S. Pradhan, D. Pradhan, G. Tripathy, T. Dasmohapatra

Abstract:

Suppressors of cytokine signalling (SOCS3), a newly indentified anti-apoptotic molecule is a downstream effecter of the receptor tyrosine kinase-Ras signalling pathway. Current study has uncovered that SOCS3 may have wide and imperative capacities, particularly because of its close correlation with malignant tumors. To investigate the impact of SOCS3 on MDR, we analyzed the expression of P-gp and SOCS3 by immune-histochemistry and found there was positive correlation between them. At that point we effectively interfered with RNA translation by the contamination of siRNA of SOCS3 into MCF7/ADM breast cancer cell lines through a lentivirus, and the expression of the target gene was significantly inhibited. After RNAi the drug resistance was reduced altogether and the expression of MDR1 mRNA and P-gp in MCF7/ADM cell lines demonstrated a significant decrease. Likewise the expression of P53 protein increased in a statistically significant manner (p ≤ 0.01) after RNAi exposure. Moreover, flowcytometry analysis uncovers that cell cycle and anti-apoptotic enhancing capacity of cells changed after RNAi treatment. These outcomes proposed SOCS3 may take part in breast cancer MDR by managing MDR1 and P53 expression, changing cell cycle and enhancing the anti-apoptotic ability.

Keywords: SOCS3gene, breast cancer, multidrug resistance, MDR1 gene, RNA interference

Procedia PDF Downloads 326
7432 Cratoxy Formosum (Jack) Dyer Leaf Extract-Induced Human Breast and Liver Cancer Cells Death

Authors: Benjaporn Buranrat, Nootchanat Mairuae

Abstract:

Cratoxylum formosum (Jack) Dyer (CF) has been used for the traditional medicines in South East Asian and Thailand. Normally, northeast Thai vegetables have proven cytotoxic to many cancer cells. Therefore, the present study aims to explore the molecular mechanisms underlying CF-induced cancer cell death and apoptosis on breast and liver cancer cells. The cytotoxicity and antiproliferative effects of CF on the human breast MCF-7 and liver HepG2 cancer cell lines were evaluated using sulforhodamine B assay and colony formation assay. Cell migration assay was measured using wound healing assay. The apoptosis induction mechanisms were investigated through reactive oxygen species formation, caspase 3 activity, and JC-1 activity. Gene expression by real-time PCR and apoptosis related protein levels by Western blot analysis. CF induced MCF-7 and HepG2 cell death by time- and dose-dependent manner. Furthermore, CF had the greater cytotoxic potency on MCF-7 more than HepG2 cells with IC50 values of 85.70+4.52 μM and 219.03±9.96 μM respectively, at 24 h. Treatment with CF also caused a dose-dependent decrease in colony forming ability and cell migration, especially on MCF-7 cells. CF induced ROS formation, increased caspase 3 activities, and decreased the mitochondrial membrane potential, and causing apoptotic body production and DNA fragmentation. CF significantly decreased expression of the cell cycle regulatory protein RAC1 and downstream proteins, cdk6. Additionally, CF enhanced p21 and reduced cyclin D1 protein levels. CF leaf extract induced cell death, apoptosis, antimigration in both of MCF-7 and HepG2 cells. CF could be useful for developing to anticancer drug candidate for breast and liver cancer therapy.

Keywords: cratoxylum formosum (jack) dyer, breast cancer, liver cancer, cell death

Procedia PDF Downloads 203
7431 Deubiquitinase USP35 Regulates Mitosis Progression by Blocking CDH1-Mediated Degradation of Aurora B.

Authors: Jinyoung Park, Eun Joo Song

Abstract:

Introduction: Deubiquitinating enzymes (DUBs) are proteases that cleave ubiquitin or ubiquitin-like modifications on substrates. Deubiquitination could regulate cellular physiology, such as signal transduction, DNA damage and repair, and cell cycle progression. Although more than 100 DUBs are encoded in the human and the importance of DUBs has been realized, the functions of most DUBs are unknown. This study aims to identify the molecular mechanism by which deubiquitinating enzyme USP35 regulates cell cycle progression for the first time. Methods: USP35 RNAi was mainly used to identify the function of USP35 in cell cycle progression. To find substrates of USP35, we analyzed protein-protein interaction using LC-MS. Several biological methods, such as ubiquitination assay, cell synchronization, immunofluorescence, and immunoprecipitation assay were used to investigate the exact mechanism by which USP35 affects successful completion of mitosis. Results: USP35 knockdown caused not only reduction of mitotic cell number but also induction of mitotic cells with abnormal spindle formation. Actually, cell proliferation was decreased by USP35 knockdown. Interestingly, we found that loss of USP35 decreased the stability and expression of Aurora B, a member of chromosomal passenger complex (CPC), and the phosphorylation of its substrate. Indeed, USP35 interacted with Aurora B and deubiquitinated it. In addition, USP35 knockdown induced abnormal localization of Aurora B in mitotic cells. Finally, CDH1-mediated ubiquitination of Aurora B level was rescued by USP35 overexpression, but not inactive form of USP35, USP35 C450A. Discussion: Our findings suggest that USP35 regulates Aurora B-mediated mitotic spindle assembly and G2-M transition by blocking CDH1-induced degradation of Aurora B.

