Search results for: teacher learning communities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9914

Search results for: teacher learning communities

914 Oral Fluency: A Case Study of L2 Learners in Canada

Authors: Maaly Jarrah

Abstract:

Oral fluency in the target language is what many second language learners hope to achieve by living abroad. Research in the past has demonstrated the role informal environments play in improving L2 learners' oral fluency. However, living in the target country and being part of its community does not ensure the development of oral fluency skills. L2 learners' desire to communicate and access to speaking opportunities in the host community are key in achieving oral fluency in the target language. This study attempts to identify differences in oral fluency, specifically speech rate, between learners who communicate in the L2 outside the classroom and those who do not. In addition, as the desire to communicate is a crucial factor in developing oral fluency, this study investigates whether or not learners' desire to speak the L2 outside the classroom plays a role in their frequency of L2 use outside the classroom. Finally, given the importance of the availability of speaking opportunities for L2 learners in order to practice their speaking skills, this study reports on the participants' perceptions of the speaking opportunities accessible to them in the target community while probing whether or not their perceptions differed based on their oral fluency level and their desire to communicate. The results suggest that exposure to the target language and daily communication with the native speakers is strongly related to the development of learners' oral fluency. Moreover, the findings suggest that learners' desire to communicate affects their frequency of communication in their L2 outside the classroom. At the same time, all participants, regardless of their oral fluency level and their desire to communicate, asserted that speaking opportunities beyond the classroom are very limited. Finally, the study finds there are marked differences in the perceptions learners have regarding opportunities for learning offered by the same language program. After reporting these results, the study concludes with recommendations for ESL programs that serve international students.

Keywords: ESL programs, L2 Learners, oral fluency, second language

Procedia PDF Downloads 477
913 Lexical-Semantic Processing by Chinese as a Second Language Learners

Authors: Yi-Hsiu Lai

Abstract:

The present study aimed to elucidate the lexical-semantic processing for Chinese as second language (CSL) learners. Twenty L1 speakers of Chinese and twenty CSL learners in Taiwan participated in a picture naming task and a category fluency task. Based on their Chinese proficiency levels, these CSL learners were further divided into two sub-groups: ten CSL learners of elementary Chinese proficiency level and ten CSL learners of intermediate Chinese proficiency level. Instruments for the naming task were sixty black-and-white pictures: thirty-five object pictures and twenty-five action pictures. Object pictures were divided into two categories: living objects and non-living objects. Action pictures were composed of two categories: action verbs and process verbs. As in the naming task, the category fluency task consisted of two semantic categories – objects (i.e., living and non-living objects) and actions (i.e., action and process verbs). Participants were asked to report as many items within a category as possible in one minute. Oral productions were tape-recorded and transcribed for further analysis. Both error types and error frequency were calculated. Statistical analysis was further conducted to examine these error types and frequency made by CSL learners. Additionally, category effects, pictorial effects and L2 proficiency were discussed. Findings in the present study helped characterize the lexical-semantic process of Chinese naming in CSL learners of different Chinese proficiency levels and made contributions to Chinese vocabulary teaching and learning in the future.

Keywords: lexical-semantic processing, Mandarin Chinese, naming, category effects

Procedia PDF Downloads 462
912 Physics-Informed Convolutional Neural Networks for Reservoir Simulation

Authors: Jiangxia Han, Liang Xue, Keda Chen

Abstract:

Despite the significant progress over the last decades in reservoir simulation using numerical discretization, meshing is complex. Moreover, the high degree of freedom of the space-time flow field makes the solution process very time-consuming. Therefore, we present Physics-Informed Convolutional Neural Networks(PICNN) as a hybrid scientific theory and data method for reservoir modeling. Besides labeled data, the model is driven by the scientific theories of the underlying problem, such as governing equations, boundary conditions, and initial conditions. PICNN integrates governing equations and boundary conditions into the network architecture in the form of a customized convolution kernel. The loss function is composed of data matching, initial conditions, and other measurable prior knowledge. By customizing the convolution kernel and minimizing the loss function, the neural network parameters not only fit the data but also honor the governing equation. The PICNN provides a methodology to model and history-match flow and transport problems in porous media. Numerical results demonstrate that the proposed PICNN can provide an accurate physical solution from a limited dataset. We show how this method can be applied in the context of a forward simulation for continuous problems. Furthermore, several complex scenarios are tested, including the existence of data noise, different work schedules, and different good patterns.

Keywords: convolutional neural networks, deep learning, flow and transport in porous media, physics-informed neural networks, reservoir simulation

Procedia PDF Downloads 143
911 Networks in the Tourism Sector in Brazil: Proposal of a Management Model Applied to Tourism Clusters

Authors: Gysele Lima Ricci, Jose Miguel Rodriguez Anton

Abstract:

Companies in the tourism sector need to achieve competitive advantages for their survival in the market. In this way, the models based on association, cooperation, complementarity, distribution, exchange and mutual assistance arise as a possibility of organizational development, taking as reference the concept of networks. Many companies seek to partner in local networks as clusters to act together and associate. The main objective of the present research is to identify the specificities of management and the practices of cooperation in the tourist destination of São Paulo - Brazil, and to propose a new management model with possible cluster of tourism. The empirical analysis was carried out in three phases. As a first phase, a research was made by the companies, associations and tourism organizations existing in São Paulo, analyzing the characteristics of their business. In the second phase, the management specificities and cooperation practice used in the tourist destination. And in the third phase, identifying the possible strengths and weaknesses that potential or potential tourist cluster could have, proposing the development of the management model of the same adapted to the needs of the companies, associations and organizations. As a main result, it has been identified that companies, associations and organizations could be looking for synergies with each other and collaborate through a Hiperred organizational structure, in which they share their knowledge, try to make the most of the collaboration and to benefit from three concepts: flexibility, learning and collaboration. Finally, it is concluded that, the proposed tourism cluster management model is viable for the development of tourism destinations because it makes it possible to strategically address agents which are responsible for public policies, as well as public and private companies and organizations in their strategies competitiveness and cooperation.

