Search results for: annual and daily flow duration curve
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10438

Search results for: annual and daily flow duration curve

9538 Risk Factors for Maternal and Neonatal Morbidities Associated with Operative Vaginal Deliveries

Authors: Maria Reichenber Arcilla

Abstract:

Objective: To determine the risk factors for maternal and neonatal complications associated with operative vaginal deliveries. Methods: A retrospective chart review of 435 patients who underwent operative vaginal deliveries was done. Patient profiles – age, parity, AOG, duration of labor – and outcomes – birthweight, maternal and neonatal complications - were tabulated and multivariable analysis and logistic regression were performed using SPSS® Statistics Base. Results and Conclusion: There was no significant difference in the incidence of maternal and neonatal complications between those that underwent vacuum and forceps extraction. Among the variables analysed, parity and duration of labor reached statistical significance. The odds of maternal complications were 3 times higher among nulliparous patients. Neonatal complications were seen in those whose labor lasted more than 9 hours.

Keywords: operative vaginal deliveries, maternal, neonatal, morbidity

Procedia PDF Downloads 406
9537 Composing Method of Decision-Making Function for Construction Management Using Active 4D/5D/6D Objects

Authors: Hyeon-Seung Kim, Sang-Mi Park, Sun-Ju Han, Leen-Seok Kang

Abstract:

As BIM (Building Information Modeling) application continually expands, the visual simulation techniques used for facility design and construction process information are becoming increasingly advanced and diverse. For building structures, BIM application is design - oriented to utilize 3D objects for conflict management, whereas for civil engineering structures, the usability of nD object - oriented construction stage simulation is important in construction management. Simulations of 5D and 6D objects, for which cost and resources are linked along with process simulation in 4D objects, are commonly used, but they do not provide a decision - making function for process management problems that occur on site because they mostly focus on the visual representation of current status for process information. In this study, an nD CAD system is constructed that facilitates an optimized schedule simulation that minimizes process conflict, a construction duration reduction simulation according to execution progress status, optimized process plan simulation according to project cost change by year, and optimized resource simulation for field resource mobilization capability. Through this system, the usability of conventional simple simulation objects is expanded to the usability of active simulation objects with which decision - making is possible. Furthermore, to close the gap between field process situations and planned 4D process objects, a technique is developed to facilitate a comparative simulation through the coordinated synchronization of an actual video object acquired by an on - site web camera and VR concept 4D object. This synchronization and simulation technique can also be applied to smartphone video objects captured in the field in order to increase the usability of the 4D object. Because yearly project costs change frequently for civil engineering construction, an annual process plan should be recomposed appropriately according to project cost decreases/increases compared with the plan. In the 5D CAD system provided in this study, an active 5D object utilization concept is introduced to perform a simulation in an optimized process planning state by finding a process optimized for the changed project cost without changing the construction duration through a technique such as genetic algorithm. Furthermore, in resource management, an active 6D object utilization function is introduced that can analyze and simulate an optimized process plan within a possible scope of moving resources by considering those resources that can be moved under a given field condition, instead of using a simple resource change simulation by schedule. The introduction of an active BIM function is expected to increase the field utilization of conventional nD objects.

Keywords: 4D, 5D, 6D, active BIM

Procedia PDF Downloads 276
9536 Behavioral Finance: Anomalies at Real Markets, Weekday Effect

Authors: Vera Jancurova

Abstract:

The financial theory is dominated by the believe that weekday effect has disappeared from current markets. The purpose of this article is to study anomalies, especially weekday effect, at real markets that disrupt the efficiency of financial markets. The research is based on the analyses of historical daily exchange rates of significant world indices to determine the presence of weekday effects on financial markets. The methodology used for the study is based on the analyzes of daily averages of particular indexes for different time periods. Average daily gains were analyzed for their whole time interval and then for particular five and ten years periods with the aim to detect the presence on current financial markets. The results confirm the presence of weekday effect at the most significant indices - for example: Nasdaq, S & P 500, FTSE 100 and the Hang Seng. It was confirmed that in the last ten years, the weekend effect disappeared from financial markets. However in last year’s the indicators show that weekday effect is coming back. The study shows that weekday effect has to be taken into consideration on financial markets, especially in the past years.

Keywords: indices, anomalies, behavioral finance, weekday effect

Procedia PDF Downloads 339
9535 Thermal Analysis for Darcy Forchheimer Effect with Hybrid Ferro Fluid Flow

Authors: Behzad Ali Khan, M. Zubair Akbar Qureshi

Abstract:

The article analyzes the Darcy Forchheimer 2D Hybrid ferrofluid. The flow of a Hybrid ferrofluid is made due to an unsteady porous channel. The classical liquid water is treated as a based liquid. The flow in the permeable region is characterized by the Darcy-Forchheimer relation. Heat transfer phenomena are studied during the flow. The transformation of a partial differential set of equations into a strong ordinary differential frame is formed through appropriate variables. The numerical Shooting Method is executed for solving the simplified set of equations. In addition, a numerical analysis (ND-Solve) is utilized for the convergence of the applied technique. The influence of some flow model quantities like Pr (Prandtle number), r (porous medium parameter), F (Darcy-porous medium parameter), Re (Reynolds number), Pe (Peclet number) on velocity and temperature field are scrutinized and studied through sketches. Certain physical factors like f ''(η) (skin friction coefficient) and θ^'(η) (rate of heat transfer) are first derived and then presented through tables.