Keywords: USP35, HSP90, Aurora B, cell cycle progression

Procedia PDF Downloads 350
7430 Closed Loop Large Bowel Obstruction Due to Appendiceal Signet Cell Carcinoma

Authors: Joshua Teo, Leo Phan

Abstract:

Signet cell carcinoma of the appendix is the rarest and the most aggressive subtype of appendiceal malignancy, typically with non-specific presentations. We describe a case of a 62-year-old male with large bowel obstruction and CT demonstrating dilated large bowels from caecum to proximal sigmoid colon with pneumoperitoneum. Intra-operatively, closed-loop obstruction caused by dense adherence of sigmoid colon to caecum was noted, which had resulted in caecal perforation. Histopathology study indicated primary appendiceal malignancy of signet cell morphology with intra-peritoneal spread to the sigmoid colon. Large bowel obstruction from appendiceal malignancy has rarely been reported, and a similar presentation has not been described in the existing literature. When left-sided large bowel obstruction is suspected to be caused by a malignant stricture, it is essential to consider transperitoneal spread of appendiceal malignancy as potential aetiology, particularly in the elderly.

Keywords: appendiceal carcinoma, large bowel obstruction, signet ring cell cancer, caecal perforation

Procedia PDF Downloads 204
7429 The Used of Ceramic Stove Cover and It’s Gap to the Efficiency of Water Boiling System

Authors: Agung Sugeng Widodo

Abstract:

Water boiling system (WBS) using conventional gas stove (CGS) is relatively inefficient unless its mechanism being considered. In this study, an addition of ceramic stove cover (CSC) to a CGS and the gap between CSC and pan have been assessed. Parameters as energy produced by fuel, CSC temperature and water temperature were used to analyze the performance of a CGS. The gaps were varied by 1 – 7 mm in a step of 1 mm. The results showed that a CSC able to increase the performance of a CGS significantly. In certain fuel rate of 0.75 l/m, the efficiency of a CGS obtained in a gap of 4 mm. The best efficiency obtained in this study was 46.4 % due to the optimum condition that achieved simultaneously in convection and radiation heat transfer processes of the heating system. CSC also indicated a good characteristic for covering heat release at the initially of WBS.

Keywords: WBS, CSC, CGS, efficiency, gap

Procedia PDF Downloads 255
7428 Simultaneous Extraction and Estimation of Steroidal Glycosides and Aglycone of Solanum

Authors: Karishma Chester, Sarvesh Paliwal, Sayeed Ahmad

Abstract:

Solanumnigrum L. (Family: Solanaceae), is an important Indian medicinal plant and have been used in various traditional formulations for hepato-protection. It has been reported to contain significant amount of steroidal glycosides such as solamargine and solasonine as well as their aglycone part solasodine. Being important pharmacologically active metabolites of several members of Solanaceae these markers have been attempted various times for their extraction and quantification but separately for glycoside and aglycone part because of their opposite polarity. Here, we propose for the first time simultaneous extraction and quantification of aglycone (solasodine)and glycosides (solamargine and solasonine) inleaves and berries of S.nigrumusing solvent extraction followed by HPTLC analysis. Simultaneous extraction was carried out by sonication in mixture of chloroform and methanol as solvent. The quantification was done using silica gel 60F254HPTLC plates as stationary phase and chloroform: methanol: acetone: 0.5 % ammonia (7: 2.5: 1: 0.4 v/v/v/v) as mobile phaseat 400 nm, after derivatization with an isaldehydesul furic acid reagent. The method was validated as per ICH guideline for calibration, linearity, precision, recovery, robustness, specificity, LOD, and LOQ. The statistical data obtained for validation showed that method can be used routinely for quality control of various solanaceous drugs reported for these markers as well as traditional formulations containing those plants as an ingredient.