Keywords: cluster, management model, networks, tourism sector

Procedia PDF Downloads 284
910 Pivoting to Fortify our Digital Self: Revealing the Need for Personal Cyber Insurance

Authors: Richard McGregor, Carmen Reaiche, Stephen Boyle

Abstract:

Cyber threats are a relatively recent phenomenon and offer cyber insurers a dynamic and intelligent peril. As individuals en mass become increasingly digitally dependent, Personal Cyber Insurance (PCI) offers an attractive option to mitigate cyber risk at a personal level. This abstract proposes a literature review that conceptualises a framework for siting Personal Cyber Insurance (PCI) within the context of cyberspace. The lack of empirical research within this domain demonstrates an immediate need to define the scope of PCI to allow cyber insurers to understand personal cyber risk threats and vectors, customer awareness, capabilities, and their associated needs. Additionally, this will allow cyber insurers to conceptualise appropriate frameworks allowing effective management and distribution of PCI products and services within a landscape often in-congruent with risk attributes commonly associated with traditional personal line insurance products. Cyberspace has provided significant improvement to the quality of social connectivity and productivity during past decades and allowed enormous capability uplift of information sharing and communication between people and communities. Conversely, personal digital dependency furnish ample opportunities for adverse cyber events such as data breaches and cyber-attacksthus introducing a continuous and insidious threat of omnipresent cyber risk–particularly since the advent of the COVID-19 pandemic and wide-spread adoption of ‘work-from-home’ practices. Recognition of escalating inter-dependencies, vulnerabilities and inadequate personal cyber behaviours have prompted efforts by businesses and individuals alike to investigate strategies and tactics to mitigate cyber risk – of which cyber insurance is a viable, cost-effective option. It is argued that, ceteris parabus, the nature of cyberspace intrinsically provides characteristic peculiarities that pose significant and bespoke challenges to cyber insurers, often in-congruent with risk attributes commonly associated with traditional personal line insurance products. These challenges include (inter alia) a paucity of historical claim/loss data for underwriting and pricing purposes, interdependencies of cyber architecture promoting high correlation of cyber risk, difficulties in evaluating cyber risk, intangibility of risk assets (such as data, reputation), lack of standardisation across the industry, high and undetermined tail risks, and moral hazard among others. This study proposes a thematic overview of the literature deemed necessary to conceptualise the challenges to issuing personal cyber coverage. There is an evident absence of empirical research appertaining to PCI and the design of operational business models for this business domain, especially qualitative initiatives that (1) attempt to define the scope of the peril, (2) secure an understanding of the needs of both cyber insurer and customer, and (3) to identify elements pivotal to effective management and profitable distribution of PCI - leading to an argument proposed by the author that postulates that the traditional general insurance customer journey and business model are ill-suited for the lineaments of cyberspace. The findings of the review confirm significant gaps in contemporary research within the domain of personal cyber insurance.

Keywords: cyberspace, personal cyber risk, personal cyber insurance, customer journey, business model

Procedia PDF Downloads 103
909 International Tourists’ Travel Motivation by Push-Pull Factors and Decision Making for Selecting Thailand as Destination Choice

Authors: Siripen Yiamjanya, Kevin Wongleedee

Abstract:

This research paper aims to identify travel motivation by push and pull factors that affected decision making of international tourists in selecting Thailand as their destination choice. A total of 200 international tourists who traveled to Thailand during January and February, 2014 were used as the sample in this study. A questionnaire was employed as a tool in collecting the data, conducted in Bangkok. The list consisted of 30 attributes representing both psychological factors as “push- based factors” and destination factors as “pull-based factors”. Mean and standard deviation were used in order to find the top ten travel motives that were important determinants in the respondents’ decision making process to select Thailand as their destination choice. The finding revealed the top ten travel motivations influencing international tourists to select Thailand as their destination choice included [i] getting experience in foreign land; [ii] Thai food; [iii] learning new culture; [iv] relaxing in foreign land; [v] wanting to learn new things; [vi] being interested in Thai culture, and traditional markets; [vii] escaping from same daily life; [viii] enjoying activities; [ix] adventure; and [x] good weather. Classification of push- based and pull- based motives suggested that getting experience in foreign land was the most important push motive for international tourists to travel, while Thai food portrayed its highest significance as pull motive. Discussion and suggestions were also made for tourism industry of Thailand.

Keywords: decision making, destination choice, international tourist, pull factor, push factor, Thailand, travel motivation

Procedia PDF Downloads 391
908 On the Existence of Homotopic Mapping Between Knowledge Graphs and Graph Embeddings

Authors: Jude K. Safo

Abstract:

Knowledge Graphs KG) and their relation to Graph Embeddings (GE) represent a unique data structure in the landscape of machine learning (relative to image, text and acoustic data). Unlike the latter, GEs are the only data structure sufficient for representing hierarchically dense, semantic information needed for use-cases like supply chain data and protein folding where the search space exceeds the limits traditional search methods (e.g. page-rank, Dijkstra, etc.). While GEs are effective for compressing low rank tensor data, at scale, they begin to introduce a new problem of ’data retreival’ which we observe in Large Language Models. Notable attempts by transE, TransR and other prominent industry standards have shown a peak performance just north of 57% on WN18 and FB15K benchmarks, insufficient practical industry applications. They’re also limited, in scope, to next node/link predictions. Traditional linear methods like Tucker, CP, PARAFAC and CANDECOMP quickly hit memory limits on tensors exceeding 6.4 million nodes. This paper outlines a topological framework for linear mapping between concepts in KG space and GE space that preserve cardinality. Most importantly we introduce a traceable framework for composing dense linguistic strcutures. We demonstrate performance on WN18 benchmark this model hits. This model does not rely on Large Langauge Models (LLM) though the applications are certainy relevant here as well.

