Search results for: agricultural water footprint
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9972

Search results for: agricultural water footprint

942 Comparison Analysis of Fuzzy Logic Controler Based PV-Pumped Hydro and PV-Battery Storage Systems

Authors: Seada Hussen, Frie Ayalew

Abstract:

Integrating different energy resources, like solar PV and hydro, is used to ensure reliable power to rural communities like Hara village in Ethiopia. Hybrid power system offers power supply for rural villages by providing an alternative supply for the intermittent nature of renewable energy resources. The intermittent nature of renewable energy resources is a challenge to electrifying rural communities in a sustainable manner with solar resources. Major rural villages in Ethiopia are suffering from a lack of electrification, that cause our people to suffer deforestation, travel for long distance to fetch water, and lack good services like clinic and school sufficiently. The main objective of this project is to provide a balanced, stable, reliable supply for Hara village, Ethiopia using solar power with a pumped hydro energy storage system. The design of this project starts by collecting data from villages and taking solar irradiance data from NASA. In addition to this, geographical arrangement and location are also taken into consideration. After collecting this, all data analysis and cost estimation or optimal sizing of the system and comparison of solar with pumped hydro and solar with battery storage system is done using Homer Software. And since solar power only works in the daytime and pumped hydro works at night time and also at night and morning, both load will share to cover the load demand; this need controller designed to control multiple switch and scheduling in this project fuzzy logic controller is used to control this scenario. The result of the simulation shows that solar with pumped hydro energy storage system achieves good results than with a battery storage system since the comparison is done considering storage reliability, cost, storage capacity, life span, and efficiency.

Keywords: pumped hydro storage, solar energy, solar PV, battery energy storage, fuzzy logic controller

Procedia PDF Downloads 59
941 The Role of Nutrition and Food Engineering in Promoting Sustainable Food Systems

Authors: Sara Khan Mohammadi

Abstract:

The world is facing a major challenge of feeding a growing population while ensuring the sustainability of food systems. The United Nations estimates that the global population will reach 9.7 billion by 2050, which means that food production needs to increase by 70% to meet the demand. However, this increase in food production should not come at the cost of environmental degradation, loss of biodiversity, and climate change. Therefore, there is a need for sustainable food systems that can provide healthy and nutritious food while minimizing their impact on the environment. Nutrition and Food Engineering: Nutrition and food engineering play a crucial role in promoting sustainable food system. Nutrition is concerned with the study of nutrients in foods, their absorption, metabolism, and their effects on health. Food engineering involves the application of engineering principles to design, develop, and optimize food processing operations. Together, nutrition and food engineering can help to create sustainable food systems by: 1. Developing Nutritious Foods: Nutritionists and food engineers can work together to develop foods that are rich in nutrients such as vitamins, minerals, fiber, and protein. These foods can be designed to meet the nutritional needs of different populations while minimizing waste. 2. Reducing Food Waste: Food waste is a major problem globally as it contributes to greenhouse gas emissions and wastes resources such as water and land. Nutritionists and food engineers can work together to develop technologies that reduce waste during processing, storage, transportation, and consumption. 3. Improving Food Safety: Unsafe foods can cause illnesses such as diarrhea, cholera, typhoid fever among others which are major public health concerns globally. Nutritionists and food engineers can work together to develop technologies that improve the safety of foods from farm to fork. 4. Enhancing Sustainability: Sustainable agriculture practices such as conservation agriculture can help reduce soil erosion while improving soil fertility. Nutritionists and food engineers can work together to develop technologies that promote sustainable agriculture practices.

Keywords: sustainable food, developing food, reducing food waste, food safety

Procedia PDF Downloads 63
940 Understanding Responses of the Bee Community to an Urbanizing Landscape in Bengaluru, South India

Authors: Chethana V. Casiker, Jagadishakumara B., Sunil G. M., Chaithra K., M. Soubadra Devy

Abstract:

A majority of the world’s food crops depends on insects for pollination, among which bees are the most dominant taxon. Bees pollinate vegetables, fruits and oilseeds which are rich in essential micronutrients. Besides being a prerequisite for a nutritionally secure diet, agrarian economies such as India depend heavily on pollination for good yield and quality of the product. As cities all over the world expand rapidly, large tracts of green spaces are being built up. This, along with high usage of agricultural chemicals has reduced floral diversity and shrunk bee habitats. Indeed, pollinator decline is being reported from various parts of the world. Further, the FAO has reported a huge increase in the area of land under cultivation of pollinator-dependent crops. In the light of increasing demand for pollination and disappearing natural habitats, it is critical to understand whether and how urban spaces can support pollinators. To this end, this study investigates the influence of landscape and local habitat quality on bee community dynamics. To capture the dynamics of expanding cityscapes, the study employs a space for time substitution, wherein a transect along the gradient of urbanization substitutes a timeframe of increasing urbanization. This will help understand how pollinators would respond to changes induced by increasing intensity of urbanization in the future. Bengaluru, one of the fastest growing cities of Southern India, is an excellent site to study impacts associated with urbanization. With sites moving away from the Bengaluru’s centre and towards its peripheries, this study captures the changes in bee species diversity and richness along a gradient of urbanization. Bees were sampled under different land use types as well as in different types of vegetation, including plantations, croplands, fallow land, parks, lake embankments, and private gardens. The relationship between bee community metrics and key drivers such as a percentage of built-up area, land use practices, and floral resources was examined. Additionally, data collected using questionnaire interviews were used to understand people’s perceptions towards and level of dependence on pollinators. Our results showed that urban areas are capable of supporting bees. In fact, a greater diversity of bees was recorded in urban sites compared to adjoining rural areas. This suggests that bees are able to seek out patchy resources and survive in small fragments of habitat. Bee abundance and species richness correlated positively with floral abundance and richness, indicating the role of vegetation in providing forage and nesting sites which are crucial to their survival. Bee numbers were seen to decrease with increase in built-up area demonstrating that impervious surfaces could act as deterrents. Findings from this study challenge the popular notion of cities being biodiversity-bare spaces. There is indeed scope for conserving bees in urban landscapes, provided that there are city-scale planning and local initiative. Bee conservation can go hand in hand with efforts such as urban gardening and terrace farming that could help cities urbanize sustainably.

Keywords: bee, landscape ecology, urbanization, urban pollination

Procedia PDF Downloads 159
939 Multivariate Statistical Analysis of Heavy Metals Pollution of Dietary Vegetables in Swabi, Khyber Pakhtunkhwa, Pakistan

Authors: Fawad Ali

Abstract:

Toxic heavy metal contamination has a negative impact on soil quality which ultimately pollutes the agriculture system. In the current work, we analyzed uptake of various heavy metals by dietary vegetables grown in wastewater irrigated areas of Swabi city. The samples of soil and vegetables were analyzed for heavy metals viz Cd, Cr, Mn, Fe, Ni, Cu, Zn and Pb using Atomic Absorption Spectrophotometer. High levels of metals were found in wastewater irrigated soil and vegetables in the study area. Especially the concentrations of Pb and Cd in the dietary vegetable crossed the permissible level of World Health Organization. Substantial positive correlation was found among the soil and vegetable contamination. Transfer factor for some metals including Cr, Zn, Mn, Ni, Cd and Cu was greater than 0.5 which shows enhanced accumulation of these metals due to contamination by domestic discharges and industrial effluents. Linear regression analysis indicated significant correlation of heavy metals viz Pb, Cr, Cd, Ni, Zn, Cu, Fe and Mn in vegetables with concentration in soil of 0.964 at P≤0.001. Abelmoschus esculentus indicated Health Risk Index (HRI) of Pb >1 in adults and children. The source identification analysis carried out by Principal Component Analysis (PCA) and Cluster Analysis (CA) showed that ground water and soil were being polluted by the trace metals coming out from industries and domestic wastes. Hierarchical cluster analysis (HCA) divided metals into two clusters for wastewater and soil but into five clusters for soil of control area. PCA extracted two factors for wastewater, each contributing 61.086 % and 16.229 % of the total 77.315 % variance. PCA extracted two factors, for soil samples, having total variance of 79.912 % factor 1 and factor 2 contributed 63.889 % and 16.023 % of the total variance. PCA for sub soil extracted two factors with a total variance of 76.136 % factor 1 being 61.768 % and factor 2 being 14.368 %of the total variance. High pollution load index for vegetables in the study area due to metal polluted soil has opened a study area for proper legislation to protect further contamination of vegetables. This work would further reveal serious health risks to human population of the study area.