Keywords: solanumnigrum, solasodine, solamargine, solasonine, quantification

Procedia PDF Downloads 321
7427 A Computational Investigation of Knocking Tendency in a Hydrogen-Fueled SI Engine

Authors: Hammam Aljabri, Hong G. Im

Abstract:

Hydrogen is a promising future fuel to support the transition of the energy sector toward carbon neutrality. The direct utilization of H2 in Internal Combustion Engines (ICEs) is possible, and this technology faces mainly two challenges; high NOx emissions and severe knocking at mid to high loads. In this study, we numerically investigated the potential of H2 combustion in a truck-size engine operated in SI mode. To mitigate the knocking nature of H2 combustion, we have focused on studying the effects of three primary parameters; the compression ratio (CR), the air-fuel ratio, and the spark time. The baseline case was set using a CR of 16.5 and an equivalence ratio of 0.35. In simulations, the auto-ignition tendency was evaluated based on the maximum pressure rise rate and the local pressure fluctuations at the monitoring points set along the wall of the combustion chamber. To mitigate the auto-ignition tendency while enabling a wider range of engine operation, the effect of lowering the compression ratio was assessed. The results indicate that by lowering the compression ratio from 16.5:1 to 12.5:1, an indicated thermal efficiency of 47.5% can be achieved. Aiming to restrain the auto-ignition while maintaining good efficiency, a reduction in the equivalence ratio was examined under different compression ratios. The result indicates that higher compression ratios will require lower equivalence ratios, and due to practical limitations, a lower equivalence ratio of 0.25 was set as the limit. Using a compression ratio of 13.5 combined with an equivalence ratio of 0.3 resulted in an indicated thermal efficiency of 48.6%, that is, at a fixed spark time. It is found that under such lean conditions, the incomplete combustion losses and exhaust losses were high. Thus, advancing the spark time was assessed as a possible solution. The results demonstrated the advantages of advancing the spark time, where an indicated thermal efficiency exceeding 50% was achieved using a compression ratio of 14.5:1 and an equivalence ratio of 0.25.

Keywords: hydrogen, combustion, engine knock, SI engine

Procedia PDF Downloads 118
7426 Business Marketing Researches and Analysis Effect on Production

Authors: Mirna John Shawky Demian

Abstract:

Mobile phones are now one of the direct marketing tools used to reach hard-to-reach consumers. Cell phones are very personal devices that you can carry with you anytime, anywhere. This gives marketers the ability to create personalized marketing messages and send them at the right time and place. The study examined consumer attitudes towards mobile marketing, particularly SMS marketing. Unlike similar studies, this study does not focus on young people, but the field study included consumers between the ages of 18 and 70.The results showed that the majority of participants found SMS marketing destructive. The biggest problem with SMS marketing is subscribing to message lists without the recipient's consent; large number of messages sent; and the irrelevance of message content. Experiential marketing is an unforgettable experience that remains deeply anchored in the customer's memory. Furthermore, customer satisfaction is defined as the emotional response to the experience provided to the customer in relation to specific products or services purchased. Therefore, experiential marketing activities can influence the level of customer satisfaction and loyalty.In this context, the study aims to examine the relationship between experiential marketing, customer satisfaction and loyalty to beauty products in Konya. The results of this study showed that experiential marketing is an important indicator of customer satisfaction and loyalty and that experiential marketing has a significant positive impact on customer satisfaction and loyalty.

Keywords: direct marketing, mobile phones mobile marketing, sms advertising, marketing sponsorship, marketing communication theories, marketing communication tools

Procedia PDF Downloads 36
7425 Cytotoxicity and Apoptosis Activity of Areca catechu Linn. Extract as Natural Anticancer Agent for Oral Squamous Cell Carcinoma

Authors: Liza Meutia Sari, Gus Permana Subita, Elza Ibrahim Auerkari

Abstract:

Background: Many herbs have been discovered to be potential sources of anticancer drugs. Biji Pinang or areca nut (Areca catechu Linn.) has a high content of phenolics and flavonoids, and which is related to antioxidant activity. However, data on its effects on oral squamous cell carcinoma is not available. Objectives: Identification of the cytotoxicity and apoptosis activity in HSC-2 and HSC-3. Methods: The areca nut was extracted by ethanol 96%, MTS assay and apoptosis activity with flow cytometry. Results: The extract of areca nut showed higher toxicity on HSC-3 cell compared to HSC-2. The IC₅₀ of HSC-3 was 164.06 μg/ml vs. 629.50 μg/ml in HSC-2. There was an increase in late apoptosis percentage after 24 and 48 hours in HSC-2. There was a significant increase in early apoptosis percentage after 24 hours and late in 48 hours in HSC-3. Conclusion: The antioxidant activity of the extract of areca nut might be associated with the selective cytotoxicity on HSC-2 and HSC-3. Apoptosis is the major cell death mechanism involved. The areca nut may play an important role in anticancer herb medicine.