Keywords: representation theory, large language models, graph embeddings, applied algebraic topology, applied knot theory, combinatorics

Procedia PDF Downloads 68
907 Low Students' Access to University Education in Nigeria: Causes and Remedy

Authors: Robert Ogbanje Okwori

Abstract:

The paper explained the causes low students’ access to university education in Nigeria and how it can be remedied. It is discovered that low students’ access to university education in Nigeria is evident despite these number of universities in the country. In 2006/2007 academic session, 806,089 sat for Joint Unified Matriculation Board Examination (JAMB) into Nigerian universities and only 123,626 (15.3%) were admitted while 2011/2012 academic session, a total of 1,493,604 candidates sat for Joint Unified Matriculation Board Examination (JAMB) into Nigerian universities and only 65,073 (43.57%) were admitted. This necessitates for the research. Therefore, the study posed the following research questions. What are causes of low students’ access to university education in Nigeria? What are the challenges of students’ access to university education in Nigeria? How can students’ access to university education in Nigeria be improved? Sample survey research design was adopted for the study. A structured questionnaire was used to gather data for the study. Six hundred and eighty (680) respondents which comprised of 100 level university students; JAMB Officers and University administrators (Vice Chancellors, Registrars and Admission Officers) were used for the study. Stratified random sampling was applied for adequate representation of respondents from universities in the six geopolitical zones of Nigeria. Mean was used to answer research questions while Kuder-Richardson formula 20 was used to check the internal consistency of the instrument. The correlation coefficient of the instrument was 0.87. The major findings include the carrying capacity of each university contributes to low students’ access to university education and academic staff were inadequate. From the analysis of the study, it is concluded that the rate of access to university education is low, therefore, every university should establish distance learning programme to reduce university admission crisis. The training infrastructure in the universities should be improved upon by the owners to increase the carrying capacity of each university.

Keywords: access, causes, low, university

Procedia PDF Downloads 468
906 Neuroecological Approach for Anthropological Studies in Archaeology

Authors: Kalangi Rodrigo

Abstract:

The term Neuroecology elucidates the study of customizable variation in cognition and the brain. Subject marked the birth since 1980s, when researches began to apply methods of comparative evolutionary biology to cognitive processes and the underlying neural mechanisms of cognition. In Archaeology and Anthropology, we observe behaviors such as social learning skills, innovative feeding and foraging, tool use and social manipulation to determine the cognitive processes of ancient mankind. Depending on the brainstem size was used as a control variable, and phylogeny was controlled using independent contrasts. Both disciplines need to enriched with comparative literature and neurological experimental, behavioral studies among tribal peoples as well as primate groups which will lead the research to a potential end. Neuroecology examines the relations between ecological selection pressure and mankind or sex differences in cognition and the brain. The goal of neuroecology is to understand how natural law acts on perception and its neural apparatus. Furthermore, neuroecology will eventually lead both principal disciplines to Ethology, where human behaviors and social management studies from a biological perspective. It can be either ethnoarchaeological or prehistoric. Archaeology should adopt general approach of neuroecology, phylogenetic comparative methods can be used in the field, and new findings on the cognitive mechanisms and brain structures involved mating systems, social organization, communication and foraging. The contribution of neuroecology to archaeology and anthropology is the information it provides on the selective pressures that have influenced the evolution of cognition and brain structure of the mankind. It will shed a new light to the path of evolutionary studies including behavioral ecology, primate archaeology and cognitive archaeology.

Keywords: Neuroecology, Archaeology, Brain Evolution, Cognitive Archaeology

Procedia PDF Downloads 120
905 Vehicle Speed Estimation Using Image Processing

Authors: Prodipta Bhowmik, Poulami Saha, Preety Mehra, Yogesh Soni, Triloki Nath Jha

Abstract:

In India, the smart city concept is growing day by day. So, for smart city development, a better traffic management and monitoring system is a very important requirement. Nowadays, road accidents increase due to more vehicles on the road. Reckless driving is mainly responsible for a huge number of accidents. So, an efficient traffic management system is required for all kinds of roads to control the traffic speed. The speed limit varies from road to road basis. Previously, there was a radar system but due to high cost and less precision, the radar system is unable to become favorable in a traffic management system. Traffic management system faces different types of problems every day and it has become a researchable topic on how to solve this problem. This paper proposed a computer vision and machine learning-based automated system for multiple vehicle detection, tracking, and speed estimation of vehicles using image processing. Detection of vehicles and estimating their speed from a real-time video is tough work to do. The objective of this paper is to detect vehicles and estimate their speed as accurately as possible. So for this, a real-time video is first captured, then the frames are extracted from that video, then from that frames, the vehicles are detected, and thereafter, the tracking of vehicles starts, and finally, the speed of the moving vehicles is estimated. The goal of this method is to develop a cost-friendly system that can able to detect multiple types of vehicles at the same time.

Keywords: OpenCV, Haar Cascade classifier, DLIB, YOLOV3, centroid tracker, vehicle detection, vehicle tracking, vehicle speed estimation, computer vision

Procedia PDF Downloads 84
904 Reimagining Landscapes: Psychological Responses and Behavioral Shifts in the Aftermath of the Lytton Creek Fire

Authors: Tugba Altin

Abstract:

In an era where the impacts of climate change resonate more pronouncedly than ever, communities globally grapple with events bearing both tangible and intangible ramifications. Situating this within the evolving landscapes of Psychological and Behavioral Sciences, this research probes the profound psychological and behavioral responses evoked by such events. The Lytton Creek Fire of 2021 epitomizes these challenges. While tangible destruction is immediate and evident, the intangible repercussions—emotional distress, disintegration of cultural landscapes, and disruptions in place attachment (PA)—require meticulous exploration. PA, emblematic of the emotional and cognitive affiliations individuals nurture with their environments, emerges as a cornerstone for comprehending how environmental cataclysms influence cultural identity and bonds to land. This study, harmonizing the core tenets of an interpretive phenomenological approach with a hermeneutic framework, underscores the pivotal nature of this attachment. It delves deep into the realm of individuals' experiences post the Lytton Creek Fire, unraveling the intricate dynamics of PA amidst such calamity. The study's methodology deviates from conventional paradigms. Instead of traditional interview techniques, it employs walking audio sessions and photo elicitation methods, granting participants the agency to immerse, re-experience, and vocalize their sentiments in real-time. Such techniques shed light on spatial narratives post-trauma and capture the otherwise elusive emotional nuances, offering a visually rich representation of place-based experiences. Central to this research is the voice of the affected populace, whose lived experiences and testimonies form the nucleus of the inquiry. As they renegotiate their bonds with transformed environments, their narratives reveal the indispensable role of cultural landscapes in forging place-based identities. Such revelations accentuate the necessity of integrating both tangible and intangible trauma facets into community recovery strategies, ensuring they resonate more profoundly with affected individuals. Bridging the domains of environmental psychology and behavioral sciences, this research accentuates the intertwined nature of tangible restoration with the imperative of emotional and cultural recuperation post-environmental disasters. It advocates for adaptation initiatives that are rooted in the lived realities of the affected, emphasizing a holistic approach that recognizes the profundity of human connections to landscapes. This research advocates the interdisciplinary exchange of ideas and strategies in addressing post-disaster community recovery strategies. It not only enriches the climate change discourse by emphasizing the human facets of disasters but also reiterates the significance of an interdisciplinary approach, encompassing psychological and behavioral nuances, for fostering a comprehensive understanding of climate-induced traumas. Such a perspective is indispensable for shaping more informed, empathetic, and effective adaptation strategies.