Keywords: health risk, vegetables, wastewater, atomic absorption sepctrophotometer

Procedia PDF Downloads 49
938 Synthesis, Characterization and Bioactivity of Methotrexate Conjugated Fluorescent Carbon Nanoparticles in vitro Model System Using Human Lung Carcinoma Cell Lines

Authors: Abdul Matin, Muhammad Ajmal, Uzma Yunus, Noaman-ul Haq, Hafiz M. Shohaib, Ambreen G. Muazzam

Abstract:

Carbon nanoparticles (CNPs) have unique properties that are useful for the diagnosis and treatment of cancer due to their precise properties like small size (ideal for delivery within the body) stability in solvent and tunable surface chemistry for targeted delivery. Here, highly fluorescent, monodispersed and water-soluble CNPs were synthesized directly from a suitable carbohydrate source (glucose and sucrose) by one-step acid assisted ultrasonic treatment at 35 KHz for 4 hours. This method is green, simple, rapid and economical and can be used for large scale production and applications. The average particle sizes of CNPs are less than 10nm and they emit bright and colorful green-blue fluorescence under the irradiation of UV-light at 365nm. The CNPs were characterized by scanning electron microscopy, fluorescent spectrophotometry, Fourier transform infrared spectrophotometry, ultraviolet-visible spectrophotometry and TGA analysis. Fluorescent CNPs were used as fluorescent probe and nano-carriers for anticancer drug. Functionalized CNPs (with ethylene diamine) were attached with anticancer drug-Methotrexate. In vitro bioactivity and biocompatibility of CNPs-drug conjugates was evaluated by LDH assay and Sulforhodamine B assay using human lung carcinoma cell lines (H157). Our results reveled that CNPs showed biocompatibility and CNPs-anticancer drug conjugates have shown potent cytotoxic effects and high antitumor activities in lung cancer cell lines. CNPs are proved to be excellent substitute for conventional drug delivery cargo systems and anticancer therapeutics in vitro. Our future studies will be more focused on using the same nanoparticles in vivo model system.

Keywords: carbon nanoparticles, carbon nanoparticles-methotrexate conjugates, human lung carcinoma cell lines, lactate dehydrogenase, methotrexate

Procedia PDF Downloads 292
937 Understanding the Notion between Resiliency and Recovery through a Spatial-Temporal Analysis of Section 404 Wetland Alteration Permits before and after Hurricane Ike

Authors: Md Y. Reja, Samuel D. Brody, Wesley E. Highfield, Galen D. Newman

Abstract:

Historically, wetlands in the United States have been lost due to agriculture, anthropogenic activities, and rapid urbanization along the coast. Such losses of wetlands have resulted in high flooding risk for coastal communities over the period of time. In addition, alteration of wetlands via the Section 404 Clean Water Act permits can increase the flooding risk to future hurricane events, as the cumulative impact of this program is poorly understood and under-accounted. Further, recovery after hurricane events is acting as an encouragement for new development and reconstruction activities by converting wetlands under the wetland alteration permitting program. This study investigates the degree to which hurricane recovery activities in coastal communities are undermining the ability of these places to absorb the impacts of future storm events. Specifically, this work explores how and to what extent wetlands are being affected by the federal permitting program post-Hurricane Ike in 2008. Wetland alteration patterns are examined across three counties (Harris, Galveston, and Chambers County) along the Texas Gulf Coast over a 10-year time period, from 2004-2013 (five years before and after Hurricane Ike) by conducting descriptive spatial analyses. Results indicate that after Hurricane Ike, the number of permits substantially increased in Harris and Chambers County. The vast majority of individual and nationwide type permits were issued within the 100-year floodplain, storm surge zones, and areas damaged by Ike flooding, suggesting that recovery after the hurricane is compromising the ecological resiliency on which coastal communities depend. The authors expect that the findings of this study can increase awareness to policy makers and hazard mitigation planners regarding how to manage wetlands during a long-term recovery process to maintain their natural functions for future flood mitigation.

Keywords: ecological resiliency, Hurricane Ike, recovery, Section 404 Permitting, wetland alteration

Procedia PDF Downloads 235
936 Prevalence and Hypertension Management among the Nomadic Migratory Community of Marsabit County, Kenya: Lessons Learned and Wayforward

Authors: Wesley Too, Christine Chesiror

Abstract:

Hypertension is a public health challenge that globally, with the World Health Organization estimating that by 2025, more than 1.5 billion people would have been diagnosed with it. Kenya’s prevalence of hypertension is estimated at 24.6 percent; however, 55% of the affected have uncontrolled blood pressure, which is worst in some parts of the country with different lifestyle: nomads and migratory communities. Kenyan pastoralists comprise 20% of the nation's population and are constantly on the move for search of water, pasture for their herd, and desertification have driven nomadic populations to the brink, given their unique and dynamic challenges. Nomads face myriad of challenges and barriers towards the management of their health care problems. Nomadic area is predominantly rural, with a low population density and a nomadic population. Health care access and quality are further hampered by poor telecommunications, infrastructure, and security. In Kenya, nomadic communities experience the worst health outcomes, disproportionate health disparities, and inequalities due to unresponsive, culturally sensitive health care system to nomad’s lifestyle and their health care needs. Marsabit covering a surface area of 66,923.1 km2, is the second largest county in Kenya, constituting about 2.3 million people of North-Eastern region, with only 2.3 percent and 1.9 percent of Kenya's total number of doctors and nurses in the country. In Kenya, there are scanty research on hypertension managementin this region and, at best, non-existent study on hypertension among nomads-migratory communities of Northern Kenya. Therefore, the purpose seeks to determine the prevalence of hypertension among nomads and document nomads' practices regarding early detections, management, and levels of control of hypertension in one of the Counties in Kenya with high- hypertensive case load per year. Methods: A cross-sectional study design was used to collect data from multiple sites and health facilities. A total of 260 participants were enrolled into the study. The study is currently ongoing. It is anticipated that by September, we will have initial findings & recommendations to share for conference

Keywords: pastoralists, hypertension, health, kenya

Procedia PDF Downloads 95
935 Synthesis and Characterization of PH Sensitive Hydrogel and Its Application in Controlled Drug Release of Tramadol

Authors: Naima Bouslah, Leila Bounabi, Farid Ouazib, Nabila Haddadine

Abstract:

Conventional release dosage forms are known to provide an immediate release of the drug. Controlling the rate of drug release from polymeric matrices is very important for a number of applications, particularly in the pharmaceutical area. Hydrogels are polymers in three-dimensional network arrangement, which can absorb and retain large amounts of water without dissolution. They have been frequently used to develop controlled released formulations for oral administration because they can extend the duration of drug release and thus reduce dose to be administrated improving patient compliance. Tramadol is an opioid pain medication used to treat moderate to moderately severe pain. When taken as an immediate-release oral formulation, the onset of pain relief usually occurs within about an hour. In the present work, we synthesized pH-responsive hydrogels of (hydroxyl ethyl methacrylate-co-acrylic acid), (HEMA-AA) for control drug delivery of tramadol in the gastro-intestinal tractus. The hydrogels with different acrylic acid content, were synthesized by free radical polymerization and characterized by FTIR spectroscopy, X ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). FTIR spectroscopy has shown specific hydrogen bonding interactions between the carbonyl groups of the hydrogels and hydroxyl groups of tramadol. Both the XRD and DSC studies revealed that the introduction of tramadol in the hydrogel network induced the amorphization of the drug. The swelling behaviour, absorptive kinetics and the release kinetics of tramadol in simulated gastric fluid (pH 1.2) and in simulated intestinal fluid (pH 7.4) were also investigated. The hydrogels exhibited pH-responsive behavior in the swelling study. The (HEMA-AA) hydrogel swelling was much higher in pH =7.4 medium. The tramadol release was significantly increased when pH of the medium was changed from simulated gastric fluid (pH 1.2) to simulated intestinal fluid (pH 7.4). Using suitable mathematical models, the apparent diffusional coefficients and the corresponding kinetic parameters have been calculated.