Keywords: areca nut, cytotoxicity, apoptosis, oral carcinoma

Procedia PDF Downloads 215
7424 Driving Environmental Quality through Fuel Subsidy Reform in Nigeria

Authors: O. E. Akinyemi, P. O. Alege, O. O. Ajayi, L. A. Amaghionyediwe, A. A. Ogundipe

Abstract:

Nigeria as an oil-producing developing country in Africa is one of the many countries that had been subsidizing consumption of fossil fuel. Despite the numerous advantage of this policy ranging from increased energy access, fostering economic and industrial development, protecting the poor households from oil price shocks, political considerations, among others; they have been found to impose economic cost, wasteful, inefficient, create price distortions discourage investment in the energy sector and contribute to environmental pollution. These negative consequences coupled with the fact that the policy had not been very successful at achieving some of its stated objectives, led to a number of organisations and countries such as the Group of 7 (G7), World Bank, International Monetary Fund (IMF), International Energy Agency (IEA), Organisation for Economic Co-operation and Development (OECD), among others call for global effort towards reforming fossil fuel subsidies. This call became necessary in view of seeking ways to harmonise certain existing policies which may by design hamper current effort at tackling environmental concerns such as climate change. This is in addition to driving a green growth strategy and low carbon development in achieving sustainable development. The energy sector is identified to play a vital role. This study thus investigates the prospects of using fuel subsidy reform as a viable tool in driving an economy that de-emphasizes carbon growth in Nigeria. The method used is the Johansen and Engle-Granger two-step Co-integration procedure in order to investigate the existence or otherwise of a long-run equilibrium relationship for the period 1971 to 2011. Its theoretical framework is rooted in the Environmental Kuznet Curve (EKC) hypothesis. In developing three case scenarios (case of subsidy payment, no subsidy payment and effective subsidy), findings from the study supported evidence of a long run sustainable equilibrium model. Also, estimation results reflected that the first and the second scenario do not significantly influence the indicator of environmental quality. The implication of this is that in reforming fuel subsidy to drive environmental quality for an economy like Nigeria, strong and effective regulatory framework (measure that was interacted with fuel subsidy to yield effective subsidy) is essential.

Keywords: environmental quality, fuel subsidy, green growth, low carbon growth strategy

Procedia PDF Downloads 311
7423 Direct Torque Control of Induction Motor Employing Teaching Learning Based Optimization

Authors: Anam Gopi

Abstract:

The undesired torque and flux ripple may occur in conventional direct torque control (DTC) induction motor drive. DTC can improve the system performance at low speeds by continuously tuning the regulator by adjusting the Kp, Ki values. In this Teaching Learning Based Optimization (TLBO) is proposed to adjust the parameters (Kp, Ki) of the speed controller in order to minimize torque ripple, flux ripple, and stator current distortion. The TLBO based PI controller has resulted is maintaining a constant speed of the motor irrespective of the load torque fluctuations.

Keywords: teaching learning based optimization, direct torque control, PI controller

Procedia PDF Downloads 572
7422 Performance Comparison of Droop Control Methods for Parallel Inverters in Microgrid

Authors: Ahmed Ismail, Mustafa Baysal

Abstract:

Although the energy source in the world is mainly based on fossil fuels today, there is a need for alternative energy generation systems, which are more economic and environmentally friendly, due to continuously increasing demand of electric energy and lacking power resources and networks. Distributed Energy Resources (DERs) such as fuel cells, wind and solar power have recently become widespread as alternative generation. In order to solve several problems that might be encountered when integrating DERs to power system, the microgrid concept has been proposed. A microgrid can operate both grid connected and island mode to benefit both utility and customers. For most distributed energy resources (DER) which are connected in parallel in LV-grid like micro-turbines, wind plants, fuel cells and PV cells electrical power is generated as a direct current (DC) and converted to an alternative currents (AC) by inverters. So the inverters are assumed to be primary components in a microgrid. There are many control techniques of parallel inverters to manage active and reactive sharing of the loads. Some of them are based on droop method. In literature, the studies are usually focused on improving the transient performance of inverters. In this study, the performance of two different controllers based on droop control method is compared for the inverters operated in parallel without any communication feedback. For this aim, a microgrid in which inverters are controlled by conventional droop controller and modified droop controller is designed. Modified controller is obtained by adding PID into conventional droop control. Active and reactive power sharing performance, voltage and frequency responses of those control methods are measured in several operational cases. Study cases have been simulated by MATLAB-SIMULINK.

Keywords: active and reactive power sharing, distributed generation, droop control, microgrid

Procedia PDF Downloads 581
7421 New Targets Promoting Oncolytic Virotherapy

Authors: Felicia Segeth, Florian G. Klein, Lea Berger, Andreas Kolk, Per S. Holm

Abstract:

The entry of oncolytic viruses (OVs) into clinical application opens groundbreaking changes in current and future treatment regimens. However, despite their potent anti-cancer activity in vitro, clinical studies revealed limitations of OVs as monotherapy. The same applies to CDK 4/6 inhibitors (CDK4/6i) targeting cell cycle as well as bromodomain and extra-terminal domain inhibitors (BETi) targeting gene expression. In this study, the anti-tumoral effect of XVir-N-31, an YB-1 dependent oncolytic adenovirus, was evaluated in combination with Ribociclib, a CDK4/6i, and JQ1, a BETi. The head and neck squamous cell carcinoma (HNSCC) cell lines Fadu, SAS, and Cal-33 were used. DNA replication and gene expression of XVir-N-31 was measured by RT-qPCR, protein expression by western blotting, and cell lysis by SRB assays. Treatment with CDK4/6i and BETi increased viral gene expression, viral DNA replication, and viral particle formation. The data show that the combination of oncolytic adenovirus XVir-N-31 with CDK4/6i & BETi acts highly synergistic in cancer cell lysis. Furthermore, additional molecular analyses on this subject demonstrate that the positive transcription elongation factor P-TEFb plays a decisive role in this regard, indicating an influence of the combinational therapy on gene transcription control. The combination of CDK4/6i & BETi and XVir-N-31 is an attractive strategy to achieve substantial cancer cell killing and is highly suitable for clinical testing.