Keywords: darcy forcheimer, hybrid ferro fluid, porous medium, porous channel

Procedia PDF Downloads 174
9534 Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment

Authors: Thomas Paris, Vincent Bruyere, Patrick Namy

Abstract:

A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values.

Keywords: compressible flow, fluid mechanics, heat transfer, porous media

Procedia PDF Downloads 406
9533 Income Inequality among Selected Entrepreneurs in Ondo State, Nigeria

Authors: O.O. Ehinmowo, A.I. Fatuase, D.F. Oke

Abstract:

Nigeria is endowed with resources that could boost the economy as well as generate income and provide jobs to the teaming populace. One of the keys of attaining this is by making the environment conducive for the entrepreneurs to excel in their respective enterprises so that more income could be accrued to the entrepreneurs. This study therefore examines income inequality among selected entrepreneurs in Ondo State, Nigeria using primary data. A multistage sampling technique was used to select 200 respondents for the study with the aid of structured questionnaire and personal interview. The data collected were subjected to descriptive statistics, Lorenz curve, Gini coefficient and Double - Log regression model. Results revealed that majority of the entrepreneurs (63%) were males and 90% were married with an average age of 44 years. About 40% of the respondents spent at most 12 years in school with 81% of the respondents had 4-6 members per household, while hair dressing (43.5%) and fashion designing (31.5%) were the most common enterprises among the sampled respondents. The findings also showed that majority of the entrepreneurs in hairdressing, fashion designing and laundry service earned below N200,000 per annum while the majority of those in restaurant and food vending earned between N400,000 – N600,000 followed by the entrepreneurs in pure water enterprise where majority earned N800,000 and above per annum. The result of the Gini coefficient (0.58) indicated that there was presence of inequality among the entrepreneurs which was also affirmed by the Lorenz curve. The Regression results showed that gender, household size and number of employees significantly affected the income of the entrepreneurs in the study area. Therefore, more female households should be encouraged into entrepreneurial businesses and government should give incentive cum conductive environment that could bridge the disparity in the income of the entrepreneurs in their various enterprises.

Keywords: entrepreneurs, Gini coefficient, income inequality, Lorenz curve

Procedia PDF Downloads 350
9532 Multivariate Rainfall Disaggregation Using MuDRain Model: Malaysia Experience

Authors: Ibrahim Suliman Hanaish

Abstract:

Disaggregation daily rainfall using stochastic models formulated based on multivariate approach (MuDRain) is discussed in this paper. Seven rain gauge stations are considered in this study for different distances from the referred station starting from 4 km to 160 km in Peninsular Malaysia. The hourly rainfall data used are covered the period from 1973 to 2008 and July and November months are considered as an example of dry and wet periods. The cross-correlation among the rain gauges is considered for the available hourly rainfall information at the neighboring stations or not. This paper discussed the applicability of the MuDRain model for disaggregation daily rainfall to hourly rainfall for both sources of cross-correlation. The goodness of fit of the model was based on the reproduction of fitting statistics like the means, variances, coefficients of skewness, lag zero cross-correlation of coefficients and the lag one auto correlation of coefficients. It is found the correlation coefficients based on extracted correlations that was based on daily are slightly higher than correlations based on available hourly rainfall especially for neighboring stations not more than 28 km. The results showed also the MuDRain model did not reproduce statistics very well. In addition, a bad reproduction of the actual hyetographs comparing to the synthetic hourly rainfall data. Mean while, it is showed a good fit between the distribution function of the historical and synthetic hourly rainfall. These discrepancies are unavoidable because of the lowest cross correlation of hourly rainfall. The overall performance indicated that the MuDRain model would not be appropriate choice for disaggregation daily rainfall.

Keywords: rainfall disaggregation, multivariate disaggregation rainfall model, correlation, stochastic model

Procedia PDF Downloads 515
9531 Experimental and Numerical Study of the Thermomagnetic Convection of Ferrofluid Driven by Non-Uniform Magnetic Field around a Current-Carrying Wire

Authors: Ashkan Vatani, Petere Woodfiel, Nam-Trung Nguyen, Dzung Dao

Abstract:

Thermomagnetic convection of a ferrofluid flow induced by the non-uniform magnetic field around a current-carrying wire was theoretically analyzed, numerically studied and experimentally validated. The dependency of the thermomagnetic convection on the current and fluid temperature has been studied. The Nusselt number for a heated 50um diameter wire in the ferrofluid exponentially scales with applied current to the micro-wire. This result is in good agreement with the correlated Nusselt number by curve-fitting the experimental data at different fluid temperatures. It was shown that at low currents, no significance is observed for thermomagnetic convection rather than the buoyancy-driven convection, while the thermomagnetic convection becomes dominant at high currents. Also, numerical simulations showed a promising cooling ability for large scale applications.