Keywords: place attachment, community recovery, disaster response, restorative landscapes, sensory response, visual methodologies

Procedia PDF Downloads 59
903 Evaluation of Ensemble Classifiers for Intrusion Detection

Authors: M. Govindarajan

Abstract:

One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection. 

Keywords: data mining, ensemble, radial basis function, support vector machine, accuracy

Procedia PDF Downloads 248
902 A Study of Challenges Faced and Support Systems Available for Emirati Student Mothers Post-Childbirth

Authors: Martina Dickson, Lilly Tennant

Abstract:

The young Emirati female university students of today are the first generation of women in the UAE for whom higher education as become not only a possibility, but almost an expectation. Young women in the UAE today make up around 77% of students in higher education institutes in the country. However, the societal expectations placed upon these women in terms of early marriage, child-bearing and rearing are similar to those placed upon their mothers and grandmothers in a time where women were not expected to go to university. A large proportion of female university students in the UAE are mothers of young children, or become mothers whilst at the university. This creates a challenging situation for young student mothers, where two weeks’ maternity leave is typical across institutions. The context of this study is in one such institution in the UAE. We have employed a mixed method approach to gathering interview data from twenty mothers, and survey data from over one hundred mothers. The main findings indicate that mothers have strong desires for their institution to support them more, for example by the provision of nursery facilities and resting areas for new mothers, and giving them greater flexibility over course selections and schedules including the provision of online learning. However, the majority felt supported on a personal level by their tutors. The major challenges which they identified in returning to college after only two weeks’ leave included the inevitable health and lack of sleep issues when caring for a newborn, struggling to catch up with missed college work and handling their course load. We also explored the women's’ home support systems which were provided from a variety of extended family, spouses and paid domestic help.

Keywords: student mothers, challenges, supports, United Arab Emirates

Procedia PDF Downloads 219
901 The Implementation of Educational Partnerships for Undergraduate Students at Yogyakarta State University

Authors: Broto Seno

Abstract:

This study aims to describe and examine more in the implementation of educational partnerships for undergraduate students at Yogyakarta State University (YSU), which is more focused on educational partnerships abroad. This study used descriptive qualitative approach. The study subjects consisted of a vice-rector, two staff education partnerships, four vice-dean, nine undergraduate students and three foreign students. Techniques of data collection using interviews and document review. Validity test of the data source using triangulation. Data analysis using flow models Miles and Huberman, namely data reduction, data display, and conclusion. Results of this study showed that the implementation of educational partnerships abroad for undergraduate students at YSU meets six of the nine indicators of the success of strategic partnerships. Six indicators are long-term, strategic, mutual trust, sustainable competitive advantages, mutual benefit for all the partners, and the separate and positive impact. The indicator has not been achieved is cooperative development, successful, and world class / best practice. These results were obtained based on the discussion of the four formulation of the problem, namely: 1) Implementation and development of educational partnerships abroad has been running good enough, but not maximized. 2) Benefits of the implementation of educational partnerships abroad is providing learning experiences for students, institutions of experience in comparison to each faculty, and improving the network of educational partnerships for YSU toward World Class University. 3) The sustainability of educational partnerships abroad is pursuing a strategy of development through improved management of the partnership. 4) Supporting factors of educational partnerships abroad is the support of YSU, YSU’s partner and society. Inhibiting factors of educational partnerships abroad is not running optimally management.

Keywords: partnership, education, YSU, institutions and faculties

Procedia PDF Downloads 333
900 A Pilot Study on Integration of Simulation in the Nursing Educational Program: Hybrid Simulation

Authors: Vesile Unver, Tulay Basak, Hatice Ayhan, Ilknur Cinar, Emine Iyigun, Nuran Tosun

Abstract:

The aim of this study is to analyze the effects of the hybrid simulation. In this simulation, types standardized patients and task trainers are employed simultaneously. For instance, in order to teach the IV activities standardized patients and IV arm models are used. The study was designed as a quasi-experimental research. Before the implementation an ethical permission was taken from the local ethical commission and administrative permission was granted from the nursing school. The universe of the study included second-grade nursing students (n=77). The participants were selected through simple random sample technique and total of 39 nursing students were included. The views of the participants were collected through a feedback form with 12 items. The form was developed by the authors and “Patient intervention self-confidence/competence scale”. Participants reported advantages of the hybrid simulation practice. Such advantages include the following: developing connections between the simulated scenario and real life situations in clinical conditions; recognition of the need for learning more about clinical practice. They all stated that the implementation was very useful for them. They also added three major gains; improvement of critical thinking skills (94.7%) and the skill of making decisions (97.3%); and feeling as if a nurse (92.1%). In regard to the mean scores of the participants in the patient intervention self-confidence/competence scale, it was found that the total mean score for the scale was 75.23±7.76. The findings obtained in the study suggest that the hybrid simulation has positive effects on the integration of theoretical and practical activities before clinical activities for the nursing students.

Keywords: hybrid simulation, clinical practice, nursing education, nursing students

Procedia PDF Downloads 291
899 Real-Time Inventory Management and Operational Efficiency in Manufacturing

Authors: Tom Wanyama

Abstract:

We have developed a weight-based parts inventory monitoring system utilizing the Industrial Internet of Things (IIoT) to enhance operational efficiencies in manufacturing. The system addresses various challenges, including eliminating downtimes caused by stock-outs, preventing human errors in parts delivery and product assembly, and minimizing motion waste by reducing unnecessary worker movements. The system incorporates custom QR codes for simplified inventory tracking and retrieval processes. The generated data serves a dual purpose by enabling real-time optimization of parts flow within manufacturing facilities and facilitating retroactive optimization of stock levels for informed decision-making in inventory management. The pilot implementation at SEPT Learning Factory successfully eradicated data entry errors, optimized parts delivery, and minimized workstation downtimes, resulting in a remarkable increase of over 10% in overall equipment efficiency across all workstations. Leveraging the IIoT features, the system seamlessly integrates information into the process control system, contributing to the enhancement of product quality. This approach underscores the importance of effective tracking of parts inventory in manufacturing to achieve transparency, improved inventory control, and overall profitability. In the broader context, our inventory monitoring system aligns with the evolving focus on optimizing supply chains and maintaining well-managed warehouses to ensure maximum efficiency in the manufacturing industry.

