Search results for: computational finance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2587

Search results for: computational finance

1687 Mobile Application for Construction Sites Management

Authors: A. Khelifi, M. Al Kaabi, B. Al Rawashdeh

Abstract:

The infrastructure is one of the most important pillars of the UAE, where it spends millions of dollars for investments in the construction sectors. The research done by Kuwait Finance House (KFH) Research showed clearly that the UAE investments in the construction sectors have exceeded 30 billion dollars in 2013. There are many construction companies in the UAE and each one of them is taking the responsibilities to build different infrastructures. The large scale construction projects consist of multi human activities which can affect the efficiency and productivity of the running projects. The Construction Administration System is developed to increase the efficiency and productivity at the construction sites. It runs on two platforms: web server and mobile phone and supports two main users: mobile user and institution employee. With Construction Administration Mobile Application the user can manage and control several projects, create several reports and send these reports in Portable Document Format (PDF) formats through emails, view the physical location of each project, capturing and save photos. An institution employee can use the system to view all existing workers and projects, send emails and view the progress of each project.

Keywords: construction sites, management, mobile application, Portable Document Format (PDF)

Procedia PDF Downloads 376
1686 Terrorist Financing through Ilegal Fintech Hacking: Case Study of Rizki Gunawan

Authors: Ishna Indika Jusi, Rifana Meika

Abstract:

Terrorism financing method in Indonesia is developing at an alarming rate, to the point, it is now becoming more complex than before. Terrorists traditionally use conventional methods like robberies, charities, and courier services to fund their activities; today terrorists are able to utilize modern methods in financing their activities due to the rapid development in financial technology nowadays; one example is by hacking an illegal Fintech Company. Therefore, this research is conducted in order to explain and analyze the consideration behind the usage of an illegal fintech company to finance terrorism activities and how to prevent it. The analysis in this research is done by using the theory that is coined by Michael Freeman about the reasoning of terrorists when choosing their financing method. The method used in this research is a case study, and the case that is used for this research is the terrorism financing hacking of speedline.com in 2011 by Rizki Gunawan. Research data are acquired from interviews with the perpetrators, experts from INTRAC (PPATK), Special Detachment 88, reports, and journals that are relevant to the research. As a result, this study found that the priority aspects in terms of terrorist financing are security, quantity, and simplicity while obtaining funds.

Keywords: Fintech, illegal, Indonesia, technology, terrorism financing

Procedia PDF Downloads 175
1685 Assessment of the Performance of the Sonoreactors Operated at Different Ultrasound Frequencies, to Remove Pollutants from Aqueous Media

Authors: Gabriela Rivadeneyra-Romero, Claudia del C. Gutierrez Torres, Sergio A. Martinez-Delgadillo, Victor X. Mendoza-Escamilla, Alejandro Alonzo-Garcia

Abstract:

Ultrasonic degradation is currently being used in sonochemical reactors to degrade pollutant compounds from aqueous media, as emerging contaminants (e.g. pharmaceuticals, drugs and personal care products.) because they can produce possible ecological impacts on the environment. For this reason, it is important to develop appropriate water and wastewater treatments able to reduce pollution and increase reuse. Pollutants such as textile dyes, aromatic and phenolic compounds, cholorobenzene, bisphenol-A and carboxylic acid and other organic pollutants, can be removed from wastewaters by sonochemical oxidation. The effect on the removal of pollutants depends on the type of the ultrasonic frequency used; however, not much studies have been done related to the behavior of the fluid into the sonoreactors operated at different ultrasonic frequencies. Based on the above, it is necessary to study the hydrodynamic behavior of the liquid generated by the ultrasonic irradiation to design efficient sonoreactors to reduce treatment times and costs. In this work, it was studied the hydrodynamic behavior of the fluid in sonochemical reactors at different frequencies (250 kHz, 500 kHz and 1000 kHz). The performances of the sonoreactors at those frequencies were simulated using computational fluid dynamics (CFD). Due to there is great sound speed gradient between piezoelectric and fluid, k-e models were used. Piezoelectric was defined as a vibration surface, to evaluate the different frequencies effect on the fluid into sonochemical reactor. Structured hexahedral cells were used to mesh the computational liquid domain, and fine triangular cells were used to mesh the piezoelectric transducers. Unsteady state conditions were used in the solver. Estimation of the dissipation rate, flow field velocities, Reynolds stress and turbulent quantities were evaluated by CFD and 2D-PIV measurements. Test results show that there is no necessary correlation between an increase of the ultrasonic frequency and the pollutant degradation, moreover, the reactor geometry and power density are important factors that should be considered in the sonochemical reactor design.