Keywords: ferrofluid, non-uniform magnetic field, Nusselt number, thermomagnetic convection

Procedia PDF Downloads 248
9530 Numerical Buckling of Composite Cylindrical Shells under Axial Compression Using Asymmetric Meshing Technique (AMT)

Authors: Zia R. Tahir, P. Mandal

Abstract:

This paper presents the details of a numerical study of buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shell under axial compression using asymmetric meshing technique (AMT) by ABAQUS. AMT is considered to be a new perturbation method to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects both predicted buckling load and buckling mode shapes. Cylindrical shell having lay-up orientation [0°/+45°/-45°/0°] with radius to thickness ratio (R/t) equal to 265 and length to radius ratio (L/R) equal to 1.5 is analysed numerically. A series of numerical simulations (experiments) are carried out with symmetric and asymmetric meshing to study the effect of asymmetric meshing on predicted buckling behaviour. Asymmetric meshing technique is employed in both axial direction and circumferential direction separately using two different methods, first by changing the shell element size and varying the total number elements, and second by varying the shell element size and keeping total number of elements constant. The results of linear analysis (Eigenvalue analysis) and non-linear analysis (Riks analysis) using symmetric meshing agree well with analytical results. The results of numerical analysis are presented in form of non-dimensional load factor, which is the ratio of buckling load using asymmetric meshing technique to buckling load using symmetric meshing technique. Using AMT, load factor has about 2% variation for linear eigenvalue analysis and about 2% variation for non-linear Riks analysis. The behaviour of load end-shortening curve for pre-buckling is same for both symmetric and asymmetric meshing but for asymmetric meshing curve behaviour in post-buckling becomes extraordinarily complex. The major conclusions are: different methods of AMT have small influence on predicted buckling load and significant influence on load displacement curve behaviour in post buckling; AMT in axial direction and AMT in circumferential direction have different influence on buckling load and load displacement curve in post-buckling.

Keywords: CFRP composite cylindrical shell, asymmetric meshing technique, primary buckling, secondary buckling, linear eigenvalue analysis, non-linear riks analysis

Procedia PDF Downloads 353
9529 Numerical Study of Heat Transfer in Square Duct with Turbulators

Authors: M. H. Alhajeri, Hamad M. Alhajeri, A. H. Alenezi

Abstract:

Computational fluid dynamics (CFD) investigation of heat transfer in U-duct with turbulators is presented in this paper. The duct passages used to cool internally the blades in gas turbine. The study is focused in the flow behavior and the Nusselt number (Nu) distributions. The model of the u-duct contains two square legs that are connected by 180* turn. Four turbulators are located in each surface of the leg and distributed in a staggered arrangement. The turbulator height and width are equal to 0.1 of the duct width, and the turbulator height is 0.1 of the distance between the turbulators. The Reynolds number (Re) used in this study is 95000 and the inlet velocity is 10 m/s. It was noticed that, after the flow resettles from the interruptions generated by the first turbulator or the turn, the flow construct two eddies, one large and the other is small after and before the turbulator, respectively. The maximum values of the Nu are found at a distance of approximately one turbulator width w before of the flow reattachment point.

Keywords: computational fluid dynamics, CFD, rib, heat transfer, blade

Procedia PDF Downloads 151
9528 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves

Authors: Kamal Upadhyay, Zhou Hua, Yu Rui

Abstract:

This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.

Keywords: streamline, cavitation, optimization, computational fluid dynamics

Procedia PDF Downloads 145
9527 A Counter-flow Vortex Tube With Energy Separation: An Experimental Study and CFD Analysis

Authors: Li̇zan Mahmood Khorsheed Zangana

Abstract:

Experimental and numerical investigations have been carried out to study the mechanism of separation energy and flow phenomena in the counter-flow vortex tube. This manuscript presents a complete comparison between the experimental investigation and CFD analysis. The experimental model tested under different inlet pressures. Three-dimensional numerical modelling using the k-ε model. The results show any increase in both cold mass fraction and inlet pressure caused to increase ΔTc, and the maximum ΔTc value occurs at P = 6 bar. The coefficient of performance (COP) of two important factors in the vortex tube have been evaluated, which ranged from 0.25 to 0.74. The maximum axial velocity is 93, where it occurs at the tube axis close the inlet exit (Z/L=0.2). The results showed a good agreement for experimental and numerical analysis.