Keywords: biopolymres, drug delivery, hydrogels, tramadol

Procedia PDF Downloads 344
934 Ecocentric Principles for the Change of the Anthropocentric Design Within the Other Species Related Fields

Authors: Armando Cuspinera

Abstract:

Humans are nature itself, being with non-human species part of the same ecosystem, but the praxis reflects that not all relations are the same. In fields of design such as Biomimicry, Biodesign, and Biophilic design exist different approaches towards nature, nevertheless, anthropocentric principles such as domination, objectivization, or exploitation are defined in the same as ecocentric principles of inherent importance in life itself. Anthropocentrism has showed humanity with pollution of the earth, water, air, and the destruction of whole ecosystems from monocultures and rampant production of useless objects that life cannot outstand this unaware rhythm of life focused only for the human benefits. Even if by nature the biosphere is resilient, studies showed in the Paris Agreement explain that humanity will perish in an unconscious way of praxis. This is why is important to develop a differentiation between anthropocentric and ecocentricprinciples in the praxis of design, in order to enhance respect, valorization, and positive affectivity towards other life forms is necessary to analyze what principles are reproduced from each practice of design. It is only from the study of immaterial dimensions of design such as symbolism, epistemology, and ontology that the relation towards nature can be redesigned, and in order to do so, it must be studies from the dimensions of ontological design what principles –anthropocentric or ecocentric- through what the objects enhance or focus the perception humans have to its surrounding. The things we design also design us is the principle of ontological design, and in order to develop a way of ecological design in which is possible to consider other species as users, designers or collaborators is important to extend the studies and relation to other living forms from a transdisciplinary perspective of techniques, knowledge, practice, and disciplines in general. Materials, technologies, and any kind of knowledge have the principle of a tool: is not good nor bad, but is in the way of using it the possibilities that exist within them. The collaboration of disciplines and fields of study gives the opportunity to connect principles from other cultures such as Deep Ecology and Environmental Humanities in the development of methodologies of design that study nature, integrates their strategies to our own species, and considers life of other species as important as human life, and is only form the studies of ontological design that material and immaterial dimensions can be analyzed and imbued with structures that already exist in other fields.

Keywords: design, antropocentrism, ecocentrism, ontological design

Procedia PDF Downloads 136
933 Determination of the Presence of Antibiotic Resistance from Vibrio Species in Northern Italy

Authors: Tramuta Clara, Masotti Chiara, Pitti Monica, Adriano Daniela, Battistini Roberta, Serraca Laura, Decastelli Lucia

Abstract:

Oysters are considered filter organisms, and their raw consumption may increase health risks for consumers: it is often associated with outbreaks of gastroenteritis or enteric illnesses. Most of these foodborne diseases are caused by Vibrio strains, enteric pathogens also involved in the diffusion of genetic determinants of antibiotic resistance and their entrance along the food chain. The European Food Safety Authority (EFSA), during the European Union report on antimicrobial resistance in 2017, focused the attention about the role of food as a possible carrier of antibiotic-resistant bacteria or antibiotic-resistance genes that determine health risks for humans. This study wants to determine antibiotic resistance and antibiotic-resistance genes in Vibrio spp. isolated from Crassostrea gigas oysters collected in the Golfo della Spezia (Liguria, Italy). A total of 47 Vibrio spp. strains were isolated (ISO21872-2:2017) during the summer of 2021 from oysters of Crassostrea gigas. The strains were identified by MALDI-TOF (Bruker, Germany) mass spectrometry and tested for antibiotic susceptibility using a broth microdiluition method (ISO20776-1:2019) using Sensititre EUVSEC plates (Thermo-Fisher Scientific) to obtain the Minimum Inhibitory Concentration (MIC). The strains were tested with PCR-based biomolecular methods, according to previous works, to define the presence of 23 resistance genes of the main classes of antibiotics used in human and veterinary medicine: tet (B), tet (C), tet (D), tet (A), tet (E), tet (G ), tet (K), tet (L), tet (M), tet (O), tet (S) (tetracycline resistance); blaCTX-M, blaTEM, blaOXA, blaSHV (β-lactam resistance); mcr-1 and mcr-2 (colistin resistance); qnrA, qnrB, and qnrS (quinolone resistance); sul1, sul2 and sul3 (sulfonamide resistance). Six different species have been identified: V. alginolyticus 34% (n=16), V. harveyi 28% (n=13), V. fortis 15% (n=7), V. pelagius 8% (n=4), V. parahaemolyticus 11% (n=5) e V. chagasii 4% (n=2). The PCR assays showed the presence of the blaTEM gene on 40% of the strains (n=19). All the other genes were not detected, except for a V. alginolyticus positive for anrS gene. The broth microdiluition method results showed an high level of resistance for ciprofloxacin (62%; n=29), ampicillin (47%; n=22), and colistin (49%; n=23). Furthermore, 32% (n=15) of strains can be considered multiresistant bacteria for the simultaneous presence of resistance for three different antibiotic classes. Susceptibility towards meropenem, azithromycin, gentamicin, ceftazidime, cefotaxime, chloramphenicol, tetracycline and sulphamethoxazole reached 100%. The Vibrio species identified in this study are widespread in marine environments and can cause gastrointerstinal infections after the ingestion of raw fish products and bivalve molluscs. The level of resistance to antibiotics such as ampicillin, ciprofloxacin and colistin can be connected to anthropic factors (industrial, agricultural and domestic wastes) that promote the spread of resistance to these antibiotics. It can be also observed a strong correlation between phenotypic (resistant MIC) and genotypic (positive blaTEM gene) resistance for ampicillin on the same strains, probably due to the transfer of genetic material between bacterial strains. Consumption of raw bivalve molluscs can represent a risk for consumers heath due to the potentially presence of foodborne pathogens, highly resistant to different antibiotics and source of transferable antibiotic-resistant genes.

Keywords: vibrio species, blaTEM genes, antimicrobial resistance, PCR

Procedia PDF Downloads 57
932 Extraction and Quantification of Triclosan in Wastewater Samples Using Molecularly Imprinted Membrane Adsorbent

Authors: Siyabonga Aubrey Mhlongo, Linda Lunga Sibali, Phumlane Selby Mdluli, Peter Papoh Ndibewu, Kholofelo Clifford Malematja

Abstract:

This paper reports on the successful extraction and quantification of an antibacterial and antifungal agent present in some consumer products (Triclosan: C₁₂H₇Cl₃O₂)generally found in wastewater or effluents using molecularly imprinted membrane adsorbent (MIMs) followed by quantification and removal on a high-performance liquid chromatography (HPLC). Triclosan is an antibacterial and antifungal agent present in some consumer products like toothpaste, soaps, detergents, toys, and surgical cleaning treatments. The MIMs was fabricated usingpolyvinylidene fluoride (PVDF) polymer with selective micro composite particles known as molecularly imprinted polymers (MIPs)via a phase inversion by immersion precipitation technique. This resulted in an improved hydrophilicity and mechanical behaviour of the membranes. Wastewater samples were collected from the Umbogintwini Industrial Complex (UIC) (south coast of Durban, KwaZulu-Natal in South Africa). central UIC effluent treatment plant and pre-treated before analysis. Experimental parameters such as sample size, contact time, stirring speed were optimised. The resultant MIMs had an adsorption efficiency of 97% of TCS with reference to NIMs and bare membrane, which had 92%, 88%, respectively. The analytical method utilized in this review had limits of detection (LoD) and limits of quantification (LoQ) of 0.22, 0.71µgL-1 in wastewater effluent, respectively. The percentage recovery for the effluent samples was 68%. The detection of TCS was monitored for 10 consecutive days, where optimum TCS traces detected in the treated wastewater was 55.0μg/L inday 9 of the monitored days, while the lowest detected was 6.0μg/L. As the concentrations of analytefound in effluent water samples were not so diverse, this study suggested that MIMs could be the best potential adsorbent for the development and continuous progress in membrane technologyand environmental sciences, lending its capability to desalination.