Keywords: CFD, reactor, ultrasound, wastewater

Procedia PDF Downloads 193
1684 The Effect of Artificial Intelligence on Accounting and Finance

Authors: Evrime Fawzy Ishak Gadelsayed

Abstract:

This paper presents resource intake accounting as an inventive manner to cope with control accounting, which concentrates on administrators as the crucial customers of the information and offers satisfactory statistics of conventional control accounting. This machine underscores that the association's asset motivates prices; as a consequence, in costing frameworks, the emphasis ought to be on assets and their usage. Resource consumption accounting consolidates two costing methodologies, action-based totally and the German cost accounting approach called GPK. This methodology, however, is a danger to managers when making the management accounting undertaking operational. The motive for this article is to clarify the concept of resource intake accounting, its elements and highlights and use of this approach in associations. Inside the first area, we present useful resource consumption accounting, the basis, reasons for its improvement, and the issues that are faced beyond costing frameworks. At that point, we deliver the requirements and presumptions of this approach; ultimately, we depict the execution of this approach in associations and its preferences over other costing techniques.

Keywords: financial statement fraud, forensic accounting, fraud prevention and detection, auditing, audit expectation gap, corporate governance resource consumption accounting, management accounting, action based method, German cost accounting method

Procedia PDF Downloads 23
1683 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning

Authors: Akeel A. Shah, Tong Zhang

Abstract:

Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.

Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning

Procedia PDF Downloads 46
1682 Study of Morning-Glory Spillway Structure in Hydraulic Characteristics by CFD Model

Authors: Mostafa Zandi, Ramin Mansouri

Abstract:

Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. Morning-Glory spillway is one of the common spillways for discharging the overflow water behind dams, these kinds of spillways are constructed in dams with small reservoirs. In this research, the hydraulic flow characteristics of a morning-glory spillways are investigated with CFD model. Two dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k- and k-, were chosen to model Reynolds shear stress term. The power law scheme was used for discretization of momentum, k , and  equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k -ε (Standard) has the most consistent results with experimental results. When the jet is getting closer to end of basin, the computational results increase with the numerical results of their differences. The lower profile of the water jet has less sensitivity to the hydraulic jet profile than the hydraulic jet profile. In the pressure test, it was also found that the results show that the numerical values of the pressure in the lower landing number differ greatly in experimental results. The characteristics of the complex flows over a Morning-Glory spillway were studied numerically using a RANS solver. Grid study showed that numerical results of a 57512-node grid had the best agreement with the experimental values. The desired downstream channel length was preferred to be 1.5 meter, and the standard k-ε turbulence model produced the best results in Morning-Glory spillway. The numerical free-surface profiles followed the theoretical equations very well.

Keywords: morning-glory spillway, CFD model, hydraulic characteristics, wall function

Procedia PDF Downloads 80
1681 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery

Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong

Abstract:

The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.

Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition

Procedia PDF Downloads 292
1680 Microfinance and Gender Empowerment Discourse: Rethinking Minimalist View of Microcredit Programmes

Authors: Thomas Yeboah

Abstract:

In recent times, micro-finance programmes targeting women have become the central means of donor poverty alleviation strategies. In view of the renewed focus on post-Millennium Development Goals (MDGs) poverty reduction strategies, there is the likelihood that funding might increase in the next coming decades to support different initiatives by donor agencies. In this paper, we critically examine the role of microfinance in shaping gender relations and empowerment outcomes of women. It is widely argued that providing and reaching out to women with credit methodologies serves as a means of increasing women’s bargaining power and challenging existing gender subordination thereby releasing them from power structures which dominate their lives. This paper cautions this view and instead show that the mainstream argument surrounding microfinance and gender empowerment is much complex than what the popular rhetoric preaches. Drawing on empirical cases on microfinance literature, we argue that lack of systematic strategy to incorporate men and the wider socio-cultural dynamics within which women’s lives are embedded radically constraints the empowerment potential of microcredit programmes and in some context may lead to unintended consequences for women.