Keywords: counter flow, vortex tube, computational fluid dynamics analysis, energy separation, experimental study

Procedia PDF Downloads 79
9526 A POX Controller Module to Prepare a List of Flow Header Information Extracted from SDN Traffic

Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin

Abstract:

Software Defined Networking (SDN) is a paradigm designed to facilitate the way of controlling the network dynamically and with more agility. Network traffic is a set of flows, each of which contains a set of packets. In SDN, a matching process is performed on every packet coming to the network in the SDN switch. Only the headers of the new packets will be forwarded to the SDN controller. In terminology, the flow header fields are called tuples. Basically, these tuples are 5-tuple: the source and destination IP addresses, source and destination ports, and protocol number. This flow information is used to provide an overview of the network traffic. Our module is meant to extract this 5-tuple with the packets and flows numbers and show them as a list. Therefore, this list can be used as a first step in the way of detecting the DDoS attack. Thus, this module can be considered as the beginning stage of any flow-based DDoS detection method.

Keywords: matching, OpenFlow tables, POX controller, SDN, table-miss

Procedia PDF Downloads 199
9525 Heat and Mass Transfer of an Oscillating Flow in a Porous Channel with Chemical Reaction

Authors: Zahra Neffah, Henda Kahalerras

Abstract:

A numerical study is made in a parallel-plate porous channel subjected to an oscillating flow and an exothermic chemical reaction on its walls. The flow field in the porous region is modeled by the Darcy–Brinkman–Forchheimer model and the finite volume method is used to solve the governing equations. The effects of the modified Frank-Kamenetskii (FKm) and Damköhler (Dm) numbers, the amplitude of oscillation (A), and the Strouhal number (St) are examined. The main results show an increase of heat and mass transfer rates with A and St, and their decrease with FKm and Dm.

Keywords: chemical reaction, heat and mass transfer, oscillating flow, porous channel

Procedia PDF Downloads 413
9524 RANS Simulation of Viscous Flow around Hull of Multipurpose Amphibious Vehicle

Authors: M. Nakisa, A. Maimun, Yasser M. Ahmed, F. Behrouzi, A. Tarmizi

Abstract:

The practical application of the Computational Fluid Dynamics (CFD), for predicting the flow pattern around Multipurpose Amphibious Vehicle (MAV) hull has made much progress over the last decade. Today, several of the CFD tools play an important role in the land and water going vehicle hull form design. CFD has been used for analysis of MAV hull resistance, sea-keeping, maneuvering and investigating its variation when changing the hull form due to varying its parameters, which represents a very important task in the principal and final design stages. Resistance analysis based on CFD (Computational Fluid Dynamics) simulation has become a decisive factor in the development of new, economically efficient and environmentally friendly hull forms. Three-dimensional finite volume method (FVM) based on Reynolds Averaged Navier-Stokes equations (RANS) has been used to simulate incompressible flow around three types of MAV hull bow models in steady-state condition. Finally, the flow structure and streamlines, friction and pressure resistance and velocity contours of each type of hull bow will be compared and discussed.

Keywords: RANS simulation, multipurpose amphibious vehicle, viscous flow structure, mechatronic

Procedia PDF Downloads 312
9523 Sustainable Traffic Flow: The Case Study of Un-Signalized Pedestrian Crossing at Stationary Bottleneck and Its Impact on Traffic Flow

Authors: Imran Badshah

Abstract:

This paper study the impact of Un-signalized pedestrian on traffic flow at Stationary Bottleneck. The Highway Capacity Manual (HCM) analyze the methodology of level of service for Urban street segment but it does not include the impact of un-signalized pedestrian crossing at stationary bottleneck. The un-signalized pedestrian crossing in urban road segment causes conflict between vehicles and pedestrians. As a result, the average time taken by vehicle to travel along a road segment increased. The speed of vehicle and the level of service decreases as the running time of a segment increased. To analyze the delay, we need to determine the pedestrian speed while crossing the road at a stationary bottleneck. The objective of this research is to determine the speed of pedestrian and its impact on traffic flow at stationary bottleneck. In addition, the result of this study should be incorporated in the Urban Street Analysis Chapter of HCM.

Keywords: stationary bottleneck, traffic flow, pedestrian speed, HCM

Procedia PDF Downloads 90
9522 Biogas Production Improve From Waste Activated Sludge Using Fenton Oxidation

Authors: A. Hassiba Zemmouri, B. Nabil Mameri, C. Hakim Lounici

Abstract:

In this study, the effect of Fenton technology pretreatment on the anaerobic digestion of excess waste activated sludge (WAS) was investigated. The variation of physicochemical characteristics (TOC, DS, VSS, VS) and biogas volume (as form of value added products) were also evaluated. The preselected operator conditions of Fenton pretreatment were 0.01ml H2O2/g SS, 150 [H2O2]/[Fe2+], 25g/l TS, at 25 °C and 30, 60 and120 min as treatment duration. The main results show a Maximum solubilization and biodegradability (70%) obtained at 120 min of Fenton pretreatment duration. An increasing of TOC in soluble phase related obviously by releasing organic substances of sludge flocs was contested. Improving in biogas volume was also, increased. Fenton oxidation pretreatment may be a promising chemical pre-treatment for a benefic digestion, stabilization and volume reduction.