Keywords: molecularly imprinted membrane, triclosan, phase inversion, wastewater

Procedia PDF Downloads 107
931 Phytoremediation of artisanal gold mine tailings - Potential of Chrysopogon zizanioides and Andropogon gayanus in the Sahelian climate

Authors: Yamma Rose, Kone Martine, Yonli Arsène, Wanko Ngnien Adrien

Abstract:

Soil pollution and, consequently, water resources by micropollutants from gold mine tailings constitute a major threat in developing countries due to the lack of waste treatment. Phytoremediation is an alternative for extracting or trapping micropollutants from contaminated soils by mining residues. The potentialities of Chrysopogon zizanioides (acclimated plant) and Andropogon gayanus (native plant) to accumulate arsenic (As), mercury (Hg), iron (Fe) and zinc (Zn) were studied in artisanal gold mine in Ouagadougou, Burkina Faso. The phytoremediation effectiveness of two plant species was studied in 75 pots of 30 liters each, containing mining residues from the artisanal gold processing site in the rural commune of Nimbrogo. The experiments cover three modalities: Tn - planted unpolluted soils; To – unplanted mine tailings and Tp – planted mine tailings arranged in a randomized manner. The pots were amended quarterly with compost to provide nutrients to the plants. The phytoremediation assessment consists of comparing the growth, biomass and capacity of these two herbaceous plants to extract or to trap Hg, Fe, Zn and As in mining residues in a controlled environment. The analysis of plant species parameters cultivated in mine tailings shows indices of relative growth of A. gayanus very significantly high (34.38%) compared to 20.37% for C.zizanioides. While biomass analysis reveals that C. zizanioides has greater foliage and root system growth than A. gayanus. The results after a culture time of 6 months showed that C. zizanioides and A. gayanus have the potential to accumulate Hg, Fe, Zn and As. Root biomass has a more significant accumulation than aboveground biomass for both herbaceous species. Although the BCF bioaccumulation factor values for both plants together are low (<1), the removal efficiency of Hg, Fe, Zn and As is 45.13%, 42.26%, 21.5% and 2.87% respectively in 24 weeks of culture with C. zizanioides. However, pots grown with A. gayanus gives an effectiveness rate of 43.55%; 41.52%; 2.87% and 1.35% respectively for Fe, Zn, Hg and As. The results indicate that the plant species studied have a strong phytoremediation potential, although that of A. gayanus is relatively less than C. zizanioides.

Keywords: artisanal gold mine tailings, andropogon gayanus, chrysopogon zizanioides, phytoremediation

Procedia PDF Downloads 50
930 Trehalose Application Increased Membrane Stability and Cell Viability to Affect Growth of Wheat Genotypes under Heat Stress

Authors: S. K. Thind, Aparjot Kaur

Abstract:

Heat stress is one of the major environmental factors drastically reducing wheat production. Crop heat tolerance can be enhanced by preconditioning of plants by exogenous application of osmoprotectants. Presently, the effect of trehalose pretreatment (at 1 mM, and 1.5 nM) under heat stress of 35±2˚C (moderate) and 40±2˚ (severe) for four and eight hour was conducted in wheat (Tricticum aestivum L.) genotypes viz. HD2967, PBW 175, PBW 343, PBW 621, and PBW 590. Heat stress affects wide spectrum of physiological processes within plants that are irreversibly damaged by stress. Membrane thermal stability (MTS) and cell viability was significantly decreased under heat stress for eight hours. Pretreatment with trehalose improved MTS and cell viability under stress and this effect was more promotory with higher concentration. Thermal stability of photosynthetic apparatus differed markedly between genotypes and Hill reaction activity was recorded more in PBW621 followed by C306 as compared with others. In all genotypes photolysis of water showed decline with increase in temperature stress. Trehalose pretreatment helped in sustaining Hill reaction activity probably by stabilizing the photosynthetic apparatus against heat-induced photo inhibition. Both plant growth and development were affected by temperature in both shoot and root under heat stress. The reduction was compensated partially by trehalose (1.5 mM) application. Adaption to heat stress is associated with the metabolic adjustment which led to accumulation of soluble sugars including non-reducing and reducing for their role in adaptive mechanism. Higher acid invertase activity in shoot of tolerant genotypes appeared to be a characteristic for stress tolerance. As sucrose synthase play central role in sink strength and in studied wheat genotype was positively related to dry matter accumulation. The duration of heat stress for eight hours had more severe effect on these parameters and trehalose application at 1.5 mM ameliorated it to certain extent.

Keywords: heat stress, Triticum aestivum, trehalose, membrane thermal stability, triphenyl tetrazolium chloride, reduction test, growth, sugar metabolism

Procedia PDF Downloads 311
929 A Study on the Effect of Different Climate Conditions on Time of Balance of Bleeding and Evaporation in Plastic Shrinkage Cracking of Concrete Pavements

Authors: Hasan Ziari, Hassan Fazaeli, Seyed Javad Vaziri Kang Olyaei, Asma Sadat Dabiri

Abstract:

The presence of cracks in concrete pavements is a place for the ingression of corrosive substances, acids, oils, and water into the pavement and reduces its long-term durability and level of service. One of the causes of early cracks in concrete pavements is the plastic shrinkage. This shrinkage occurs due to the formation of negative capillary pressures after the equilibrium of the bleeding and evaporation rates at the pavement surface. These cracks form if the tensile stresses caused by the restrained shrinkage exceed the tensile strength of the concrete. Different climate conditions change the rate of evaporation and thus change the balance time of the bleeding and evaporation, which changes the severity of cracking in concrete. The present study examined the relationship between the balance time of bleeding and evaporation and the area of cracking in the concrete slabs using the standard method ASTM C1579 in 27 different environmental conditions by using continuous video recording and digital image analyzing. The results showed that as the evaporation rate increased and the balance time decreased, the crack severity significantly increased so that by reducing the balance time from the maximum value to its minimum value, the cracking area increased more than four times. It was also observed that the cracking area- balance time curve could be interpreted in three sections. An examination of these three parts showed that the combination of climate conditions has a significant effect on increasing or decreasing these two variables. The criticality of a single factor cannot cause the critical conditions of plastic cracking. By combining two mild environmental factors with a severe climate factor (in terms of surface evaporation rate), a considerable reduction in balance time and a sharp increase in cracking severity can be prevented. The results of this study showed that balance time could be an essential factor in controlling and predicting plastic shrinkage cracking in concrete pavements. It is necessary to control this factor in the case of constructing concrete pavements in different climate conditions.

Keywords: bleeding and cracking severity, concrete pavements, climate conditions, plastic shrinkage

Procedia PDF Downloads 133
928 Life-Cycle Cost and Life-Cycle Assessment of Photovoltaic/Thermal Systems (PV/T) in Swedish Single-Family Houses

Authors: Arefeh Hesaraki

Abstract:

The application of photovoltaic-thermal hybrids (PVT), which delivers both electricity and heat simultaneously from the same system, has become more popular during the past few years. This study addresses techno-economic and environmental impacts assessment of photovoltaic/thermal systems combined with a ground-source heat pump (GSHP) for three single-family houses located in Stockholm, Sweden. Three case studies were: (1) A renovated building built in 1936, (2) A renovated building built in 1973, and (3) A new building built-in 2013. Two simulation programs of SimaPro 9.1 and IDA Indoor Climate and Energy 4.8 (IDA ICE) were applied to analyze environmental impacts and energy usage, respectively. The cost-effectiveness of the system was evaluated using net present value (NPV), internal rate of return (IRR), and discounted payback time (DPBT) methods. In addition to cost payback time, the studied PVT system was evaluated using the energy payback time (EPBT) method. EPBT presents the time that is needed for the installed system to generate the same amount of energy which was utilized during the whole lifecycle (fabrication, installation, transportation, and end-of-life) of the system itself. Energy calculation by IDA ICE showed that a 5 m² PVT was sufficient to create a balance between the maximum heat production and the domestic hot water consumption during the summer months for all three case studies. The techno-economic analysis revealed that combining a 5 m² PVT with GSHP in the second case study possess the smallest DPBT and the highest NPV and IRR among the three case studies. It means that DPBTs (IRR) were 10.8 years (6%), 12.6 years (4%), and 13.8 years (3%) for the second, first, and the third case study, respectively. Moreover, environmental assessment of embodied energy during cradle- to- grave life cycle of the studied PVT, including fabrication, delivery of energy and raw materials, manufacture process, installation, transportation, operation phase, and end of life, revealed approximately two years of EPBT in all cases.