Keywords: microfinance, empowerment, women, men, gender relations

Procedia PDF Downloads 466
1679 The Relationship Between Cultural Factors and Dividend Payouts of the Banks in Some Middle East Countries

Authors: Benjamin Bae, Mahdy Elhusseiny, Sherif El-Halaby

Abstract:

This study investigates the relationship between some cultural factors and the level of dividend payouts of banks in a number of Muslim countries. We examine whether cultural factors play any role in determining dividend payout policy in banks. The results suggest that banks in high masculinity countries tend to pay higher dividends than low masculinity countries. The results also show that banks in high uncertainty avoidance (UA) countries tend to pay lower dividends than high UA countries. Additionally, the results of this study indicate that banks in high long-term orientation (LTO) countries tend to pay lower dividends than low LTO countries. However, two other cultural factors of power distance (PD) and individualism do not have any incremental explanatory power on the dividend payouts. Overall, this research adds to our understanding of the bank’s dividend payout policies. First, evidence on the relationship between the cultural factors and bank’s level of dividend payouts should be useful to investors. Second, the findings of this study provide financial statement users with useful information about the bank’s dividend payout levels. Third, in general, it also adds to the accounting and finance literature on dividends.

Keywords: cultural factor, dividend payout, Hofstede index, bank industry

Procedia PDF Downloads 111
1678 Numerical Solutions of Generalized Burger-Fisher Equation by Modified Variational Iteration Method

Authors: M. O. Olayiwola

Abstract:

Numerical solutions of the generalized Burger-Fisher are obtained using a Modified Variational Iteration Method (MVIM) with minimal computational efforts. The computed results with this technique have been compared with other results. The present method is seen to be a very reliable alternative method to some existing techniques for such nonlinear problems.

Keywords: burger-fisher, modified variational iteration method, lagrange multiplier, Taylor’s series, partial differential equation

Procedia PDF Downloads 434
1677 Evaluating Performance of Value at Risk Models for the MENA Islamic Stock Market Portfolios

Authors: Abderrazek Ben Maatoug, Ibrahim Fatnassi, Wassim Ben Ayed

Abstract:

In this paper we investigate the issue of market risk quantification for Middle East and North Africa (MENA) Islamic market equity. We use Value-at-Risk (VaR) as a measure of potential risk in Islamic stock market, for long and short position, based on Riskmetrics model and the conditional parametric ARCH class model volatility with normal, student and skewed student distribution. The sample consist of daily data for the 2006-2014 of 11 Islamic stock markets indices. We conduct Kupiec and Engle and Manganelli tests to evaluate the performance for each model. The main finding of our empirical results show that (i) the superior performance of VaR models based on the Student and skewed Student distribution, for the significance level of α=1% , for all Islamic stock market indices, and for both long and short trading positions (ii) Risk Metrics model, and VaR model based on conditional volatility with normal distribution provides the best accurate VaR estimations for both long and short trading positions for a significance level of α=5%.

Keywords: value-at-risk, risk management, islamic finance, GARCH models

Procedia PDF Downloads 593
1676 Bayesian Parameter Inference for Continuous Time Markov Chains with Intractable Likelihood

Authors: Randa Alharbi, Vladislav Vyshemirsky

Abstract:

Systems biology is an important field in science which focuses on studying behaviour of biological systems. Modelling is required to produce detailed description of the elements of a biological system, their function, and their interactions. A well-designed model requires selecting a suitable mechanism which can capture the main features of the system, define the essential components of the system and represent an appropriate law that can define the interactions between its components. Complex biological systems exhibit stochastic behaviour. Thus, using probabilistic models are suitable to describe and analyse biological systems. Continuous-Time Markov Chain (CTMC) is one of the probabilistic models that describe the system as a set of discrete states with continuous time transitions between them. The system is then characterised by a set of probability distributions that describe the transition from one state to another at a given time. The evolution of these probabilities through time can be obtained by chemical master equation which is analytically intractable but it can be simulated. Uncertain parameters of such a model can be inferred using methods of Bayesian inference. Yet, inference in such a complex system is challenging as it requires the evaluation of the likelihood which is intractable in most cases. There are different statistical methods that allow simulating from the model despite intractability of the likelihood. Approximate Bayesian computation is a common approach for tackling inference which relies on simulation of the model to approximate the intractable likelihood. Particle Markov chain Monte Carlo (PMCMC) is another approach which is based on using sequential Monte Carlo to estimate intractable likelihood. However, both methods are computationally expensive. In this paper we discuss the efficiency and possible practical issues for each method, taking into account the computational time for these methods. We demonstrate likelihood-free inference by performing analysing a model of the Repressilator using both methods. Detailed investigation is performed to quantify the difference between these methods in terms of efficiency and computational cost.

Keywords: Approximate Bayesian computation(ABC), Continuous-Time Markov Chains, Sequential Monte Carlo, Particle Markov chain Monte Carlo (PMCMC)

Procedia PDF Downloads 207
1675 Examining the Association of Demographic Factors and Arab Women’s Investment Behavior

Authors: Razan Salem

Abstract:

Men and women are different, and so their investment behaviors may also vary. To the author’s best knowledge, women's investment behavior and its association with demographic factors have not been explored directly in the behavioral finance literature, however, particularly in respect to the Arab region. Thus, this study extends the literature by focusing on examining the association of demographic factors (age, annual income, and education) with Arab women’s investment behavior. To achieve the study’s aim, the researcher distributed 600 close-ended online questionnaires to a sample of Arab male and female individual investors in both Saudi Arabia and Jordan; using Kruskal-Wallis H Test and the Mann-Whitney U Test to analyze the data. The findings reveal that age, education, and level of income are associated with Arab women’s investment behavior. Educational level and level of income are positively associated with Arab women investment confidence level. On the contrary, age is negatively associated with Arab women financial risk tolerance. According to annual income, Arab women with lower incomes have lower confidence and investment literacy levels. Overall, the study concludes that age, income, and education are important demographic factors that must be considered when investigating the investment behavior of women in the Arab region.

Keywords: Arab region, demographic factors, investment behavior, women investors

Procedia PDF Downloads 168
1674 Exploration of Cone Foam Breaker Behavior Using Computational Fluid Dynamic

Authors: G. St-Pierre-Lemieux, E. Askari Mahvelati, D. Groleau, P. Proulx

Abstract:

Mathematical modeling has become an important tool for the study of foam behavior. Computational Fluid Dynamic (CFD) can be used to investigate the behavior of foam around foam breakers to better understand the mechanisms leading to the ‘destruction’ of foam. The focus of this investigation was the simple cone foam breaker, whose performance has been identified in numerous studies. While the optimal pumping angle is known from the literature, the contribution of pressure drop, shearing, and centrifugal forces to the foam syneresis are subject to speculation. This work provides a screening of those factors against changes in the cone angle and foam rheology. The CFD simulation was made with the open source OpenFOAM toolkits on a full three-dimensional model discretized using hexahedral cells. The geometry was generated using a python script then meshed with blockMesh. The OpenFOAM Volume Of Fluid (VOF) method was used (interFOAM) to obtain a detailed description of the interfacial forces, and the model k-omega SST was used to calculate the turbulence fields. The cone configuration allows the use of a rotating wall boundary condition. In each case, a pair of immiscible fluids, foam/air or water/air was used. The foam was modeled as a shear thinning (Herschel-Buckley) fluid. The results were compared to our measurements and to results found in the literature, first by computing the pumping rate of the cone, and second by the liquid break-up at the exit of the cone. A 3D printed version of the cones submerged in foam (shaving cream or soap solution) and water, at speeds varying between 400 RPM and 1500 RPM, was also used to validate the modeling results by calculating the torque exerted on the shaft. While most of the literature is focusing on cone behavior using Newtonian fluids, this works explore its behavior in shear thinning fluid which better reflects foam apparent rheology. Those simulations bring new light on the cone behavior within the foam and allow the computation of shearing, pressure, and velocity of the fluid, enabling to better evaluate the efficiency of the cones as foam breakers. This study contributes to clarify the mechanisms behind foam breaker performances, at least in part, using modern CFD techniques.