Keywords: waste activated sludge, fenton pre-treatment, biodegradability, biogas

Procedia PDF Downloads 640
9521 Influence of Valve Lift Timing on Producer Gas Combustion and Its Modeling Using Two-Stage Wiebe Function

Authors: M. Sreedhar Babu, Vishal Garg, S. B. Akella, Shibu Clement, N. K. S Rajan

Abstract:

Producer gas is a biomass derived gaseous fuel which is extensively used in internal combustion engines for power generation application. Unlike the conventional hydrocarbon fuels (Gasoline and Natural gas), the combustion properties of producer gas fuel are much different. Therefore, setting of optimal spark time for efficient engine operation is required. Owing to the fluctuating tendency of producer gas composition during gasification process, the heat release patterns (dictating the power output and emissions) obtained are quite different from conventional fuels. It was found that, valve lift timing is yet another factor which influences the burn rate of producer gas fuel, and thus, the heat release rate of the engine. Therefore, the present study was motivated to estimate the influence of valve lift timing analytically (Wiebe model) on the burn rate of producer gas through curve fitting against experimentally obtained mass fraction burn curves of several producer gas compositions. Furthermore, Wiebe models are widely used in zero-dimensional codes for engine parametric studies and are quite popular. This study also addresses the influence of hydrogen and methane concentration of producer gas on combustion trends, which are known to cause dynamics in engine combustion.

Keywords: combustion duration (CD), crank angle (CA), mass fraction burnt (MFB), producer sas (PG), Wiebe Combustion Model (WCM), wide open throttle (WOT)

Procedia PDF Downloads 311
9520 The Impact of Passive Design Factors on House Energy Efficiency for New Cities in Egypt

Authors: Mahmoud Mourad, Ahmad Hamza H. Ali, S.Ookawara, Ali Kamel Abdel-Rahman, Nady M. Abdelkariem

Abstract:

The energy consumption of a house can be affected simultaneously by many building design factors related to its main architectural features, building elements and materials. This study focuses on the impact of passive design factors on the annual energy consumption of a suggested prototype house for single-family detached houses of 240 m2 in two floors, each floor of 120 m2 in new Egyptian cities located in (Alexandria - Cairo - Siwa - Assuit – Aswan) which resemble five different climatic zones (Northern coast – Northern upper Egypt - dessert region- Southern upper Egypt – South Egypt) respectively. This study present the effect of the passive design factors affecting the building energy consumption as building orientation, building material (walls, roof and slabs), building type (residential, educational, commercial), building occupancy (type of occupant, no. of occupant, age), building landscape and site selection, building envelope and fenestration (glazing material, shading), and building plan form. This information can be used to estimate the approximate saving in energy consumption, which would result on a change in the design datum for the future houses development, and to identify the major design problems for energy efficiency. To achieve the above objective, this paper presents a study for the factors affecting on the building energy consumption in the hot arid area in new Egyptian cities in five different climatic zones , followed by defining the energy needs for different utilization in this suggested prototype house. Consequently, a detailed analysis of the available Renewable Energy utilizations technologies used in the suggested home, and a calculation of the energy as a function of yearly distribution that required for this home will presented. The results obtained from building annual energy analyses show that architecture passive design factors saves about 35% of the annual energy consumption. It shows also passive cooling techniques saves about 45%, and renewable energy systems saves about 40% of the annual energy needs for this proposed home depending on the cities location on the climatic zones.

Keywords: architecture passive design factors, energy efficient homes, Egypt new cites, renewable energy technologies

Procedia PDF Downloads 401
9519 Modeling of the Friction Behavior of Carbon/Epoxy Prepreg Composite

Authors: David Aveiga, Carlos Gonzalez

Abstract:

Thermoforming of pre-impregnated composites (prepreg) is the most employed process to build high-performance composite structures due to their visible advantage over alternative manufacturing techniques. This method allows easy shape moulding with a simple manufacturing system and a more refined outcome. The achievement of complex geometries can be exposed to undesired defects such as wrinkles. It is known that interply and ply-mould sliding behavior governs this defect generation. This work analyses interply and ply-mould friction coefficients for UD AS4/8552 Carbon/Epoxy prepreg. Friction coefficients are determined by a pull-out test method considering actual velocity, pressure and temperature conditions employed in a thermoforming process of an aeronautical composite component. A Stribeck curve is then constructed to find a mathematical expression that relates all the friction coefficients with the test variables through the Hersey number parameter. Two expressions are proposed to model ply-ply and ply-tool friction behaviors.