Keywords: industrial Internet of things, industrial systems integration, inventory monitoring, inventory control in manufacturing

Procedia PDF Downloads 33
898 Leadership Development for Nurses as Educators

Authors: Abeer Alhazmi

Abstract:

Introduction: Clinical education is considered a significant part of the learning process for nurses and nursing students. However, recruiting high- caliber individuals to train them to be tomorrow’s educators/teachers has been a recurrent challenge. One of the troubling challenges in this field is the absent of proper training programmes to train educators to be future education professionals and leaders. Aim: To explore the impact of a stage 1 and stage 2 clinical instructor courses on developing leadership skills for nurses as educators.Theoretical Framework: Informed by a symbolic interactionist framework, this research explored the Impact of stage 1 and stage 2 clinical instructor courses on nurses' knowledge, attitudes, and leadership skills. Method: Using Glaserian grounded theory method the data were derived from 3 focus groups and 15 in-depth interviews with nurse educators/clinical instructors and nurses who attended stage 1 and stage 2 clinical instructor courses at King Abdu-Aziz University Hospital (KAUH). Findings: The findings of the research are represented in the core category exploring new identity as educator and its two constituent categories Accepting change, and constructing educator identity. The core and sub- categories were generated through a theoretical exploration of the development of educator’s identity throughout stage 1 and stage 2 clinical instructor courses. Conclusion: The social identity of the nurse educators was developed and changed during and after attending stage 1 and stage 2 clinical instructor courses. In light of an increased understanding of the development process of educators identity and role, the research presents implications and recommendations that may contribute to the development of nursing educators in general and in Saudi Arabia in specific.

Keywords: clinical instructor course, educators, identity work, clinical nursing

Procedia PDF Downloads 415
897 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks

Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin

Abstract:

Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.

Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network

Procedia PDF Downloads 137
896 Intelligent Fault Diagnosis for the Connection Elements of Modular Offshore Platforms

Authors: Jixiang Lei, Alexander Fuchs, Franz Pernkopf, Katrin Ellermann

Abstract:

Within the Space@Sea project, funded by the Horizon 2020 program, an island consisting of multiple platforms was designed. The platforms are connected by ropes and fenders. The connection is critical with respect to the safety of the whole system. Therefore, fault detection systems are investigated, which could detect early warning signs for a possible failure in the connection elements. Previously, a model-based method called Extended Kalman Filter was developed to detect the reduction of rope stiffness. This method detected several types of faults reliably, but some types of faults were much more difficult to detect. Furthermore, the model-based method is sensitive to environmental noise. When the wave height is low, a long time is needed to detect a fault and the accuracy is not always satisfactory. In this sense, it is necessary to develop a more accurate and robust technique that can detect all rope faults under a wide range of operational conditions. Inspired by this work on the Space at Sea design, we introduce a fault diagnosis method based on deep neural networks. Our method cannot only detect rope degradation by using the acceleration data from each platform but also estimate the contributions of the specific acceleration sensors using methods from explainable AI. In order to adapt to different operational conditions, the domain adaptation technique DANN is applied. The proposed model can accurately estimate rope degradation under a wide range of environmental conditions and help users understand the relationship between the output and the contributions of each acceleration sensor.

Keywords: fault diagnosis, deep learning, domain adaptation, explainable AI

Procedia PDF Downloads 180
895 Learners’ Violent Behaviour and Drug Abuse as Major Causes of Tobephobia in Schools

Authors: Prakash Singh

Abstract:

Many schools throughout the world are facing constant pressure to cope with the violence and drug abuse of learners who show little or no respect for acceptable and desirable social norms. These delinquent learners tend to harbour feelings of being beyond reproach because they strongly believe that it is well within their rights to engage in violent and destructive behaviour. Knives, guns, and other weapons appear to be more readily used by them on the school premises than before. It is known that learners smoke, drink alcohol, and use drugs during school hours, hence, their ability to concentrate, work, and learn, is affected. They become violent and display disruptive behaviour in their classrooms as well as on the school premises, and this atrocious behaviour makes it possible for drug dealers and gangsters to gain access onto the school premises. The primary purpose of this exploratory quantitative study was therefore to establish how tobephobia (TBP), caused by school violence and drug abuse, affects teaching and learning in schools. The findings of this study affirmed that poor discipline resulted in producing poor quality education. Most of the teachers in this study agreed that educating learners who consumed alcohol and other drugs on the school premises resulted in them suffering from TBP. These learners are frequently abusive and disrespectful, and resort to violence to seek attention. As a result, teachers feel extremely demotivated and suffer from high levels of anxiety and stress. The word TBP will surely be regarded as a blessing by many teachers throughout the world because finally, there is a word that will make people sit up and listen to their problems that cause real fear and anxiety in schools.

Keywords: aims and objectives of quality education, debilitating effects of tobephobia, fear of failure associated with education, learners' violent behaviour and drug abuse

Procedia PDF Downloads 278
894 Sustainable Energy Supply through the Microgrid Concept: A Case Study of University of Nigeria, Nsukka

Authors: Christian Ndubisi Madu, Benjamin C. Ozumba, Ifeanyi E. Madu, Valentine E. Nnadi, Ikenna C. Ezeasor

Abstract:

The ability to generate power and achieve energy security is one of the driving forces behind the emerging ‘microgrid’ concept. Traditional power supply often operates with centralized infrastructure for generating, transmitting and distributing electricity. The inefficiency and the incessant power outages associated with the centralized power supply system in Nigeria has alienated many users who frequently turn to electric power generator sets to power their homes and offices. Such acts are unsustainable and lead to increase in the use of fossil fuels, generation of carbon dioxide emissions and other gases, and noise pollution. They also pose significant risks as they entail random purchases and storage of gasolines which are fire hazards. It is therefore important that organizations rethink their relationships to centralized power suppliers in other to improve energy accessibility and security. This study explores the energy planning processes and learning taking place at the University of Nigeria Enugu Campus as the school lead microgrid feasibility studies in its community. There is need to develop community partners to deal with the issue of energy efficiency and also to create a strategic alliance to confront political, regulatory and economic barriers to locally-based energy planning. Community-based microgrid can help to reduce the cost of adoption and diversify risks. This study offers insights into the ways in which microgrids can further democratize energy planning, procurement, and access, while simultaneously promoting efficiency and sustainability.