Keywords: bioreactor, CFD, foam breaker, foam mitigation, OpenFOAM

Procedia PDF Downloads 210
1673 Cognitive Dissonance in Robots: A Computational Architecture for Emotional Influence on the Belief System

Authors: Nicolas M. Beleski, Gustavo A. G. Lugo

Abstract:

Robotic agents are taking more and increasingly important roles in society. In order to make these robots and agents more autonomous and efficient, their systems have grown to be considerably complex and convoluted. This growth in complexity has led recent researchers to investigate forms to explain the AI behavior behind these systems in search for more trustworthy interactions. A current problem in explainable AI is the inner workings with the logic inference process and how to conduct a sensibility analysis of the process of valuation and alteration of beliefs. In a social HRI (human-robot interaction) setup, theory of mind is crucial to ease the intentionality gap and to achieve that we should be able to infer over observed human behaviors, such as cases of cognitive dissonance. One specific case inspired in human cognition is the role emotions play on our belief system and the effects caused when observed behavior does not match the expected outcome. In such scenarios emotions can make a person wrongly assume the antecedent P for an observed consequent Q, and as a result, incorrectly assert that P is true. This form of cognitive dissonance where an unproven cause is taken as truth induces changes in the belief base which can directly affect future decisions and actions. If we aim to be inspired by human thoughts in order to apply levels of theory of mind to these artificial agents, we must find the conditions to replicate these observable cognitive mechanisms. To achieve this, a computational architecture is proposed to model the modulation effect emotions have on the belief system and how it affects logic inference process and consequently the decision making of an agent. To validate the model, an experiment based on the prisoner's dilemma is currently under development. The hypothesis to be tested involves two main points: how emotions, modeled as internal argument strength modulators, can alter inference outcomes, and how can explainable outcomes be produced under specific forms of cognitive dissonance.

Keywords: cognitive architecture, cognitive dissonance, explainable ai, sensitivity analysis, theory of mind

Procedia PDF Downloads 135
1672 A Multistep Broyden’s-Type Method for Solving Systems of Nonlinear Equations

Authors: M. Y. Waziri, M. A. Aliyu

Abstract:

The paper proposes an approach to improve the performance of Broyden’s method for solving systems of nonlinear equations. In this work, we consider the information from two preceding iterates rather than a single preceding iterate to update the Broyden’s matrix that will produce a better approximation of the Jacobian matrix in each iteration. The numerical results verify that the proposed method has clearly enhanced the numerical performance of Broyden’s Method.

Keywords: mulit-step Broyden, nonlinear systems of equations, computational efficiency, iterate

Procedia PDF Downloads 641
1671 Numerical Evolution Methods of Rational Form for Diffusion Equations

Authors: Said Algarni

Abstract:

The purpose of this study was to investigate selected numerical methods that demonstrate good performance in solving PDEs. We adapted alternative method that involve rational polynomials. Padé time stepping (PTS) method, which is highly stable for the purposes of the present application and is associated with lower computational costs, was applied. Furthermore, PTS was modified for our study which focused on diffusion equations. Numerical runs were conducted to obtain the optimal local error control threshold.

Keywords: Padé time stepping, finite difference, reaction diffusion equation, PDEs

Procedia PDF Downloads 302
1670 Acceleration Techniques of DEM Simulation for Dynamics of Particle Damping

Authors: Masato Saeki

Abstract:

Presented herein is a novel algorithms for calculating the damping performance of particle dampers. The particle damper is a passive vibration control technique and has many practical applications due to simple design. It consists of granular materials constrained to move between two ends in the cavity of a primary vibrating system. The damping effect results from the exchange of momentum during the impact of granular materials against the wall of the cavity. This damping has the advantage of being independent of the environment. Therefore, particle damping can be applied in extreme temperature environments, where most conventional dampers would fail. It was shown experimentally in many papers that the efficiency of the particle dampers is high in the case of resonant vibration. In order to use the particle dampers effectively, it is necessary to solve the equations of motion for each particle, considering the granularity. The discrete element method (DEM) has been found to be effective for revealing the dynamics of particle damping. In this method, individual particles are assumed as rigid body and interparticle collisions are modeled by mechanical elements as springs and dashpots. However, the computational cost is significant since the equation of motion for each particle must be solved at each time step. In order to improve the computational efficiency of the DEM, the new algorithms are needed. In this study, new algorithms are proposed for implementing the high performance DEM. On the assumption that behaviors of the granular particles in the each divided area of the damper container are the same, the contact force of the primary system with all particles can be considered to be equal to the product of the divided number of the damper area and the contact force of the primary system with granular materials per divided area. This convenience makes it possible to considerably reduce the calculation time. The validity of this calculation method was investigated and the calculated results were compared with the experimental ones. This paper also presents the results of experimental studies of the performance of particle dampers. It is shown that the particle radius affect the noise level. It is also shown that the particle size and the particle material influence the damper performance.

Keywords: particle damping, discrete element method (DEM), granular materials, numerical analysis, equivalent noise level

Procedia PDF Downloads 459
1669 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel

Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler

Abstract:

Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.

Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process

Procedia PDF Downloads 139
1668 RANS Simulation of the LNG Ship Squat in Shallow Water

Authors: Mehdi Nakisa, Adi Maimun, Yasser M. Ahmed, Fatemeh Behrouzi

Abstract:

Squat is the reduction in under-keel clearance between a vessel at-rest and underway due to the increased flow of water past the moving body. The forward motion of the ship induces a relative velocity between the ship and the surrounding water that causes a water level depression in which the ship sinks. The problem of ship squat is one among the crucial factors affecting the navigation of ships in restricted waters. This article investigates the LNG ship squat, its effects on flow streamlines around the ship hull and ship behavior and motion using computational fluid dynamics which is applied by Ansys-Fluent.

Keywords: ship squat, CFD, confined, mechanic

Procedia PDF Downloads 623
1667 Computational Analysis of Adaptable Winglets for Improved Morphing Aircraft Performance

Authors: Erdogan Kaygan, Alvin Gatto

Abstract:

An investigation of adaptable winglets for enhancing morphing aircraft performance is described in this paper. The concepts investigated consist of various winglet configurations fundamentally centered on a baseline swept wing. The impetus for the work was to identify and optimize winglets to enhance the aerodynamic efficiency of a morphing aircraft. All computations were performed with Athena Vortex Lattice modelling with varying degrees of twist and cant angle considered. The results from this work indicate that if adaptable winglets were employed on aircraft’s improvements in aircraft performance could be achieved.

Keywords: aircraft, drag, twist, winglet

Procedia PDF Downloads 589
1666 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates

Authors: Zina Ghiloufi, Tahar Khir

Abstract:

A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage.

Keywords: CFD, cold room, cooling rate, dDates, numerical simulation, k-ω (SST)

Procedia PDF Downloads 238
1665 Investigating Translations of Websites of Pakistani Public Offices

Authors: Sufia Maroof

Abstract:

This empirical study investigated the web-translations of five Pakistani public offices (FPSC, FIA, HEC, USB, and Ministry of Finance) offering Urdu tab as an option to access information on their official websites. Triangulation of quantitative and qualitative research design informed the researcher of the semantic, lexical and syntactic caveats in these translations. The study hypothesized that majority of the Pakistani population is oblivious of the Supreme Court’s amendments in language policy concerning national and official language; hence, Urdu web-translations of the public departments have not been accessed effectively. Firstly, the researcher conducted an online survey, comprising of two sections, close ended and short answer based questions. Secondly, the researcher compiled corpus of the five selected websites in a tabular form to compare the data. Thirdly, the administrators of the departments had been contacted regarding the methods of translation and the expertise of the personnel involved. The corpus was assessed for TQA after examining the lexical, semantic, syntactical and technical alignment inaccuracies and imperfections. The study suggests the public offices to invest in their Urdu webs by either hiring expert translators or engaging expertise of a translation agency for this project to offer quality translation to public.