Keywords: friction, prepreg composite, stribeck curve, thermoforming.

Procedia PDF Downloads 184
9518 Parallel Opportunity for Water Conservation and Habitat Formation on Regulated Streams through Formation of Thermal Stratification in River Pools

Authors: Todd H. Buxton, Yong G. Lai

Abstract:

Temperature management in regulated rivers can involve significant expenditures of water to meet the cold-water requirements of species in summer. For this purpose, flows released from Lewiston Dam on the Trinity River in Northern California are 12.7 cms with temperatures around 11oC in July through September to provide adult spring Chinook cold water to hold in deep pools and mature until spawning in fall. The releases are more than double the flow and 10oC colder temperatures than the natural conditions before the dam was built. The high, cold releases provide springers the habitat they require but may suppress the stream food base and limit future populations of salmon by reducing the juvenile fish size and survival to adults via the positive relationship between the two. Field and modeling research was undertaken to explore whether lowering summer releases from Lewiston Dam may promote thermal stratification in river pools so that both the cold-water needs of adult salmon and warmer water requirements of other organisms in the stream biome may be met. For this investigation, a three-dimensional (3D) computational fluid dynamics (CFD) model was developed and validated with field measurements in two deep pools on the Trinity River. Modeling and field observations were then used to identify the flows and temperatures that may form and maintain thermal stratification under different meteorologic conditions. Under low flows, a pool was found to be well mixed and thermally homogenous until temperatures began to stratify shortly after sunrise. Stratification then strengthened through the day until shading from trees and mountains cooled the inlet flow and decayed the thermal gradient, which collapsed shortly before sunset and returned the pool to a well-mixed state. This diurnal process of stratification formation and destruction was closely predicted by the 3D CFD model. Both the model and field observations indicate that thermal stratification maintained the coldest temperatures of the day at ≥2m depth in a pool and provided water that was around 8oC warmer in the upper 2m of the pool. Results further indicate that the stratified pool under low flows provided almost the same daily average temperatures as when flows were an order of magnitude higher and stratification was prevented, indicating significant water savings may be realized in regulated streams while also providing a diversity in water temperatures the ecosystem requires. With confidence in the 3D CFD model, the model is now being applied to a dozen pools in the Trinity River to understand how pool bathymetry influences thermal stratification under variable flows and diurnal temperature variations. This knowledge will be used to expand the results to 52 pools in a 64 km reach below Lewiston Dam that meet the depth criteria (≥2 m) for spring Chinook holding. From this, rating curves will be developed to relate discharge to the volume of pool habitat that provides springers the temperature (<15.6oC daily average), velocity (0.15 to 0.4 m/s) and depths that accommodate the escapement target for spring Chinook (6,000 adults) under maximum fish densities measured in other streams (3.1 m3/fish) during the holding time of year (May through August). Flow releases that meet these goals will be evaluated for water savings relative to the current flow regime and their influence on indicator species, including the Foothill Yellow-Legged Frog, and aspects of the stream biome that support salmon populations, including macroinvertebrate production and juvenile Chinook growth rates.

Keywords: 3D CFD modeling, flow regulation, thermal stratification, chinook salmon, foothill yellow-legged frogs, water managment

Procedia PDF Downloads 64
9517 Computational Fluid Dynamics Simulation on Heat Transfer of Hot Air Bubble Injection into Water Column

Authors: Jae-Yeong Choi, Gyu-Mok Jeon, Jong-Chun Park, Yong-Jin Cho, Seok-Tae Yoon

Abstract:

When air flow is injected into water, bubbles are formed in various types inside the water pool along with the air flow rate. The bubbles are floated in equilibrium with forces such as buoyancy, surface tension and shear force. Single bubble generated at low flow rate maintains shape, but bubbles with high flow rate break up to make mixing and turbulence. In addition to this phenomenon, as the hot air bubbles are injected into the water, heat affects the interface of phases. Therefore, the main scope of the present work reveals how to proceed heat transfer between water and hot air bubbles injected into water. In the present study, a series of CFD simulation for the heat transfer of hot bubbles injected through a nozzle near the bottom in a cylindrical water column are performed using a commercial CFD software, STAR-CCM+. The governing equations for incompressible and viscous flow are the continuous and the RaNS (Reynolds- averaged Navier-Stokes) equations and discretized by the FVM (Finite Volume Method) manner. For solving multi-phase flow, the Eulerian multiphase model is employed and the interface is defined by VOF (Volume-of-Fluid) technique. As a turbulence model, the SST k-w model considering the buoyancy effects is introduced. For spatial differencing the 3th-order MUSCL scheme is adopted and the 2nd-order implicit scheme for time integration. As the results, the dynamic behavior of the rising hot bubbles with the flow rate injected and regarding heat transfer mechanism are discussed based on the simulation results.