Keywords: microgrid, energy efficiency, sustainability, energy security

Procedia PDF Downloads 374
893 Exploring Data Stewardship in Fog Networking Using Blockchain Algorithm

Authors: Ruvaitha Banu, Amaladhithyan Krishnamoorthy

Abstract:

IoT networks today solve various consumer problems, from home automation systems to aiding in driving autonomous vehicles with the exploration of multiple devices. For example, in an autonomous vehicle environment, multiple sensors are available on roads to monitor weather and road conditions and interact with each other to aid the vehicle in reaching its destination safely and timely. IoT systems are predominantly dependent on the cloud environment for data storage, and computing needs that result in latency problems. With the advent of Fog networks, some of this storage and computing is pushed to the edge/fog nodes, saving the network bandwidth and reducing the latency proportionally. Managing the data stored in these fog nodes becomes crucial as it might also store sensitive information required for a certain application. Data management in fog nodes is strenuous because Fog networks are dynamic in terms of their availability and hardware capability. It becomes more challenging when the nodes in the network also live a short span, detaching and joining frequently. When an end-user or Fog Node wants to access, read, or write data stored in another Fog Node, then a new protocol becomes necessary to access/manage the data stored in the fog devices as a conventional static way of managing the data doesn’t work in Fog Networks. The proposed solution discusses a protocol that acts by defining sensitivity levels for the data being written and read. Additionally, a distinct data distribution and replication model among the Fog nodes is established to decentralize the access mechanism. In this paper, the proposed model implements stewardship towards the data stored in the Fog node using the application of Reinforcement Learning so that access to the data is determined dynamically based on the requests.

Keywords: IoT, fog networks, data stewardship, dynamic access policy

Procedia PDF Downloads 59
892 National Core Indicators - Aging and Disabilities: A Person-Centered Approach to Understanding Quality of Long-Term Services and Supports

Authors: Stephanie Giordano, Rosa Plasencia

Abstract:

In the USA, in 2013, public service systems such as Medicaid, aging, and disability systems undertook an effort to measure the quality of service delivery by examining the experiences and outcomes of those receiving public services. The goal of this effort was to develop a survey to measure the experiences and outcomes of those receiving public services, with the goal of measuring system performance for quality improvement. The performance indicators were developed through with input from directors of state aging and disability service systems, along with experts and stakeholders in the field across the United States. This effort, National Core Indicators –Aging and Disabilities (NCI-AD), grew out of National Core Indicators –Intellectual and Developmental Disabilities, an effort to measure developmental disability (DD) systems across the States. The survey tool and administration protocol underwent multiple rounds of testing and revision between 2013 and 2015. The measures in the final tool – called the Adult Consumer Survey (ACS) – emphasize not just important indicators of healthcare access and personal safety but also includes indicators of system quality based on person-centered outcomes. These measures indicate whether service systems support older adults and people with disabilities to live where they want, maintain relationships and engage in their communities and have choice and control in their everyday lives. Launched in 2015, the NCI-AD Adult Consumer Survey is now used in 23 states in the US. Surveys are conducted by NCI-AD trained surveyors via direct conversation with a person receiving public long-term services and supports (LTSS). Until 2020, surveys were only conducted in person. However, after a pilot to test the reliability of videoconference and telephone survey modes, these modes were adopted as an acceptable practice. The nature of the survey is that of a “guided conversation” survey administration allows for surveyor to use wording and terminology that is best understand by the person surveyed. The survey includes a subset of questions that may be answered by a proxy respondent who knows the person well if the person is receiving services in unable to provide valid responses on their own. Surveyors undergo a standardized training on survey administration to ensure the fidelity of survey administration. In addition to the main survey section, a Background Information section collects data on personal and service-related characteristics of the person receiving services; these data are typically collected through state administrative record. This information is helps provide greater context around the characteristics of people receiving services. It has also been used in conjunction with outcomes measures to look at disparity (including by race and ethnicity, gender, disability, and living arrangements). These measures of quality are critical for public service delivery systems to understand the unique needs of the population of older adults and improving the lives of older adults as well as people with disabilities. Participating states may use these data to identify areas for quality improvement within their service delivery systems, to advocate for specific policy change, and to better understand the experiences of specific populations of people served.

Keywords: quality of life, long term services and supports, person-centered practices, aging and disability research, survey methodology

Procedia PDF Downloads 120
891 A Review of Research on Pre-training Technology for Natural Language Processing

Authors: Moquan Gong

Abstract:

In recent years, with the rapid development of deep learning, pre-training technology for natural language processing has made great progress. The early field of natural language processing has long used word vector methods such as Word2Vec to encode text. These word vector methods can also be regarded as static pre-training techniques. However, this context-free text representation brings very limited improvement to subsequent natural language processing tasks and cannot solve the problem of word polysemy. ELMo proposes a context-sensitive text representation method that can effectively handle polysemy problems. Since then, pre-training language models such as GPT and BERT have been proposed one after another. Among them, the BERT model has significantly improved its performance on many typical downstream tasks, greatly promoting the technological development in the field of natural language processing, and has since entered the field of natural language processing. The era of dynamic pre-training technology. Since then, a large number of pre-trained language models based on BERT and XLNet have continued to emerge, and pre-training technology has become an indispensable mainstream technology in the field of natural language processing. This article first gives an overview of pre-training technology and its development history, and introduces in detail the classic pre-training technology in the field of natural language processing, including early static pre-training technology and classic dynamic pre-training technology; and then briefly sorts out a series of enlightening technologies. Pre-training technology, including improved models based on BERT and XLNet; on this basis, analyze the problems faced by current pre-training technology research; finally, look forward to the future development trend of pre-training technology.