Keywords: machine translations, public offices, Urdu translations, websites

Procedia PDF Downloads 133
1664 Maintenance Management Practice for Building

Authors: Harold Jideofor Nnachetam

Abstract:

Maintenance management in Nigeria Polytechnic faced many issues due to poor service delivery, inadequate finance, and poor maintenance plan and maintenance backlogs. The purpose of this study is to improve the conventional method practices which tend to be ineffective in Nigeria Polytechnic. The case study was conducted with eight Polytechnics in Nigeria. The selected Polytechnic is based on conventional method practices and its major problems, attempt to implement computerized technology and the willingness of staff to share their experiences. All feedbacks from respondents through semi-structured interview were recorded using video camera and transcribed verbatim. The overall findings of this research indicated; poor service delivery, inadequate financial, poor maintenance planning and maintenance backlogs. There is also need to overcome less man power competencies of maintenance management practices which existed with all eight Polytechnics. In addition, the study also found that the Polytechnics still use conventional maintenance management processes in managing building facility condition. As a result, the maintenance management staff was not able to improve the maintenance management performance at the Polytechnics. The findings are intended to be used for maintenance management practices at Nigeria Polytechnics in order to provide high-quality of building facility with safe and healthy environments.

Keywords: maintenance management, conventional method, maintenance management system, Nigeria polytechnic

Procedia PDF Downloads 326
1663 Computational Study of Composite Films

Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova

Abstract:

Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.

Keywords: composite films, computer modelling, image analysis, nanocomposite films

Procedia PDF Downloads 395
1662 Unveiling the Reaction Mechanism of N-Nitroso Dimethyl Amine Formation from Substituted Hydrazine Derivatives During Ozonation: A Computational Study

Authors: Rehin Sulay, Anandhu Krishna, Jintumol Mathew, Vibin Ipe Thomas

Abstract:

N-Nitrosodimethyl amine, the simplest member of the N-Nitrosoamine family, is a carcinogenic and mutagenic agent that has gained considerable research interest owing to its toxic nature. Ozonation of industrially important hydrazines such as unsymmetrical dimethylhydrazine (UDMH) or monomethylhydrazine (MMH) has been associated with NDMA formation and accumulation in the environment. UDMH/MMH - ozonation also leads to several other transformation products such as acetaldehyde dimethyl hydrazone (ADMH), tetramethyl tetra azene (TMT), diazomethane, methyl diazene, etc, which can be either precursors or competitors for NDMA formation.In this work, we explored the formation mechanism of ADMH and TMT from UDMH-ozonation and their further oxidation to NDMA using the second-order Moller Plesset perturbation theory employing the 6-311G(d) basis set. We have also investigated how MMH selectively forms methyl diazene and diazomethane under normal conditions and NDMA in the presence of excess ozone. Our calculations indicate that the reactions proceed via an initial H abstraction from the hydrazine –NH2 group followed by the oxidation of the generated N-radical species. The formation of ADMH from the UDMH-ozone reaction involves an acetaldehyde intermediate, which then reacts with a second UDMH molecule to generate ADMH. The preferable attack of ozone molecule on N=C bond of ADMH generates DMAN intermediate, which subsequently undergoes oxidation to form NDMA. Unlike other transformation products, TMT formation occurs via the dimerization of DMAN. Though there exist a N=N bonds in the TMT, which are preferable attacking sites for ozone, experimental studies show the lower yields of NDMA formation, which corroborates with the high activation barrier required for the process(42kcal/mol).Overall, our calculated results agree well with the experimental observations and rate constants. Computational calculations bring insights into the electronic nature and kinetics of the elementary reactions of this pathway, enabled by computed energies of structures that are not possible to access experimentally.