Keywords: heat transfer, hot bubble injection, eulerian multiphase model, flow rate, CFD (Computational Fluid Dynamics)

Procedia PDF Downloads 152
9516 A Criterion for Evaluating Plastic Loads: Plastic Work-Tangent Criterion

Authors: Ying Zhang

Abstract:

In ASME Boiler and Pressure Vessel Code, the plastic load is defined by applying the twice elastic slope (TES) criterion of plastic collapse to a characteristic load-deformation curve for the vessel. Several other plastic criterion such as tangent intersection (TI) criterion, plastic work (PW) criterion have been proposed in the literature, but all exhibit a practical limitation: difficult to define the load parameter for vessels subject to several combined loads. An alternative criterion: plastic work-tangent (PWT) criterion for evaluating plastic load in pressure vessel design by analysis is presented in this paper. According to the plastic work-load curve, when the tangent variation is less than a given value in the plastic phase, the corresponding load is the plastic load. Application of the proposed criterion is illustrated by considering the elastic-plastic response of the lower head of reactor pressure vessel (RPV) and nozzle intersection of (RPV). It is proposed that this is because the PWT criterion more fully represents the constraining effect of material strain hardening on the spread of plastic deformation and more efficiently ton evaluating the plastic load.

Keywords: plastic load, plastic work, strain hardening, plastic work-tangent criterion

Procedia PDF Downloads 355
9515 Performance Analysis of a Planar Membrane Humidifier for PEM Fuel Cell

Authors: Yu-Hsuan Chang, Jian-Hao Su, Chen-Yu Chen, Wei-Mon Yan

Abstract:

In this work, the experimental measurement was applied to examine the membrane type and flow field design on the performance of a planar membrane humidifier. The performance indexes were used to evaluate the planar membrane humidifier. The performance indexes of the membrane humidifier include the dew point approach temperature (DPAT), water recovery ratio (WRR), water flux (J) and pressure loss (P). The experiments contain mainly three parts. In the first part, a single membrane humidifier was tested using different flow field under different dry-inlet temperatures. The measured results show that the dew point approach temperature decreases with increasing the depth of flow channel at the same width of flow channel. However, the WRR and J reduce with an increase in the dry air-inlet temperature. The pressure loss tests indicate that pressure loss decreases with increasing the hydraulic diameter of flow channel, resulting from an increase in Darcy friction. Owing to the comparison of humidifier performances and pressure losses, the flow channel of width W=1 and height H=1.5 was selected as the channel design of the multi-membrane humidifier in the second part of experiment. In the second part, the multi-membrane humidifier was used to evaluate the humidification performance under different relative humidity and flow rates. The measurement results indicate that the humidifier at both lower temperature and relative humidity of inlet dry air have higher DPAT but lower J and WRR. In addition, the counter flow approach has better mass and heat transfer performance than the parallel flow approach. Moreover, the effects of dry air temperature, relative humidity and humidification approach are not significant to the pressure loss in the planar membrane humidifier. For the third part, different membranes were tested in this work in order to find out which kind membrane is appropriate for humidifier.

Keywords: water management, planar membrane humidifier, heat and mass transfer, pressure loss, PEM fuel cell

Procedia PDF Downloads 206
9514 Unsteady Reactive Hydromagnetic Fluid Flow of a Two-Step Exothermic Chemical Reaction through a Channel

Authors: J. A. Gbadeyan, R. A. Kareem

Abstract:

In this paper, we investigated the effects of unsteady internal heat generation of a two-step exothermic reactive hydromagnetic fluid flow under different chemical kinetics namely: Sensitized, Arrhenius and Bimolecular kinetics through an isothermal wall temperature channel. The resultant modeled nonlinear partial differential equations were simplified and solved using a combined Laplace-Differential Transform Method (LDTM). The solutions obtained were discussed and presented graphically to show the salient features of the fluid flow and heat transfer characteristics.

Keywords: unsteady, reactive, hydromagnetic, couette ow, exothermi creactio

Procedia PDF Downloads 448
9513 Wind Power Density and Energy Conversion in Al-Adwas Ras-Huwirah Area, Hadhramout, Yemen

Authors: Bawadi M. A., Abbad J. A., Baras E. A.

Abstract:

This study was conducted to assess wind energy resources in the area of Al-Adwas Ras-Huwirah Hadhramout Governorate, Yemen, through using statistical calculations, the Weibull model and SPSS program were used in the monthly and the annual to analyze the wind energy resource; the convergence of wind energy; turbine efficiency in the selected area. Wind speed data was obtained from NASA over a period of ten years (2010-2019) and at heights of 50 m above ground level. Probability distributions derived from wind data and their distribution parameters are determined. The density probability function is fitted to the measured probability distributions on an annual basis. This study also involves locating preliminary sites for wind farms using Geographic Information System (GIS) technology. This further leads to maximizing the output energy from the most suitable wind turbines in the proposed site.