Keywords: life-cycle cost, life-cycle assessment, photovoltaic/thermal, IDA ICE, net present value

Procedia PDF Downloads 99
927 Highly Efficient in Vitro Regeneration of Swertia chirayita (Roxb. ex Fleming) Karsten: A Critically Endangered Medicinal Plant

Authors: Mahendran Ganesan, Sanjeet Kumar Verma, Zafar Iqbal, Ashish Chandran, Zakir Husain, Shama Afroz, Sana Shahid, Laiq Ur Rahman

Abstract:

Highly efficient in vitro regeneration system has been developed for Swertia chirayita (Roxb. ex Fleming) H. Karst, a high prized traditional medicinal plant to treat numerous ailments such as liver disorders, malaria and diabetes and are reported to have a wide spectrum of pharmacological properties. Its medicinal usage is well-documented in Indian pharmaceutical codex, the British and the American pharmacopeias, and in different traditional medicine such as the Ayurveda, Unani and Siddha medical systems. Nodal explants were cultured on MS medium supplemented with various phytohormones for multiple shoot induction. The nodal segments failed to respond in growth regulator free medium. All the concentrations of BAP, Kin and TDZ facilitated shoot bud break and multiple shoot induction. Among the various cytokinins tested, BAP was found to be more effective with respect to initiation and subsequent development of shoots. Of the various concentrations BAP tested, BAP at 4.0 mg/L showed the higher average number of shoot regeneration (10.80 shoots per explant). Kin at 4 mg/L and TDZ at 4 mg/L induced 5.70 and 04.5+0 shoots per explant, respectively. Further increase in concentration did not favour an increase in the number of shoots. However, these shoots failed to elongate further. Hence, addition of GA₃ (1 mg/L) was added to the above medium. This treatment resulted in the elongation of shoots (2.50 cm) and a further increase in the number of microshoots (34.20 shoots/explant). Roots were also induced in the same medium containing BAP (4 mg/L) + GA₃ (1 mg/L) + NAA (0.5 mg/L). In vitro derived plantlets with well-developed roots were transferred to the potting media containing garden soil: sand: vermicompost (2:1:1). Plantlets were covered with a polyethylene bag and irrigated with water. The pots were maintained at 25 ± 2ºC, and then the polyethylene cover was gradually loosened, thus dropping the humidity (65–70%). This procedure subsequently resulted in in vitro hardening of the plantlet.

Keywords: micropropagation, nodal explant, plant growth regulators, Swertia chirayita

Procedia PDF Downloads 107
926 Adsorptive Removal of Methylene Blue Dye from Aqueous Solutions by Leaf and Stem Biochar Derived from Lantana camara: Adsorption Kinetics, Equilibrium, Thermodynamics and Possible Mechanism

Authors: Deepa Kundu, Prabhakar Sharma, Sayan Bhattacharya, Jianying Shang

Abstract:

The discharge of dye-containing effluents in the water bodies has raised concern due to the potential hazards related to their toxicity in the environment. There are various treatment technologies available for the removal of dyes from wastewaters. The use of biosorbent to remove dyes from wastewater is one of the effective and inexpensive techniques. In the study, the adsorption of phenothiazine dye methylene blue onto biosorbent prepared from Lantana camara L. has been studied in aqueous solutions. The batch adsorption experiments were conducted and the effects of various parameters such as pH (3-12), contact time, adsorbent dose (100-400 mg/L), initial dye concentration (5-20 mg/L), and temperature (303, 313 and 323 K) were investigated. The prepared leaf (BCL600) and shoot (BCS600) biochar of Lantana were characterized using FTIR, SEM, elemental analysis, and zeta potential (pH~7). A comparison between the adsorption potential of both the biosorbent was also evaluated. The results indicated that the amount of methylene blue dye (mg/g) adsorbed onto the surface of biochar was highly dependent on the pH of the dye solutions as it increased with an increase in pH from 3 to 12. It was observed that the dye treated with BCS600 and BCL600 attained an equilibrium within 60 and 100 minutes, respectively. The rate of the adsorption process was determined by performing the Lagergren pseudo-first-order and pseudo-second-order kinetics. It was found that dye treated with both BCS600 and BCL600 followed pseudo-second-order kinetics implying the multi-step nature of the adsorption process involving external adsorption and diffusion of dye molecules into the interior of the adsorbents. The data obtained from batch experiments were fitted well with Langmuir and Freundlich isotherms (R² > 0.98) to indicate the multilayer adsorption of dye over the biochar surfaces. The thermodynamic studies revealed that the adsorption process is favourable, spontaneous, and endothermic in nature. Based on the results, the inexpensive and easily available Lantana camara biomass can be used to remove methylene blue dye from wastewater. It can also help in managing the growth of the notorious weed in the environment.

Keywords: adsorption kinetics, biochar, Lantana camara, methylene blue dye, possible mechanism, thermodynamics

Procedia PDF Downloads 120
925 The Constitutional Rights of a Child to a Clean and Healthy Environment: A Case Study in the Vaal Triangle Region

Authors: Christiena Van Der Bank, Marjone Van Der Bank, Ronelle Prinsloo

Abstract:

The constitutional right to a healthy environment and the constitutional duty imposed on the state actively to protect the environment fulfill the specific duties to prevent pollution and ecological degradation and to promote conservation. The aim of this paper is to draw attention to the relationship between child rights and the environment. The focus is to analyse government’s responses as mandated with section 24 of the Bill of Rights for ensuring the right to a clean and healthy environment. The principle of sustainability of the environment encompasses the notion of equity and the harm to the environment affects the present as well as future generations. Section 24 obliges the state to ensure that the legacy of future generations is protected, an obligation that has been said to be part of the common law. The environment is an elusive and wide concept that can mean different things to different people depending on the context in which it is used for example clean drinking water or safe food. An extensive interpretation of the term environment would include almost everything that may positively or negatively influence the quality of human life. The analysis will include assessing policy measures, legislation, budgetary measures and other measures taken by the government in order to progressively meet its constitutional obligation. The opportunity of the child to grow up in a healthy and safe environment is extremely unjustly distributed. Without a realignment of political, legal and economic conditions this situation will not fundamentally change. South Africa as a developing country that needs to meet the demand of social transformation and economic growth whilst at the same time expediting its ability to compete in global markets, the country will inevitably embark on developmental programmes as a measure for sustainable development. The courts would have to inquire into the reasonableness of those measures. Environmental threats to children’s rights must be identified, taking into account children’s specific needs and vulnerabilities, their dependence and marginalisation. Obligations of states and violations of rights must be made more visible to the general public.

Keywords: environment, children rights, pollution, healthy, violation

Procedia PDF Downloads 156
924 Predictors of Recent Work-Related Injury in a Rapidly Developing Country: Results from a Worker Survey in Qatar

Authors: Ruben Peralta, Sam Thomas, Nazia Hirani, Ayman El-Menyar, Hassan Al-Thani, Mohammed Al-Thani, Mohammed Al-Hajjaj, Rafael Consunji

Abstract:

Moderate to severe work-related injuries [WRI's] are a leading cause of trauma admission in Qatar but information on risk factors for their incidence are lacking. This study aims to document and analyze the predictive characteristics for WRI to inform the creation of targeted interventions to improve worker safety in Qatar. This study was conducted as part of the NPRP grant # 7 - 1120 - 3 - 288, titled "A Unified Registry for Occupational Injury Prevention in Qatar”. 266 workers were interviewed using a standard questionnaire, during ‘World Day for Safety and Health at Work’, a Ministry of Public Health event, none refused interview. Nurses and doctors from the Hamad Trauma Center conducted the interviews. Questions were translated into the worker’s native language when it was deemed necessary. Standard information on epidemiologic characteristics and incidence of work-related injury were collected and compared between nationalities and those injured versus those not injured. 262 males and 4 females were interviewed. 17 [6.4%] reported a WRI in the last 24 months. More than half of the injured worked in construction [59%] followed by water supply [11.8%]. Factors significantly associated with recent injury were: Working for a company with > 500 employees and speaking Hindi. Protective characteristics included: Being from the Philippines or Sri Lanka, speaking Arabic, working in healthcare, an office or trading and company size between 100-500 employees. Years of schooling and working in Qatar were not predictive factor for WRI. The findings from this survey should guide future research that will better define worker populations at an increased risk for WRI and inform recruiters and sending countries. A focus on worker language skills, interventions in the construction industry and occupational safety in large companies is needed.