Keywords: adenovirus, BET, CDK4/6, HNSCC, P-TEFb, YB-1

Procedia PDF Downloads 107
7420 Effect of SCN5A Gene Mutation in Endocardial Cell

Authors: Helan Satish, M. Ramasubba Reddy

Abstract:

The simulation of an endocardial cell for gene mutation in the cardiac sodium ion channel NaV1.5, encoded by SCN5A gene, is discussed. The characterization of Brugada Syndrome by loss of function effect on SCN5A mutation due to L812Q mutant present in the DII-S4 transmembrane region of the NaV1.5 channel protein and its effect in an endocardial cell is studied. Ten Tusscher model of human ventricular action potential is modified to incorporate the changes contributed by L812Q mutant in the endocardial cells. Results show that BrS-associated SCN5A mutation causes reduction in the inward sodium current by modifications in the channel gating dynamics such as delayed activation, enhanced inactivation, and slowed recovery from inactivation in the endocardial cell. A decrease in the inward sodium current was also observed, which affects depolarization phase (Phase 0) that leads to reduction in the spike amplitude of the cardiac action potential.

Keywords: SCN5A gene mutation, sodium channel, Brugada syndrome, cardiac arrhythmia, action potential

Procedia PDF Downloads 113
7419 Solar Cell Using Chemical Bath Deposited PbS:Bi3+ Films as Electron Collecting Layer

Authors: Melissa Chavez Portillo, Mauricio Pacio Castillo, Hector Juarez Santiesteban, Oscar Portillo Moreno

Abstract:

Chemical bath deposited PbS:Bi3+ as an electron collection layer is introduced between the silicon wafer and the Ag electrode the performance of the PbS heterojunction thin film solar thin film solar cells with 1 cm2 active area. We employed Bi-doping to transform it into an n-type semiconductor. The experimental results reveal that the cell response parameters depend critically on the deposition procedures in terms of bath temperature, deposition time. The device achieves an open-circuit voltage of 0.4 V. The simple and low-cost deposition method of PbS:Bi3+ films is promising for the fabrication.

Keywords: Bi doping, PbS, thin films, solar cell

Procedia PDF Downloads 502
7418 Preparation of Biodiesel by Three Step Method Followed Purification by Various Silica Sources

Authors: Chanchal Mewar, Shikha Gangil, Yashwant Parihar, Virendra Dhakar, Bharat Modhera

Abstract:

Biodiesel was prepared from Karanja oil by three step methods: saponification, acidification and esterification. In first step, saponification was done in presence of methanol and KOH or NaOH with Karanja oil. During second step acidification, various acids such as H3PO4, HCl, H2SO4 were used as acid catalyst. In third step, esterification followed by purification was done with various silica sources as Ludox (colloidal silicate) and fumed silica gel. It was found that there was no significant change in density, kinematic viscosity, iodine number, acid value, saponification number, flash point, cloud point, pour point and cetane number after purification by these adsorbents. The objective of this research is the comparison among different adsorbents which were used for the purification of biodiesel. Ludox (colloidal silicate) and fumed silica gel were used as adsorbents for the removal of glycerin from biodiesel and evaluate the effectiveness of biodiesel purity. Furthermore, this study compared the results of distilled water washing also. It was observed that Ludox, fumed silica gel and distilled water produced yield about 93%, 91% and 83% respectively. Highest yield was obtained with Ludox at 100 oC temperature using H3PO4 as acid catalyst and NaOH as base catalyst with methanol, (3:1) alcohol to oil molar ratio in 90 min.

Keywords: biodiesel, three step method, purification, silica sources

Procedia PDF Downloads 490
7417 Factors That Determine International Competitiveness of Agricultural Products in Latin America 1990-2020

Authors: Oluwasefunmi Eunice Irewole, Enrique Armas Arévalos

Abstract:

Agriculture has played a crucial role in the economy and the development of many countries. Moreover, the basic needs for human survival are; food, shelter, and cloth are link on agricultural production. Most developed countries see that agriculture provides them with food and raw materials for different goods such as (shelter, medicine, fuel and clothing) which has led to an increase in incomes, livelihoods and standard of living. This study aimed at analysing the relationship between International competitiveness of agricultural products, with the area, fertilizer, labour force, economic growth, foreign direct investment, exchange rate and inflation rate in Latin America during the period of 1991-to 2019. In this study, panel data econometric methods were used, as well as cross-section dependence (Pesaran test), unit root (cross-section Augumented Dickey Fuller and Cross-sectional Im, Pesaran, and Shin tests), cointergration (Pedroni and Fisher-Johansen tests), and heterogeneous causality (Pedroni and Fisher-Johansen tests) (Hurlin and Dumitrescu test). The results reveal that the model has cross-sectional dependency and that they are integrated at one I. (1). The "fully modified OLS and dynamic OLS estimators" were used to examine the existence of a long-term relationship, and it was found that a long-term relationship existed between the selected variables. The study revealed a positive significant relationship between International Competitiveness of the agricultural raw material and area, fertilizer, labour force, economic growth, and foreign direct investment, while international competitiveness has a negative relationship with the advantages of the exchange rate and inflation. The economy policy recommendations deducted from this investigation is that Foreign Direct Investment and the labour force have a positive contribution to the increase of International Competitiveness of agricultural products.

Keywords: revealed comparative advantage, agricultural products, area, fertilizer, economic growth, granger causality, panel unit root

Procedia PDF Downloads 91
7416 Study of Suezmax Shuttle Tanker Energy Efficiency for Operations at the Brazilian Pre-Salt Region

Authors: Rodrigo A. Schiller, Rubens C. Da Silva, Kazuo Nishimoto, Claudio M. P. Sampaio

Abstract:

The need to reduce fossil fuels consumption due to the current scenario of trying to restrain global warming effects and reduce air pollution is dictating a series of transformations in shipping. This study introduces, at first, the changes of the regulatory framework concerning gas emissions control and fuel consumption efficiency on merchant ships. Secondly, the main operational procedures with high potential reduction of fuel consumption are discussed, with focus on existing vessels, using ship speed reduction procedure. This procedure shows the positive impacts on both operating costs reduction and also on energy efficiency increase if correctly applied. Finally, a numerical analysis of the fuel consumption variation with the speed was carried out for a Suezmax class oil tanker, which has been adapted to oil offloading operations for FPSOs in Brazilian offshore oil production systems. In this analysis, the discussions about the variations of vessel energy efficiency from small speed rate reductions and the possible applications of this improvement, taking into account the typical operating profile of the vessel in such a way to have significant economic impacts on the operation. This analysis also evaluated the application of two different numerical methods: one based only on regression equations produced by existing data, semi-empirical method, and another using a CFD simulations for estimating the hull shape parameters that are most relevant for determining fuel consumption, analyzing inaccuracies and impact on the final results.

Keywords: energy efficiency, offloading operations, speed reduction, Suezmax oil tanker

Procedia PDF Downloads 518
7415 NaOH/Pumice and LiOH/Pumice as Heterogeneous Solid Base Catalysts for Biodiesel Production from Soybean Oil: An Optimization Study

Authors: Joy Marie Mora, Mark Daniel De Luna, Tsair-Wang Chung

Abstract:

Transesterification reaction of soybean oil with methanol was carried out to produce fatty acid methyl esters (FAME) using calcined alkali metal (Na and Li) supported by pumice silica as the solid base catalyst. Pumice silica catalyst was activated by loading alkali metal ions to its surface via an ion-exchange method. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the operating parameters in biodiesel production, namely: reaction temperature, methanol to oil molar ratio, reaction time, and catalyst concentration. Using the optimized sets of parameters, FAME yields using sodium and lithium silicate catalysts were 98.80% and 98.77%, respectively. A pseudo-first order kinetic equation was applied to evaluate the kinetic parameters of the reaction. The prepared catalysts were characterized by several techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) sorptometer, and scanning electron microscopy (SEM). In addition, the reusability of the catalysts was successfully tested in two subsequent cycles.

Keywords: alkali metal, biodiesel, Box-Behnken design, heterogeneous catalyst, kinetics, optimization, pumice, transesterification

Procedia PDF Downloads 289
7414 Incorporating Spatial Transcriptome Data into Ligand-Receptor Analyses to Discover Regional Activation in Cells

Authors: Eric Bang

Abstract:

Interactions between receptors and ligands are crucial for many essential biological processes, including neurotransmission and metabolism. Ligand-receptor analyses that examine cell behavior and interactions often utilize cell type-specific RNA expressions from single-cell RNA sequencing (scRNA-seq) data. Using CellPhoneDB, a public repository consisting of ligands, receptors, and ligand-receptor interactions, the cell-cell interactions were explored in a specific scRNA-seq dataset from kidney tissue and portrayed the results with dot plots and heat maps. Depending on the type of cell, each ligand-receptor pair was aligned with the interacting cell type and calculated the positori probabilities of these associations, with corresponding P values reflecting average expression values between the triads and their significance. Using single-cell data (sample kidney cell references), genes in the dataset were cross-referenced with ones in the existing CellPhoneDB dataset. For example, a gene such as Pleiotrophin (PTN) present in the single-cell data also needed to be present in the CellPhoneDB dataset. Using the single-cell transcriptomics data via slide-seq and reference data, the CellPhoneDB program defines cell types and plots them in different formats, with the two main ones being dot plots and heat map plots. The dot plot displays derived measures of the cell to cell interaction scores and p values. For the dot plot, each row shows a ligand-receptor pair, and each column shows the two interacting cell types. CellPhoneDB defines interactions and interaction levels from the gene expression level, so since the p-value is on a -log10 scale, the larger dots represent more significant interactions. By performing an interaction analysis, a significant interaction was discovered for myeloid and T-cell ligand-receptor pairs, including those between Secreted Phosphoprotein 1 (SPP1) and Fibronectin 1 (FN1), which is consistent with previous findings. It was proposed that an effective protocol would involve a filtration step where cell types would be filtered out, depending on which ligand-receptor pair is activated in that part of the tissue, as well as the incorporation of the CellPhoneDB data in a streamlined workflow pipeline. The filtration step would be in the form of a Python script that expedites the manual process necessary for dataset filtration. Being in Python allows it to be integrated with the CellPhoneDB dataset for future workflow analysis. The manual process involves filtering cell types based on what ligand/receptor pair is activated in kidney cells. One limitation of this would be the fact that some pairings are activated in multiple cells at a time, so the manual manipulation of the data is reflected prior to analysis. Using the filtration script, accurate sorting is incorporated into the CellPhoneDB database rather than waiting until the output is produced and then subsequently applying spatial data. It was envisioned that this would reveal wherein the cell various ligands and receptors are interacting with different cell types, allowing for easier identification of which cells are being impacted and why, for the purpose of disease treatment. The hope is this new computational method utilizing spatially explicit ligand-receptor association data can be used to uncover previously unknown specific interactions within kidney tissue.

Keywords: bioinformatics, Ligands, kidney tissue, receptors, spatial transcriptome

Procedia PDF Downloads 130
7413 DNA Methylation Changes Caused by Lawsone

Authors: Zuzana Poborilova, Anna B. Ohlsson, Torkel Berglund, Anna Vildova, Petr Babula

Abstract:

Lawsone is a pigment that occurs naturally in plants. It has been used as a skin and hair dye for a long time. Moreover, its different biological activities have been reported. The present study focused on the effect of lawsone on a plant cell model represented by tobacco BY-2 cell suspension culture, which is used as a model comparable with the HeLa cells. It has been shown that lawsone inhibits the cell growth in the concentration-dependent manner. In addition, changes in DNA methylation level have been determined. We observed decreasing level of DNA methylation in the presence of increasing concentrations of lawsone. These results were accompanied with overproduction of reactive oxygen species (ROS). Since epigenetic modifications can be caused by different stress factors, there could be a connection between the changes in the level of DNA methylation and ROS production caused by lawsone.

Keywords: DNA methylation, lawsone, naphthoquinone, reactive oxygen species

Procedia PDF Downloads 416
7412 Environmental and Safety Studies for Advanced Fuel Cycle Fusion Energy Systems: The ESSENTIAL Approach

Authors: Massimo Zucchetti

Abstract:

In the US, the SPARC-ARC projects of compact tokamaks are being developed: both are aimed at the technological demonstration of fusion power reactors with cutting-edge technology but following different design approaches. However, they show more similarities than differences in the fuel cycle, safety, radiation protection, environmental, waste and decommissioning aspects: all reactors, either experimental or demonstration ones, have to fulfill certain "essential" requirements to pass from virtual to real machines, to be built in the real world. The paper will discuss these "essential" requirements. Some of the relevant activities in these fields, carried out by our research group (ESSENTIAL group), will be briefly reported, with the aim of showing some methodology aspects that have been developed and might be of wider interest. Also, a non-competitive comparison between our results for different projects will be included when useful. The question of advanced D-He3 fuel cycles to be used for those machines will be addressed briefly. In the past, the IGNITOR project of a compact high-magnetic field D-T ignition experiment was found to be able to sustain limited D-He3 plasmas, while the Candor project was a more decisive step toward D-He3 fusion reactors. The following topics will be treated: Waste management and radioactive safety studies for advanced fusion power plants; development of compact high-field advanced fusion reactors; behavior of nuclear materials under irradiation: neutron-induced radioactivity due to side DT reactions, radiation damage; accident analysis; reactor siting.