Keywords: wind speed analysis, Yemen wind energy, wind power density, Weibull distribution model

Procedia PDF Downloads 83
9512 Numerical Investigation of Electrohydrodynamics: Enhanced Heat Transfer in a Solid Sample

Authors: Suwimon Saneewong Na Ayuttaya

Abstract:

This paper presents a numerical investigation of electrically driven flow for enhancing convective heat transfer in a channel flow. This study focuses on the electrode arrangements, number of electrode and electrical voltage on Electrohydrodynamics (EHD) and effect of airflow driven on solid sample surface. The inlet airflow and inlet temperature are 0.35 m/s and 60 oC, respectively. High electrical voltage is tested in the range of 0-30 kV and number of electrode is tested in the range of 1-5. The numerical results show that electric field intensity is depended on electrical voltage and number of electrode. Increasing number of electrodes is increased shear flow, so swirling flow is increased. The swirling flows from aligned and staggered arrangements are affecting within the solid sample. When electrical voltage is increased, temperature distribution and convective heat transfer on the solid sample are significantly increased due to the electric force much stronger.

Keywords: electrohydrodynamics (EHD), swirling flow, convective heat transfer, solid sample

Procedia PDF Downloads 293
9511 Debris Flow Mapping Using Geographical Information System Based Model and Geospatial Data in Middle Himalayas

Authors: Anand Malik

Abstract:

The Himalayas with high tectonic activities poses a great threat to human life and property. Climate change is another reason which triggering extreme events multiple fold effect on high mountain glacial environment, rock falls, landslides, debris flows, flash flood and snow avalanches. One such extreme event of cloud burst along with breach of moraine dammed Chorabri Lake occurred from June 14 to June 17, 2013, triggered flooding of Saraswati and Mandakini rivers in the Kedarnath Valley of Rudraprayag district of Uttrakhand state of India. As a result, huge volume of water with its high velocity created a catastrophe of the century, which resulted into loss of large number of human/animals, pilgrimage, tourism, agriculture and property. Thus a comprehensive assessment of debris flow hazards requires GIS-based modeling using numerical methods. The aim of present study is to focus on analysis and mapping of debris flow movements using geospatial data with flow-r (developed by team at IGAR, University of Lausanne). The model is based on combined probabilistic and energetic algorithms for the assessment of spreading of flow with maximum run out distances. Aster Digital Elevation Model (DEM) with 30m x 30m cell size (resolution) is used as main geospatial data for preparing the run out assessment, while Landsat data is used to analyze land use land cover change in the study area. The results of the study area show that model can be applied with great accuracy as the model is very useful in determining debris flow areas. The results are compared with existing available landslides/debris flow maps. ArcGIS software is used in preparing run out susceptibility maps which can be used in debris flow mitigation and future land use planning.

Keywords: debris flow, geospatial data, GIS based modeling, flow-R

Procedia PDF Downloads 273
9510 Aerodynamic Design of Axisymmetric Supersonic Nozzle Used by an Optimization Algorithm

Authors: Mohammad Mojtahedpoor

Abstract:

In this paper, it has been studied the method of optimal design of the supersonic nozzle. It could make viscous axisymmetric nozzles that the quality of their outlet flow is quite desired. In this method, it is optimized the divergent nozzle, at first. The initial divergent nozzle contour is designed through the method of characteristics and adding a suitable boundary layer to the inviscid contour. After that, it is made a proper grid and then simulated flow by the numerical solution and AUSM+ method by using the operation boundary condition. At the end, solution outputs are investigated and optimized. The numerical method has been validated with experimental results. Also, in order to evaluate the effectiveness of the present method, the nozzles compared with the previous studies. The comparisons show that the nozzles obtained through this method are sufficiently better in some conditions, such as the flow uniformity, size of the boundary layer, and obtained an axial length of the nozzle. Designing the convergent nozzle part affects by flow uniformity through changing its axial length and input diameter. The results show that increasing the length of the convergent part improves the output flow uniformity.

Keywords: nozzle, supersonic, optimization, characteristic method, CFD

Procedia PDF Downloads 200
9509 Temperature Distribution Simulation of Divergent Fluid Flow with Helical Arrangement

Authors: Ehan Sabah Shukri, Wirachman Wisnoe

Abstract:

Numerical study is performed to investigate the temperature distribution in an annular diffuser fitted with helical tape hub. Different pitches (Y = 20 mm, and Y = 30 mm) for the helical tape are studied with different heights (H = 20 mm, 22 mm, and 24 mm) to be compared. The geometry of the annular diffuser and the inlet condition for both hub arrangements are kept constant. The result obtains that using helical tape insert with different pitches and different heights will force the temperature to distribute in a helical direction; however the use of helical tape hub with height (H = 22 mm) for both pitches enhance the temperature distribution in a good manner.

Keywords: helical tape, divergent fluid flow, temperature distribution, swirl flow, CFD

Procedia PDF Downloads 448