Keywords: occupational injury, prevention, safety, trauma, work related injury

Procedia PDF Downloads 310
923 Barriers and Enablers to Climate and Health Adaptation Planning in Small Urban Areas in the Great Lakes Region

Authors: Elena Cangelosi, Wayne Beyea

Abstract:

This research expands the resilience planning literature by exploring the barriers and enablers to climate and health adaptation planning for small urban, coastal Great Lakes communities. With funding from the United States Centers for Disease Control and Prevention (CDC) Climate Ready City and States Initiative, this research took place during a 3-year pilot intervention project which integrates urban planning and public health. The project used the CDC’s Building Resilience Against Climate Effects (BRACE) framework to prevent or reduce the human health impacts from climate change in Marquette County, Michigan. Using a deliberation with the analysis planning process, interviews, focus groups, and community meetings with over 25 stakeholder groups and over 100 participants identified the area’s climate-related health concerns and adaptation interventions to address those concerns. Marquette County, on the shores of Lake Superior, the largest of the Great Lakes, was selected for the project based on their existing adaptive capacity and proactive approach to climate adaptation planning. With Marquette County as the context, this study fills a gap in the adaptation literature, which currently heavily emphasizes large-urban or agriculturally-based rural areas, and largely neglects small urban areas. This research builds on the qualitative case-study, survey, and interview approach established by previous researchers on contextual barriers and enablers for adaptation planning. This research uses a case study approach, including surveys and interviews of public officials, to identify the barriers and enablers for climate and health adaptation planning for small-urban areas within a large, non-agricultural, Great Lakes county. The researchers hypothesize that the barriers and enablers will, in some cases, overlap those found in other contexts, but in many cases, will be unique to a rural setting. The study reveals that funding, staff capacity, and communication across a large, rural geography act as the main barriers, while strong networks and collaboration, interested leaders, and community interest through a strong human-land connection act as the primary enablers. Challenges unique to rural areas are revealed, including weak opportunities for grant funding, large geographical distances, communication challenges with an aging and remote population, and the out-migration of education residents. Enablers that may be unique to rural contexts include strong collaborative relationships across jurisdictions for regional work and strong connections between residents and the land. As the factors that enable and prevent climate change planning are highly contextual, understanding, and appropriately addressing the unique factors at play for small-urban communities is key for effective planning in those areas. By identifying and addressing the barriers and enablers to climate and health adaptation planning for small-urban, coastal areas, this study can help Great Lakes communities appropriately build resilience to the adverse impacts of climate change. In addition, this research expands the breadth of research and understanding of the challenges and opportunities planners confront in the face of climate change.

Keywords: climate adaptation and resilience, climate change adaptation, climate change and urban resilience, governance and urban resilience

Procedia PDF Downloads 105
922 Effect of Lowering the Proportion of Chlorella vulgaris in Fish Feed on Tilapia's Immune System

Authors: Hamza A. Pantami, Khozizah Shaari, Intan S. Ismail, Chong C. Min

Abstract:

Introduction: Tilapia is the second-highest harvested freshwater fish species in Malaysia, available in almost all fish farms and markets. Unfortunately, tilapia culture in Malaysia is highly affected by Aeromonas hydrophila and Streptococcus agalactiae, which affect the production rate and consequently pose a direct negative economic impact. Reliance on drugs to control or reduce bacterial infections has been led to contamination of water bodies and development of drug resistance, as well as gave rise to toxicity issues in downstream fish products. Resorting to vaccines have helped curb the problem to a certain extent, but a more effective solution is still required. Using microalgae-based feed to enhance the fish immunity against bacterial infection offers a promising alternative. Objectives: This study aims to evaluate the efficacy of Chlorella vulgaris at lower percentage incorporation in feeds for an immune boost of tilapia in a shorter time. Methods: The study was in two phases. The safety concentration studies at 500 mg/kg-1 and the administration of cultured C. vulgaris biomass via incorporation into fish feed for five different groups in three weeks. Group 1 was the control (0% incorporation), whereas group 2, 3, 4 and 5 received 0.625%, 1.25%, 2.5% and 5% incorporation respectively. The parameters evaluated were the blood profile, serum lysozyme activity (SLA), serum bactericidal activity (SBA), phagocytosis activity (PA), respiratory burst activity (RBA), and lymphoproliferation activity (LPA). The data were analyzed via ANOVA using SPSS (version 16). Further testing was done using Tukey’s test. All tests were performed at the 95% confidence interval (p < 0.05). Results: There were no toxic signs in tilapia fish at 500 mg/kg-1. Treated groups showed significantly better immune parameters compared to the control group (p < 0.05). Conclusions: C. vulgaris crude biomass in a fish meal at a lower incorporation level of 5% can increase specific and non-specific immunity in tilapia fish in a shorter time duration.

Keywords: Chlorella vulgaris, hematology profile, immune boost, lymphoproliferation

Procedia PDF Downloads 94
921 An Initial Assessment of the Potential Contibution of 'Community Empowerment' to Mitigating the Drivers of Deforestation and Forest Degradation, in Giam Siak Kecil-Bukit Batu Biosphere Reserve

Authors: Arzyana Sunkar, Yanto Santosa, Siti Badriyah Rushayati

Abstract:

Indonesia has experienced annual forest fires that have rapidly destroyed and degraded its forests. Fires in the peat swamp forests of Riau Province, have set the stage for problems to worsen, this being the ecosystem most prone to fires (which are also the most difficult, to extinguish). Despite various efforts to curb deforestation, and forest degradation processes, severe forest fires are still occurring. To find an effective solution, the basic causes of the problems must be identified. It is therefore critical to have an in-depth understanding of the underlying causal factors that have contributed to deforestation and forest degradation as a whole, in order to attain reductions in their rates. An assessment of the drivers of deforestation and forest degradation was carried out, in order to design and implement measures that could slow these destructive processes. Research was conducted in Giam Siak Kecil–Bukit Batu Biosphere Reserve (GSKBB BR), in the Riau Province of Sumatera, Indonesia. A biosphere reserve was selected as the study site because such reserves aim to reconcile conservation with sustainable development. A biosphere reserve should promote a range of local human activities, together with development values that are in line spatially and economically with the area conservation values, through use of a zoning system. Moreover, GSKBB BR is an area with vast peatlands, and is experiencing forest fires annually. Various factors were analysed to assess the drivers of deforestation and forest degradation in GSKBB BR; data were collected from focus group discussions with stakeholders, key informant interviews with key stakeholders, field observation and a literature review. Landsat satellite imagery was used to map forest-cover changes for various periods. Analysis of landsat images, taken during the period 2010-2014, revealed that within the non-protected area of core zone, there was a trend towards decreasing peat swamp forest areas, increasing land clearance, and increasing areas of community oil-palm and rubber plantations. Fire was used for land clearing and most of the forest fires occurred in the most populous area (the transition area). The study found a relationship between the deforested/ degraded areas, and certain distance variables, i.e. distance from roads, villages and the borders between the core area and the buffer zone. The further the distance from the core area of the reserve, the higher was the degree of deforestation and forest degradation. Research findings suggested that agricultural expansion may be the direct cause of deforestation and forest degradation in the reserve, whereas socio-economic factors were the underlying driver of forest cover changes; such factors consisting of a combination of socio-cultural, infrastructural, technological, institutional (policy and governance), demographic (population pressure) and economic (market demand) considerations. These findings indicated that local factors/problems were the critical causes of deforestation and degradation in GSKBB BR. This research therefore concluded that reductions in deforestation and forest degradation in GSKBB BR could be achieved through ‘local actor’-tailored approaches such as community empowerment

Keywords: Actor-led solution, community empowerment, drivers of deforestation and forest degradation, Giam Siak Kecil – Bukit Batu Biosphere Reserve