Keywords: reaction mechanism, ozonation, substituted hydrazine, transition state

Procedia PDF Downloads 85
1661 Measuring Audit Quality Using Text Analysis: An Empirical Study of Indian Companies

Authors: Leesa Mohanty, Ashok Banerjee

Abstract:

Better audit quality signifies the financial statements of the auditee firm reflect true and fair view of their actual state of affairs, which reduces information asymmetry between management and shareholders, as a result, helps protect interests of shareholders. This study examines the impact of joint audit on audit quality. It is motivated by the ongoing debate where The Institute of Chartered Accountants of India (ICAI), the regulatory body governing auditors, has advocated the finance ministry and the Reserve Bank of India (RBI) for the mandatory use of joint audit in private banks to enhance the quality of audit. Earlier, the Government of India had rejected the plea by ICAI for mandatory joint audits in large companies stating it is not a viable option for promoting domestic firms. We introduce a new measure of audit quality. Drawing from the domain of text analytics, we use relevant phrases in audit reports to gauge audit quality and demonstrate that joint audit improves audit quality. We also, for robustness, use prevalent proxy for audit quality (Big N Auditor, ratio of audit fees to total fees) and find negative effect of joint audit on audit quality. We, therefore highlight that different proxy for audit quality show opposite effect of joint audit.

Keywords: audit fees, audit quality, Big N. Auditor, joint audit

Procedia PDF Downloads 361
1660 The Martingale Options Price Valuation for European Puts Using Stochastic Differential Equation Models

Authors: H. C. Chinwenyi, H. D. Ibrahim, F. A. Ahmed

Abstract:

In modern financial mathematics, valuing derivatives such as options is often a tedious task. This is simply because their fair and correct prices in the future are often probabilistic. This paper examines three different Stochastic Differential Equation (SDE) models in finance; the Constant Elasticity of Variance (CEV) model, the Balck-Karasinski model, and the Heston model. The various Martingales option price valuation formulas for these three models were obtained using the replicating portfolio method. Also, the numerical solution of the derived Martingales options price valuation equations for the SDEs models was carried out using the Monte Carlo method which was implemented using MATLAB. Furthermore, results from the numerical examples using published data from the Nigeria Stock Exchange (NSE), all share index data show the effect of increase in the underlying asset value (stock price) on the value of the European Put Option for these models. From the results obtained, we see that an increase in the stock price yields a decrease in the value of the European put option price. Hence, this guides the option holder in making a quality decision by not exercising his right on the option.

Keywords: equivalent martingale measure, European put option, girsanov theorem, martingales, monte carlo method, option price valuation formula

Procedia PDF Downloads 138
1659 Churn Prediction for Savings Bank Customers: A Machine Learning Approach

Authors: Prashant Verma

Abstract:

Commercial banks are facing immense pressure, including financial disintermediation, interest rate volatility and digital ways of finance. Retaining an existing customer is 5 to 25 less expensive than acquiring a new one. This paper explores customer churn prediction, based on various statistical & machine learning models and uses under-sampling, to improve the predictive power of these models. The results show that out of the various machine learning models, Random Forest which predicts the churn with 78% accuracy, has been found to be the most powerful model for the scenario. Customer vintage, customer’s age, average balance, occupation code, population code, average withdrawal amount, and an average number of transactions were found to be the variables with high predictive power for the churn prediction model. The model can be deployed by the commercial banks in order to avoid the customer churn so that they may retain the funds, which are kept by savings bank (SB) customers. The article suggests a customized campaign to be initiated by commercial banks to avoid SB customer churn. Hence, by giving better customer satisfaction and experience, the commercial banks can limit the customer churn and maintain their deposits.

Keywords: savings bank, customer churn, customer retention, random forests, machine learning, under-sampling

Procedia PDF Downloads 147
1658 Analysis of the Secondary Stationary Flow Around an Oscillating Circular Cylinder

Authors: Artem Nuriev, Olga Zaitseva

Abstract:

This paper is devoted to the study of a viscous incompressible flow around a circular cylinder performing harmonic oscillations, especially the steady streaming phenomenon. The research methodology is based on the asymptotic explanation method combined with the computational bifurcation analysis. Present studies allow to identify several regimes of the secondary streaming with different flow structures. The results of the research are in good agreement with experimental and numerical simulation data.

Keywords: oscillating cylinder, secondary streaming, flow regimes, asymptotic and bifurcation analysis

Procedia PDF Downloads 442