Keywords: natural language processing, pre-training, language model, word vectors

Procedia PDF Downloads 57
890 Entrepreneurship Education as an Enhancement of Skills for Graduate Employability: The Case of the University of Buea

Authors: Akumeyam Elvis Akum, Njanjo Thecla Anyongo Mukete, Fonkeng George Epah

Abstract:

Globally, the goal of higher education is to enhance graduate employability skills. Paradoxically, Cameroon’s graduate employability rate is far below the graduation rate. This worrisome situation caused the researcher to hypothesize that the teaching and learning experiences account for this increasing disparity. The study sought to investigate the effect on graduate employability of the teaching of organizational, problem-solving, innovation, and risk management skills on graduate employability. The study adopted a descriptive survey design with a quantitative approach. Data was collected by quantitative techniques from a random sample of 385 graduates using closed-ended structured questionnaire. Generally, findings revealed that entrepreneurship education does not sufficiently enhance graduate employability in the University of Buea. Specifically, the teaching of organizational skills does not significantly enhance their employability, as an average of 55% of graduates indicated that the course did not sufficiently help them develop skills for planning, management of limited resources, collaboration, and the setting of priorities. Also, 60% of the respondents indicated that the teaching of problem-solving skills does not significantly enhance graduate employability at the University of Buea. Contrarily, 57% of the respondents agreed that through their experiences in entrepreneurship education, their innovation skills were improved. The study recommended that a practical approach to teaching should be adopted, with attention to societal needs. A framework to ensure the teaching of entrepreneurship to students at the undergraduate level is recommended, such that those who do not continue with university studies after their Bachelor’s degree would have acquired the needed skills for employability.

Keywords: employability, entrepreneurship education, graduate, innovative skills, organizational skills, problem-solving skills, risk management skills

Procedia PDF Downloads 80
889 Clustering for Detection of the Population at Risk of Anticholinergic Medication

Authors: A. Shirazibeheshti, T. Radwan, A. Ettefaghian, G. Wilson, C. Luca, Farbod Khanizadeh

Abstract:

Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature, which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on over 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. To further evaluate the performance of the model, any association between the average risk score within each group and other factors such as socioeconomic status (i.e., Index of Multiple Deprivation) and an index of health and disability were investigated. The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings also show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, indicating that females are more at risk from this kind of multiple medications. The risk may be monitored and controlled in well artificial intelligence-equipped healthcare management systems.

Keywords: anticholinergic medicines, clustering, deprivation, socioeconomic status

Procedia PDF Downloads 211
888 The Impact of the Macro-Level: Organizational Communication in Undergraduate Medical Education

Authors: Julie M. Novak, Simone K. Brennan, Lacey Brim

Abstract:

Undergraduate medical education (UME) curriculum notably addresses micro-level communications (e.g., patient-provider, intercultural, inter-professional), yet frequently under-examines the role and impact of organizational communication, a more macro-level. Organizational communication, however, functions as foundation and through systemic structures of an organization and thereby serves as hidden curriculum and influences learning experiences and outcomes. Yet, little available research exists fully examining how students experience organizational communication while in medical school. Extant literature and best practices provide insufficient guidance for UME programs, in particular. The purpose of this study was to map and examine current organizational communication systems and processes in a UME program. Employing a phenomenology-grounded and participatory approach, this study sought to understand the organizational communication system from medical students' perspective. The research team consisted of a core team and 13 medical student co-investigators. This research employed multiple methods, including focus groups, individual interviews, and two surveys (one reflective of focus group questions, the other requesting students to submit ‘examples’ of communications). To provide context for student responses, nonstudent participants (faculty, administrators, and staff) were sampled, as they too express concerns about communication. Over 400 students across all cohorts and 17 nonstudents participated. Data were iteratively analyzed and checked for triangulation. Findings reveal the complex nature of organizational communication and student-oriented communications. They reveal program-impactful strengths, weaknesses, gaps, and tensions and speak to the role of organizational communication practices influencing both climate and culture. With regard to communications, students receive multiple, simultaneous communications from multiple sources/channels, both formal (e.g., official email) and informal (e.g., social media). Students identified organizational strengths including the desire to improve student voice, and message frequency. They also identified weaknesses related to over-reliance on emails, numerous platforms with inconsistent utilization, incorrect information, insufficient transparency, assessment/input fatigue, tacit expectations, scheduling/deadlines, responsiveness, and mental health confidentiality concerns. Moreover, they noted gaps related to lack of coordination/organization, ambiguous point-persons, student ‘voice-only’, open communication loops, lack of core centralization and consistency, and mental health bridges. Findings also revealed organizational identity and cultural characteristics as impactful on the medical school experience. Cultural characteristics included program size, diversity, urban setting, student organizations, community-engagement, crisis framing, learning for exams, inefficient bureaucracy, and professionalism. Moreover, they identified system structures that do not always leverage cultural strengths or reduce cultural problematics. Based on the results, opportunities for productive change are identified. These include leadership visibly supporting and enacting overall organizational narratives, making greater efforts in consistently ‘closing the loop’, regularly sharing how student input effects change, employing strategies of crisis communication more often, strengthening communication infrastructure, ensuring structures facilitate effective operations and change efforts, and highlighting change efforts in informational communication. Organizational communication and communications are not soft-skills, or of secondary concern within organizations, rather they are foundational in nature and serve to educate/inform all stakeholders. As primary stakeholders, students and their success directly affect the accomplishment of organizational goals. This study demonstrates how inquiries about how students navigate their educational experience extends research-based knowledge and provides actionable knowledge for the improvement of organizational operations in UME.