Procedia PDF Downloads 339
920 Spatial Mapping and Change Detection of a Coastal Woodland Mangrove Habitat in Fiji

Authors: Ashneel Ajay Singh, Anish Maharaj, Havish Naidu, Michelle Kumar

Abstract:

Mangrove patches are the foundation species located in the estuarine land areas. These patches provide a nursery, food source and protection for numerous aquatic, intertidal and well as land-based organisms. Mangroves also help in coastal protection, maintain water clarity and are one of the biggest sinks for blue carbon sequestration. In the Pacific Island countries, numerous coastal communities have a heavy socioeconomic dependence on coastal resources and mangroves play a key ecological and economical role in structuring the availability of these resources. Fiji has a large mangrove patch located in the Votua area of the Ba province. Globally, mangrove population continues to decline with the changes in climatic conditions and anthropogenic activities. Baseline information through wetland maps and time series change are essential references for development of effective mangrove management plans. These maps reveal the status of the resource and the effects arising from anthropogenic activities and climate change. In this study, we used remote sensing and GIS tools for mapping and temporal change detection over a period of >20 years in Votua, Fiji using Landsat imagery. Landsat program started in 1972 initially as Earth Resources Technology Satellite. Since then it has acquired millions of images of Earth. This archive allows mapping of temporal changes in mangrove forests. Mangrove plants consisted of the species Rhizophora stylosa, Rhizophora samoensis, Bruguiera gymnorrhiza, Lumnitzera littorea, Heritiera littoralis, Excoecaria agallocha and Xylocarpus granatum. Change detection analysis revealed significant reduction in the mangrove patch over the years. This information serves as a baseline for the development and implementation of effective management plans for one of Fiji’s biggest mangrove patches.

Keywords: climate change, GIS, Landsat, mangrove, temporal change

Procedia PDF Downloads 165
919 Impact of Environmental Rule of Law towards Positive Environmental Outcomes in Nigeria

Authors: Kate N. Okeke

Abstract:

The ever-growing needs of man requiring satisfaction have pushed him strongly towards industrialization which has and is still leaving environmental degradation and its attendant negative impacts in its wake. It is, therefore, not surprising that the enjoyment of fundamental rights like food supply, security of lives and property, freedom of worship, health and education have been drastically affected by such degradation. In recognition of the imperative need to protect the environment and human rights, many global instruments and constitutions have recognized the right to a healthy and sustainable environment. Some environmental advocates and quite a number of literatures on the subject matter call for the recognition of environmental rights via rule of law as a vital means of achieving positive outcomes on the subject matter. However, although there are numerous countries with constitutional environmental provisions, most of them such as Nigeria, have shown poor environmental performance. A notable problem is the fact that the constitution which recognizes environmental rights appears in its other provisions to contradict its provisions by making enforceability of the environmental rights unattainable. While adopting a descriptive, analytical, comparative and explanatory study design in reviewing a successful positive environmental outcome via the rule of law, this article argues that rule of law on a balance of scale, weighs more than just environmental rights recognition and therefore should receive more attention by environmental lawyers and advocates. This is because with rule of law, members of a society are sure of getting the most out of the environmental rights existing in their legal system. Members of Niger-Delta communities of Nigeria will benefit from the environmental rights existing in Nigeria. They are exposed to environmental degradation and pollution with effects such as acidic rainfall, pollution of farmlands and clean water sources. These and many more are consequences of oil and gas exploration. It will also pave way for solving the violence between cattle herdsmen and farmers in the Middle Belt and other regions of Nigeria. Their clashes are over natural resource control. Having seen that environmental rule of law is vital to sustainable development, this paper aims to contribute to discussions on how best the vehicle of rule law can be driven towards achieving positive environmental outcomes. This will be in reliance on other enforceable provisions in the Nigerian Constitution. Other domesticated international instruments will also be considered to attain sustainable environment and development.

Keywords: environment, rule of law, constitution, sustainability

Procedia PDF Downloads 139
918 Synergistic Anti-Proliferation Effect of PLK-1 Inhibitor and Livistona Chinensis Fruit Extracts on Lung Adenocarcinoma A549 Cells

Authors: Min-Chien Su, Tzu-Hsuan Hsu, Guan-Xuan Wu, Shyh-Ming Kuo

Abstract:

Lung cancer is one of the clinically challenging malignant diseases worldwide. For efficient therapeutics in cancer, combination therapy has developed to acquire a better outcome. PLK-1 was one of the major factors affecting cell mitosis in cancer cells, its inhibitor Bi6727 was proven effective in treating several different cancers namely oral cancer, colon cancer and lung cancer. Despite its low toxicity toward normal cells compared to traditional chemotherapy, it is still yet to be evaluated in detail. Livistona Chinensis (LC) is a Chinese herb that used as a traditional prescription to treat lung cancer. Due to the uncertainty of the efficacy of LC, we utilized a water extraction method to extract the Livistona Chinensis and then lyophilized into powder for further study. In this study we investigated the antiproliferation activities of Bi6727 and LC extracts (LCE) on A549 non-small lung cancer cells. The IC50 of Bi6727 and LCE on A549 are 60 nM and 0.8 mg/mL, respectively. The fluorescent staining images shown nucleolus damage in cells treated with Bi6727 and mitochondrial damage after treated with LCE. A549 cells treated with Bi6727 and LCE showed increased expression of Bax, Caspase-3 and Caspase-9 proteins from Western blot assay. LCE also inhibited A549 cells growth keeping cells at G2-M phase from cell cycle assay. Apoptosis assay results showed that LCE induced late apoptosis of A549 cells. JC-1 assay showed that the mitochondria damaged at the LCE concentration of 0.4 mg/mL. In our preliminary anti-proliferation test of combined LCE and Bi-6727 on A549 cells, we found a dramatically decrease in proliferation after treated with LCE first for 24-h and then Bi-6727 for extra 24-h. This was an important finding regarding synergistic anti-proliferation effect of these drugs, However, the usage, the application sequence of LCE and Bi-6727 on A549 cells and their related mechanisms still need to be evaluated. In summary, the drugs exerted anti-proliferation effect on A549 cells independently. We hopefully combine the usage of these two drugs will bring a different and potential outcome in treating lung cancer.

Keywords: anti-proliferation, A549, Livistona Chinensis fruit extracts, PLK-1 inhibitor

Procedia PDF Downloads 126
917 Practice and Understanding of Fracturing Renovation for Risk Exploration Wells in Xujiahe Formation Tight Sandstone Gas Reservoir

Authors: Fengxia Li, Lufeng Zhang, Haibo Wang

Abstract:

The tight sandstone gas reservoir in the Xujiahe Formation of the Sichuan Basin has huge reserves, but its utilization rate is low. Fracturing and stimulation are indispensable technologies to unlock their potential and achieve commercial exploitation. Slickwater is the most widely used fracturing fluid system in the fracturing and renovation of tight reservoirs. However, its viscosity is low, its sand-carrying performance is poor, and the risk of sand blockage is high. Increasing the sand carrying capacity by increasing the displacement will increase the frictional resistance of the pipe string, affecting the resistance reduction performance. The variable viscosity slickwater can flexibly switch between different viscosities in real-time online, effectively overcoming problems such as sand carrying and resistance reduction. Based on a self-developed indoor loop friction testing system, a visualization device for proppant transport, and a HAAKE MARS III rheometer, a comprehensive evaluation was conducted on the performance of variable viscosity slickwater, including resistance reduction, rheology, and sand carrying. The indoor experimental results show that: 1. by changing the concentration of drag-reducing agents, the viscosity of the slippery water can be changed between 2~30mPa. s; 2. the drag reduction rate of the variable viscosity slickwater is above 80%, and the shear rate will not reduce the drag reduction rate of the liquid; under indoor experimental conditions, 15mPa. s of variable viscosity and slickwater can basically achieve effective carrying and uniform placement of proppant. The layered fracturing effect of the JiangX well in the dense sandstone of the Xujiahe Formation shows that the drag reduction rate of the variable viscosity slickwater is 80.42%, and the daily production of the single layer after fracturing is over 50000 cubic meters. This study provides theoretical support and on-site experience for promoting the application of variable viscosity slickwater in tight sandstone gas reservoirs.