Keywords: advanced fuel fusion reactors, deuterium-helium3, high-field tokamaks, fusion safety

Procedia PDF Downloads 73
7411 Experimental Study of Tunable Layout Printed Fresnel Lens Structure Based on Dye Doped Liquid Crystal

Authors: M. Javadzadeh, H. Khoshsima

Abstract:

In this article, we present a layout printing way for producing Fresnel zone on 1294-1b doped liquid crystal with Methyl-Red azo dye. We made a Fresnel zone mask with 25 zones and radius of 5 mm using lithography technique. With layout printing way, we recorded mask’s pattern on cell with λ=532 nm solid-state diode pump laser. By recording Fresnel zone pattern on cell and making Fresnel pattern on the surface of cell, odd and even zones, will form. The printed pattern, because of Azo dye’s photoisomerization, was permanent. Experimentally, we saw focal length tunability from 32 cm to 43 cm.

Keywords: liquid crystal, lens, Fresnel zone, diffraction, Fresnel lens

Procedia PDF Downloads 193
7410 Modelling Phase Transformations in Zircaloy-4 Fuel Cladding under Transient Heating Rates

Authors: Jefri Draup, Antoine Ambard, Chi-Toan Nguyen

Abstract:

Zirconium alloys exhibit solid-state phase transformations under thermal loading. These can lead to a significant evolution of the microstructure and associated mechanical properties of materials used in nuclear fuel cladding structures. Therefore, the ability to capture effects of phase transformation on the material constitutive behavior is of interest during conditions of severe transient thermal loading. Whilst typical Avrami, or Johnson-Mehl-Avrami-Kolmogorov (JMAK), type models for phase transformations have been shown to have a good correlation with the behavior of Zircaloy-4 under constant heating rates, the effects of variable and fast heating rates are not fully explored. The present study utilises the results of in-situ high energy synchrotron X-ray diffraction (SXRD) measurements in order to validate the phase transformation models for Zircaloy-4 under fast variable heating rates. These models are used to assess the performance of fuel cladding structures under loss of coolant accident (LOCA) scenarios. The results indicate that simple Avrami type models can provide a reasonable indication of the phase distribution in experimental test specimens under variable fast thermal loading. However, the accuracy of these models deteriorates under the faster heating regimes, i.e., 100Cs⁻¹. The studies highlight areas for improvement of simple Avrami type models, such as the inclusion of temperature rate dependence of the JMAK n-exponent.

Keywords: accident, fuel, modelling, zirconium

Procedia PDF Downloads 133
7409 Cytotoxicity of Thymoquinone Alone or in Combination with Cisplatin (CDDP) Against Oral Squamous Cell Carcinoma in Vitro

Authors: Omar M. Al Aufi, Abdulwahab Noorwali, Ahmed Al Abd, Safia Alattas, Fathya Zahran, Fahd Almutairi

Abstract:

Cisplatin (CDDP) is a potent anticancer agent used for several tumor types. Thymoquinone (TQ) is a naturally occurring compound drawing great attention as an anticancer and chemomodulator for chemotherapies. Herein, we studied the potential cytotoxicity of thymoquinone, CDDP and their combination against human oral squamous cell carcinoma cells in contrast to normal oral epithelial cells. CDDP similarly killed both head and neck squamous cell carcinoma cells (UMSCC-14C) and normal oral epithelial cells (OEC). TQ alone exerted considerable cytotoxicity against UMSCC-14C cells, while it induced a weaker killing effect against normal oral epithelial cells (OEC). The equitoxic combination of TQ and CDDP showed additive to synergistic interaction against both UMSCC-14C and OEC cells. TQ alone increased apoptotic cell fraction in UMSCC-14C cells as early as after 6 hours. In addition, prolonged exposure of UMSCC-14C to TQ alone resulted in 96.7±1.6% total apoptosis, which was increased after combination with CDDP to 99.3±1.2% in UMSCC-14C cells. On the other hand, TQ induced a marginal increase in the apoptosis in OEC and even decreased the apoptosis induced by CDDP alone. Finally, apoptosis induction results were confirmed by the change in the expression levels of p53, Bcl-2 and Caspase-9 proteins in both UMSCC-14c and OEC cells.

Keywords: thymoquinone, cisplatin, apoptosis, oral squamous cell carcinoma, P53, Caspase-9, Bcl-2

Procedia PDF Downloads 47
7408 Failure Analysis of Fuel Pressure Supply from an Aircraft Engine

Authors: M. Pilar Valles-gonzalez, Alejandro Gonzalez Meije, Ana Pastor Muro, Maria Garcia-Martinez, Beatriz Gonzalez Caballero

Abstract:

This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed of the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material has been mechanical, by hardness test, and microstructural characterized using a stereomicroscope and an optical microscope. The results confirmed that it is within specifications. To determine the macrofractographic features, a visual examination and a stereo microscope of the tube fracture surface have been carried out. The results revealed a tube plastic macrodeformation, surface damaged, and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with a microanalysis system by X-ray dispersive energy (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, have been observed. The origin of the fracture has been placed in defects located on the outer wall of the tube, leading to a final overload fracture.

Keywords: aircraft engine, fatigue, FE-SEM, fractography, fracture, fuel tube, microstructure, stainless steel

Procedia PDF Downloads 142