Keywords: medical education programs, organizational communication, participatory research, qualitative mixed methods

Procedia PDF Downloads 115
887 Human-Carnivore Interaction: Patterns, Causes and Perceptions of Local Herders of Hoper Valley in Central Karakoram National Park, Pakistan

Authors: Saeed Abbas, Rahilla Tabassum, Haider Abbas, Babar Khan, Shahid Hussain, Muhammad Zafar Khan, Fazal Karim, Yawar Abbas, Rizwan Karim

Abstract:

Human–carnivore conflict is considered to be a major conservation and rural livelihood concern because many carnivore species have been heavily victimized due to elevated conflict levels with communities. Like other snow leopard range countries, this situation prevails in Pakistan, where WWF is currently working under Asia High Mountain Project (AHMP) in Gilgit-Baltistan of Pakistan. To mitigate such conflicts requires a firm understanding of grazing and predation pattern including human-carnivore interaction. For this purpose we conducted a survey in Hoper valley (one of the AHMP project sites in Pakistan), during August, 2013 through a questionnaire based survey and unstructured interviews covering 647 households, permanently residing in the project area out of the total 900 households. The valley, spread over 409 km2 between 36°7'46" N and 74°49'2"E, at 2900m asl in Karakoram ranges is considered to be one of an important habitat of snow leopard and associated prey species such as Himalayan ibex. The valley is home of 8100 Brusho people (ancient tribe of Northern Pakistan) dependent on agro-pastoral livelihoods including farming and livestock rearing. The total number of livestock reported were (N=15,481) out of which 8346 (53.91%) were sheep, 3546 (22.91%) goats, 2193 (14.16%) cows, 903 (5.83%) yaks, 508 (3.28%) bulls, 28 (0.18%) donkeys, 27 (0.17%) zo/zomo (cross breed of yak and cow), and 4 (0.03%) horses. 83 percent respondent (n=542 households) confirmed loss of their livestock during the last one year July, 2012 to June, 2013 which account for 2246 (14.51%) animals. The major reason of livestock loss include predation by large carnivores such as snow leopards and wolf (1710, 76.14%) followed by diseases (536, 23.86%). Of the total predation cases snow leopard is suspected to kill 1478 animals (86.43%). Among livestock sheep were found to be the major prey of snow leopard (810, 55%) followed by goats (484, 32.7%) cows (151, 10.21%), yaks (15, 1.015%), zo/zomo (7, 0.5%) and donkey (1, 0.07%). The reason for the mass depredation of sheep and goats is that they tend to browse on twigs of bushes and graze on soft grass near cliffs. They are also considered to be very active as compared to other species in moving quickly and covering more grazing area. This makes them more vulnerable to snow leopard attack. The majority (1283, 75%) of livestock killed by predators occurred during the warm season (May-September) in alpine and sub-alpine pastures and remaining (427, 25%) occurred in the winter season near settlements in valley. It was evident from the recent study that Snow leopard kills outside the pen were (1351, 79.76%) as compared to inside pen (359, 20.24%). Assessing the economic loss of livestock predation we found that the total loss of livestock predation in the study area is equal to PKR 11,230,000 (USD 105,797), which is about PRK 17, 357 (USD 163.51) per household per year. Economic loss incurred by the locals due to predation is quite significant where the average cash income per household per year is PKR 85,000 (USD 800.75).

Keywords: carnivores, conflict, predation, livelihood, conservation, rural, snow leopard, livestock

Procedia PDF Downloads 347
886 Automated Fact-Checking by Incorporating Contextual Knowledge and Multi-Faceted Search

Authors: Wenbo Wang, Yi-Fang Brook Wu

Abstract:

The spread of misinformation and disinformation has become a major concern, particularly with the rise of social media as a primary source of information for many people. As a means to address this phenomenon, automated fact-checking has emerged as a safeguard against the spread of misinformation and disinformation. Existing fact-checking approaches aim to determine whether a news claim is true or false, and they have achieved decent veracity prediction accuracy. However, the state-of-the-art methods rely on manually verified external information to assist the checking model in making judgments, which requires significant human resources. This study introduces a framework, SAC, which focuses on 1) augmenting the representation of a claim by incorporating additional context using general-purpose, comprehensive, and authoritative data; 2) developing a search function to automatically select relevant, new, and credible references; 3) focusing on the important parts of the representations of a claim and its reference that are most relevant to the fact-checking task. The experimental results demonstrate that 1) Augmenting the representations of claims and references through the use of a knowledge base, combined with the multi-head attention technique, contributes to improved performance of fact-checking. 2) SAC with auto-selected references outperforms existing fact-checking approaches with manual selected references. Future directions of this study include I) exploring knowledge graphs in Wikidata to dynamically augment the representations of claims and references without introducing too much noise, II) exploring semantic relations in claims and references to further enhance fact-checking.

Keywords: fact checking, claim verification, deep learning, natural language processing

Procedia PDF Downloads 62
885 Effects of Major and Minor Modes to Emotional Perceptions of 'Happy' and 'Sad' in Piano Music among Students Aged 9-17

Authors: Nurezlin Mohd Azib, Pan Kok Chang

Abstract:

This quantitative study investigates the effects of major and minor modes, and contributing musical parameter of tempo, to the emotional perceptions of ‘happy’ and ‘sad’ in piano music among subjects aged 9-17 years old. The study was conducted in two phases; survey-questionnaire, and listening activity. Subjects (N=31) were sampled from piano music students’ population in Bangi, Selangor. In the survey-questionnaire, subjects answered 20 questions on demographic characteristics, music listening and preference, and understanding of emotional perception in music. In the listening activity, subjects listened to 20 untitled piano music excerpts and rated the emotion perceived for each excerpt, whether ‘happy’ or ‘sad’. Results from survey-questionnaire show that most percentage of subjects are 11 years old, in Grade 1, of 3 years of learning piano, prefer classical music, always listen to music, prefer both major and minor modes’ music, and find it easy to understand emotion in music, as well as major and minor modes. Results from listening activity show that 60 % of major mode music are perceived as ‘major-happy’, while 60 % too, of minor mode music are perceived as ‘minor-sad’. However, Chi-square test of independence statistical analysis indicates that there are no association and significant relationship between modes (major and minor) and ‘happy’, as well as ‘sad’ perceptions (x2 (1, N = 20) = 0.80, p = 0.371), at the significance level of p ≤ 0.05. Contrastingly, there are association and significant relationship between tempo (fast and slow), and ‘happy’, as well as ‘sad’ perceptions (x2 (1, N = 20) = 9.899, p = 0.005). Therefore, it is concluded that tempo plays an important role in effects of major and minor mode to ‘happy’ and ‘sad’ emotional perceptions in piano music among subjects aged 9 to 17 in this study.

Keywords: effects, emotional perceptions, major and minor modes, piano music

Procedia PDF Downloads 216