Keywords: slickwater, hydraulic fracturing, dynamic sand laying, drag reduction rate, rheological properties

Procedia PDF Downloads 60
916 Inducing Cryptobiosis State of Tardigrades in Cyanobacteria Synechococcus elongatus for Effective Preservation

Authors: Nilesh Bandekar, Sumita Dasgupta, Luis Alberto Allcahuaman Huaya, Souvik Manna

Abstract:

Cryptobiosis is a dormant state where all measurable metabolic activities are at a halt, allowing an organism to survive in extreme conditions like low temperature (cryobiosis), extreme drought (anhydrobiosis), etc. This phenomenon is observed especially in tardigrades that can retain this state for decades depending on the abiotic environmental conditions. On returning to favorable conditions, tardigrades re-attain a metabolically active state. In this study, cyanobacteria as a model organism are being chosen to induce cryptobiosis for its effective preservation over a long period of time. Preserving cyanobacteria using this strategy will have multiple space applications because of its ability to produce oxygen. In addition, research has shown the survivability of this organism in space for a certain period of time. Few species of cyanobacterial residents of the soil such as Microcoleus, are able to survive in extreme drought as well. This work specifically focuses on Synechococcus elongatus, an endolith cyanobacteria with multiple benefits. It has the capability to produce 25% oxygen in water bodies. It utilizes carbon dioxide to produce oxygen via photosynthesis and also uses carbon dioxide as an energy source to form glucose via the Calvin cycle. There is a fair possibility of initiating cryptobiosis in such an organism by inducing certain proteins extracted from tardigrades such as Heat Shock Proteins (Hsp27 and Hsp30c) and/or hydrophilic Late Embryogenesis Abundant proteins (LEA). Existing methods like cryopreservation are difficult to execute in space keeping in mind their cost and heavy instrumentation. Also, extensive freezing may cause cellular damage. Therefore, cryptobiosis-induced cyanobacteria for its transportation from Earth to Mars as a part of future terraforming missions on Mars will save resources and increase the effectiveness of preservation. Finally, Cyanobacteria species like Synechococcus elongatus can also produce oxygen and glucose on Mars in favorable conditions and holds the key to terraforming Mars.

Keywords: cryptobiosis, cyanobacteria, glucose, mars, Synechococcus elongatus, tardigrades

Procedia PDF Downloads 181
915 Optimizing Foaming Agents by Air Compression to Unload a Liquid Loaded Gas Well

Authors: Mhenga Agneta, Li Zhaomin, Zhang Chao

Abstract:

When velocity is high enough, gas can entrain fluid and carry to the surface, but as time passes by, velocity drops to a critical point where fluids will start to hold up in the tubing and cause liquid loading which prevents gas production and may lead to the death of the well. Foam injection is widely used as one of the methods to unload liquid. Since wells have different characteristics, it is not guaranteed that foam can be applied in all of them and bring successful results. This research presents a technology to optimize the efficiency of foam to unload liquid by air compression. Two methods are used to explain optimization; (i) mathematical formulas are used to solve and explain the myth of how density and critical velocity could be minimized when air is compressed into foaming agents, then the relationship between flow rates and pressure increase which would boost up the bottom hole pressure and increase the velocity to lift liquid to the surface. (ii) Experiments to test foam carryover capacity and stability as a function of time and surfactant concentration whereby three surfactants anionic sodium dodecyl sulfate (SDS), nonionic Triton 100 and cationic hexadecyltrimethylammonium bromide (HDTAB) were probed. The best foaming agents were injected to lift liquid loaded in a created vertical well model of 2.5 cm diameter and 390 cm high steel tubing covered by a transparent glass casing of 5 cm diameter and 450 cm high. The results show that, after injecting foaming agents, liquid unloading was successful by 75%; however, the efficiency of foaming agents to unload liquid increased by 10% with an addition of compressed air at a ratio of 1:1. Measured values and calculated values were compared and brought about ± 3% difference which is a good number. The successful application of the technology indicates that engineers and stakeholders could bring water flooded gas wells back to production with optimized results by firstly paying attention to the type of surfactants (foaming agents) used, concentration of surfactants, flow rates of the injected surfactants then compressing air to the foaming agents at a proper ratio.

Keywords: air compression, foaming agents, gas well, liquid loading

Procedia PDF Downloads 122
914 An East-West Trans-Cultural Study: Zen Enlightenment in Asian and John Cage's Visual Arts

Authors: Yu-Shun Elisa Pong

Abstract:

American composer John Cage (1912-1992) is an influential figure in musical, visual and performing arts after World War II and has also been claimed as a forerunner of the western avant-garde in the artistic field. However, the crucial factors contributed to his highly acclaimed achievements include the Zen enlightenment, which he mainly got from Japanese Zen master D. T. Suzuki (1870-1966). As a kind of reflection and afterthought of the Zen inspiration, John Cage created various forms of arts in which visual arts have recently attracted more and more attention and discussion, especially from the perspectives of Zen. John Cage had started to create visual art works since he was 66 years old and the activity had lasted until his death. The quality and quantity of the works are worthy of in-depth study— the 667 pieces of print, 114 pieces of water color, and about 150 pieces of sketch. Cage’s stylistic changes during the 14 years of creation are quite obvious, and the Zen elements in the later works seem to be omnipresent. Based on comparative artistic study, a historical and conceptual view of Zen art that was formed initially in the traditional Chinese and Japanese visual arts will be discussed. Then, Chinese and Japanese representative Zen works will be mentioned, and the technique aspect, as well as stylistic analysis, will be revealed. Finally, a comprehensive comparison of the original Oriental Zen works with John Cage’s works and focus on the influence, and art transformation will be addressed. The master pieces from Zen tradition by Chinese artists like Liang Kai (d. 1210) and Ma Yuan (1160-1225) from Southern Sung Dynasty, the Japanese artists like Sesshū (1420-1506), Miyamoto Musashi (1584-1645) and some others would be discussed. In the current study, these art works from different periods of historical development in Zen will serve as the basis of analogy, interpretation, and criticism to Cage's visual art works. Through the perspectives of the Zen authenticity from Asia, we see how John Cage appropriated the eastern culture to his innovation, which changed the art world forever. And it is believed that through a transition from inter-, cross-, toward trans-cultural inspiration, John Cage set up a unique pathway of art innovations.

Keywords: John Cage, Chinese Zen art, Japanese Zen art, visual art

Procedia PDF Downloads 505
913 A Study of Secondary Particle Production from Carbon Ion Beam for Radiotherapy

Authors: Shaikah Alsubayae, Gianluigi Casse, Carlos Chavez, Jon Taylor, Alan Taylor, Mohammad Alsulimane

Abstract:

Achieving precise radiotherapy through carbon therapy necessitates the accurate monitoring of radiation dose distribution within the patient's body. This process is pivotal for targeted tumor treatment, minimizing harm to healthy tissues, and enhancing overall treatment effectiveness while reducing the risk of side effects. In our investigation, we adopted a methodological approach to monitor secondary proton doses in carbon therapy using Monte Carlo (MC) simulations. Initially, Geant4 simulations were employed to extract the initial positions of secondary particles generated during interactions between carbon ions and water, including protons, gamma rays, alpha particles, neutrons, and tritons. Subsequently, we explored the relationship between the carbon ion beam and these secondary particles. Interaction vertex imaging (IVI) proves valuable for monitoring dose distribution during carbon therapy, providing information about secondary particle locations and abundances, particularly protons. The IVI method relies on charged particles produced during ion fragmentation to gather range information by reconstructing particle trajectories back to their point of origin, known as the vertex. In the context of carbon ion therapy, our simulation results indicated a strong correlation between some secondary particles and the range of carbon ions. However, challenges arose due to the unique elongated geometry of the target, hindering the straightforward transmission of forward-generated protons. Consequently, the limited protons that did emerge predominantly originated from points close to the target entrance. Fragment (protons) trajectories were approximated as straight lines, and a beam back-projection algorithm, utilizing interaction positions recorded in Si detectors, was developed to reconstruct vertices. The analysis revealed a correlation between the reconstructed and actual positions.

Keywords: radiotherapy, carbon therapy, monitor secondary proton doses, interaction vertex imaging

Procedia PDF Downloads 62