Search results for: wavelet domain
1107 An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models
Authors: C. F. Kumru, C. Kocatepe, O. Arikan
Abstract:
In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained.Keywords: electric field, energy transmission line, finite element method, pylon
Procedia PDF Downloads 7281106 Chi Square Confirmation of Autonomic Functions Percentile Norms of Indian Sportspersons Withdrawn from Competitive Games and Sports
Authors: Pawan Kumar, Dhananjoy Shaw, Manoj Kumar Rathi
Abstract:
Purpose of the study were to compare between (a) frequencies among the four quartiles of percentile norms of autonomic variables from power events and (b) frequencies among the four quartiles percentile norms of autonomic variables from aerobic events of Indian sportspersons withdrawn from competitive games and sports in regard to number of samples falling in each quartile. The study was conducted on 430 males of 30 to 35 years of age. Based on the nature of game/sports the retired sportspersons were classified into power events (throwers, judo players, wrestlers, short distance swimmers, cricket fast bowlers and power lifters) and aerobic events (long distance runners, long distance swimmers, water polo players). Date was collected using ECG polygraphs. Data were processed and extracted using frequency domain analysis and time domain analysis. Collected data were computed with frequency, percentage of each quartile and finally the frequencies were compared with the chi square analysis. The finding pertaining to norm reference comparison of frequencies among the four quartiles of Indian sportspersons withdrawn from competitive games and sports from (a) power events suggests that frequency distribution in four quartile namely Q1, Q2, Q3, and Q4 are significantly different at .05 level in regard to variables namely, SDNN, Total Power (Absolute Power), HF (Absolute Power), LF (Normalized Power), HF (Normalized Power), LF/HF ratio, deep breathing test, expiratory respiratory ratio, valsalva manoeuvre, hand grip test, cold pressor test and lying to standing test, whereas, insignificantly different at .05 level in regard to variables namely, SDSD, RMSSD, SDANN, NN50 Count, pNN50 Count, LF (Absolute Power) and 30: 15 Ratio (b) aerobic events suggests that frequency distribution in four quartile are significantly different at .05 level in regard to variables namely, SDNN, LF (Normalized Power), HF (Normalized Power), LF/HF ratio, deep breathing test, expiratory respiratory ratio, hand grip test, cold pressor test, lying to standing test and 30: 15 ratio, whereas, insignificantly different at .05 level in regard to variables namely, SDSD, RMSSD. SDANN, NN50 count, pNN50 count, Total Power (Absolute Power), LF(Absolute Power) HF(Absolute Power), and valsalva manoeuvre. The study concluded that comparison of frequencies among the four quartiles of Indian retired sportspersons from power events and aerobic events are different in four quartiles in regard to selected autonomic functions, hence the developed percentile norms are not homogenously distributed across the percentile scale; hence strengthen the percentage distribution towards normal distribution.Keywords: power, aerobic, absolute power, normalized power
Procedia PDF Downloads 3531105 Prevention of Road Accidents by Computerized Drowsiness Detection System
Authors: Ujjal Chattaraj, P. C. Dasbebartta, S. Bhuyan
Abstract:
This paper aims to propose a method to detect the action of the driver’s eyes, using the concept of face detection. There are three major key contributing methods which can rapidly process the framework of the facial image and hence produce results which further can program the reactions of the vehicles as pre-programmed for the traffic safety. This paper compares and analyses the methods on the basis of their reaction time and their ability to deal with fluctuating images of the driver. The program used in this study is simple and efficient, built using the AdaBoost learning algorithm. Through this program, the system would be able to discard background regions and focus on the face-like regions. The results are analyzed on a common computer which makes it feasible for the end users. The application domain of this experiment is quite wide, such as detection of drowsiness or influence of alcohols in drivers or detection for the case of identification.Keywords: AdaBoost learning algorithm, face detection, framework, traffic safety
Procedia PDF Downloads 1571104 YBa2Cu3O7-d Nanoparticles Doped by Ferromagnetic Nanoparticles of Y3Fe5O12
Authors: Samir Khene
Abstract:
Present and future industrial uses of high critical temperature superconductors require high critical temperatures TC and strong current densities JC. These two aims constitute the two motivations of the scientific research in this domain. The most significant feature of any superconductor, from the viewpoint of uses, is the maximum electrical transport current density that this superconductor is capable of withstanding without loss of energy. In this work, vortices pinning in conventional and high-TC superconductors will be studied. Our experiments on vortices pinning in single crystals and nanoparticles of YBa2Cu3O7- and La1.85 Sr0.15CuO will be presented. It will be given special attention to the study of the YBa2Cu3O7- nanoparticles doped by ferromagnetic nanoparticles of Y3Fe5O12. The ferromagnetism and superconductivity coexistence in this compound will be demonstrated, and the influence of these ferromagnetic nanoparticles on the variations of the critical current density JC in YBa2Cu3O7- nanoparticles as a function of applied field H and temperature T will be studied.Keywords: ferromagnetism, superconductivity, coexistence, magnetic material
Procedia PDF Downloads 771103 Modal FDTD Method for Wave Propagation Modeling Customized for Parallel Computing
Authors: H. Samadiyeh, R. Khajavi
Abstract:
A new FD-based procedure, modal finite difference method (MFDM), is proposed for seismic wave propagation modeling, in which simulation is dealt with in the modal space. The method employs eigenvalues of a characteristic matrix formed by appropriate time-space FD stencils. Since MFD runs for different modes are totally independent of each other, MFDM can easily be parallelized while considerable simplicity in parallel-algorithm is also achieved. There is no requirement to any domain-decomposition procedure and inter-core data exchange. More important is the possibility to skip processing of less-significant modes, which enables one to adjust the procedure up to the level of accuracy needed. Thus, in addition to considerable ease of parallel programming, computation and storage costs are significantly reduced. The method is qualified for its efficiency by some numerical examples.Keywords: Finite Difference Method, Graphics Processing Unit (GPU), Message Passing Interface (MPI), Modal, Wave propagation
Procedia PDF Downloads 2961102 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification
Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran
Abstract:
The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM
Procedia PDF Downloads 2491101 Analysis of Exponential Nonuniform Transmission Line Parameters
Authors: Mounir Belattar
Abstract:
In this paper the Analysis of voltage waves that propagate along a lossless exponential nonuniform line is presented. For this analysis the parameters of this line are assumed to be varying function of the distance x along the line from the source end. The approach is based on the tow-port networks cascading presentation to derive the ABDC parameters of transmission using Picard-Carson Method which is a powerful method in getting a power series solution for distributed network because it is easy to calculate poles and zeros and solves differential equations such as telegrapher equations by an iterative sequence. So the impedance, admittance voltage and current along the line are expanded as a Taylor series in x/l where l is the total length of the line to obtain at the end, the main transmission line parameters such as voltage response and transmission and reflexion coefficients represented by scattering parameters in frequency domain.Keywords: ABCD parameters, characteristic impedance exponential nonuniform transmission line, Picard-Carson's method, S parameters, Taylor's series
Procedia PDF Downloads 4431100 Electronic-Word of Mouth(e-WoM): Preliminary Study of Malaysian Undergrad Students Smartphone Online Review
Authors: Norshakirah Ab.Aziz, Nurul Atiqah Jamaluddin
Abstract:
Consequently, electronic word-of-mouth (e-WoM) becomes one of the resources in the decision making process and considered a valuable marketing channel for consumers and organizations. Admittedly, there is increasing concern on the accuracy and genuine of e-WoM content because consumers prefer to look out product or service information available online. Thus, the focus of this study is to propose a model and guidelines how to select trusted online review content according to domain chosen –undergrad students smartphone online review. Undeniable, mobile devices like smartphone has now become a necessity in today are daily life to complete our daily chores. The model and guideline focused on product competency review and the message integrity. In other words, this study aims to enable consumers to identify trusted online review content, which helps them in buying decisions.Keywords: electronic word of mouth, e-WoM, WoM, online review
Procedia PDF Downloads 3281099 A Framework for Review Spam Detection Research
Authors: Mohammadali Tavakoli, Atefeh Heydari, Zuriati Ismail, Naomie Salim
Abstract:
With the increasing number of people reviewing products online in recent years, opinion sharing websites has become the most important source of customers’ opinions. Unfortunately, spammers generate and post fake reviews in order to promote or demote brands and mislead potential customers. These are notably destructive not only for potential customers but also for business holders and manufacturers. However, research in this area is not adequate, and many critical problems related to spam detection have not been solved to date. To provide green researchers in the domain with a great aid, in this paper, we have attempted to create a high-quality framework to make a clear vision on review spam-detection methods. In addition, this report contains a comprehensive collection of detection metrics used in proposed spam-detection approaches. These metrics are extremely applicable for developing novel detection methods.Keywords: fake reviews, feature collection, opinion spam, spam detection
Procedia PDF Downloads 4131098 Branding Destination for Major Event: A Case Study of Liverpool as the 2008 European Capital of Culture
Authors: Yi-De Liu
Abstract:
Destination branding is a popular practice adopted by many cities in the context of intensified tourism competition. However, branding for major event is a relatively new domain in the studies of destination marketing. Based on a case study of Liverpool as the 2008 European Capital of Culture, the aim of this paper is to explore the effectiveness of the key branding campaign - the ‘Look of the City’ programme. This study looks at quantitative data collected from on-street face-to-face survey. 611 questionnaires were distributed to and collected from local residents, visitors from the immediate hinterland, domestic tourists and overseas visitors. The analysis is done, first by investigating respondents’ impression on the Liverpool 08 brand and the branding campaign, and then by exploring the effects of campaign. The positioning of Liverpool compared with other similar cities is addressed in the end. The final section extracts lessons from this empirical investigation.Keywords: destination branding, major event, European capital of culture, Liverpool
Procedia PDF Downloads 3201097 Unsupervised Sentiment Analysis for Indonesian Political Message on Twitter
Authors: Omar Abdillah, Mirna Adriani
Abstract:
In this work, we perform new approach for analyzing public sentiment towards the presidential candidate in the 2014 Indonesian election that expressed in Twitter. In this study we propose such procedure for analyzing sentiment over Indonesian political message by understanding the behavior of Indonesian society in sending message on Twitter. We took different approach from previous works by utilizing punctuation mark and Indonesian sentiment lexicon that completed with the new procedure in determining sentiment towards the candidates. Our experiment shows the performance that yields up to 83.31% of average precision. In brief, this work makes two contributions: first, this work is the preliminary study of sentiment analysis in the domain of political message that has not been addressed yet before. Second, we propose such method to conduct sentiment analysis by creating decision making procedure in which it is in line with the characteristic of Indonesian message on Twitter.Keywords: unsupervised sentiment analysis, political message, lexicon based, user behavior understanding
Procedia PDF Downloads 4801096 An Ontology for Investment in Chinese Steel Company
Authors: Liming Chen, Baoxin Xu, Zhaoyun Ding, Bin Liu, Xianqiang Zhu
Abstract:
In the era of big data, public investors are faced with more complicated information related to investment decisions than ever before. To survive in the fierce competition, it has become increasingly urgent for investors to combine multi-source knowledge and evaluate the companies’ true value efficiently. For this, a rule-based ontology reasoning method is proposed to support steel companies’ value assessment. Considering the delay in financial disclosure and based on cost-benefit analysis, this paper introduces the supply chain enterprises financial analysis and constructs the ontology model used to value the value of steel company. In addition, domain knowledge is formally expressed with the help of Web Ontology Language (OWL) language and SWRL (Semantic Web Rule Language) rules. Finally, a case study on a steel company in China proved the effectiveness of the method we proposed.Keywords: financial ontology, steel company, supply chain, ontology reasoning
Procedia PDF Downloads 1341095 Acoustic Radiation from an Infinite Cylindrical Shell with Periodic Lengthwise Ribs
Authors: Yunzhe Tong, Jun Fan, Bin Wang
Abstract:
The vibroacoustic behavior of an immersed infinite cylindrical shell with periodic lengthwise ribs has been studied in this paper. The motions of the shell are described by the Donnell equations. Each lengthwise rib is modeled as an elastic beam. The motions of the bulkheads are decomposed into the longitudinal motions and flexural motions. The analytical expressions of the shell motions can be obtained through circumferential mode expansion, Fourier Transform and periodic boundary condition in the circumferential direction. Furthermore, the far-field radiated pressure has been obtained using the stationary phase. The analysis of wavenumber domain shows that periodic lengthwise stiffeners in the circumferential direction can produce flexural Bloch waves. The dominant feature in far-field pressure amplitude is the resonance of the supersonic components of the flexural Bloch waves in the circumferential direction.Keywords: flexural Bloch wave, stiffened shell, vibroacoustics, wavenumber analysis
Procedia PDF Downloads 2091094 Impact of Brand Image, Brand Personality and Brand Love on Word of Mouth: Pakistani Fashion Brands
Authors: Amna Asif, Rabia Naseem
Abstract:
In the domain of consumer-brand relationship, love for a fashion brand is a dominant idea. Brand executives incline to build more endearing brands, for example, Levi’s “Quality never goes out of style”. Though, the significance of this notion is not often debated in the literature of marketing. Moreover, the effect of brand image and personality on brand love has not been examined in any quantitative study in Pakistan. The current research aims to fill this study gap by evolving a causal framework integrating word-of-mouth, brand love, image, and personality to examine the relationships among them. Data was gathered through questionnaires survey, and it was filled by 409 university students. AMOS 20 was used to draw a path analysis and test the hypotheses. Results discovered that brand personality and brand image leads to brand love that ultimately impacts word-of-mouth. Results give thorough suggestions on which future research can be constructed.Keywords: brand love, brand personality, brand image, fashion brands, word-of-mouth
Procedia PDF Downloads 3121093 Specialized Translation Teaching Strategies: A Corpus-Based Approach
Authors: Yingying Ding
Abstract:
This study presents a methodology of specialized translation with the objective of helping teachers to improve the strategies in teaching translation. In order to allow students to acquire skills to translate specialized texts, they need to become familiar with the semantic and syntactic features of source texts and target texts. The aim of our study is to use a corpus-based approach in the teaching of specialized translation between Chinese and Italian. This study proposes to construct a specialized Chinese - Italian comparable corpus that consists of 50 economic contracts from the domain of food. With the help of AntConc, we propose to compile a comparable corpus in for translation teaching purposes. This paper attempts to provide insight into how teachers could benefit from comparable corpus in the teaching of specialized translation from Italian into Chinese and through some examples of passive sentences how students could learn to apply different strategies for translating appropriately the voice.Keywords: contrastive studies, specialised translation, corpus-based approach, teaching
Procedia PDF Downloads 3711092 A Project-Orientated Training Concept to Prepare Students for Systems Engineering Activities
Authors: Elke Mackensen
Abstract:
Systems Engineering plays a key role during industrial product development of complex technical systems. The need for systems engineers in industry is growing. However, there is a gap between the industrial need and the academic education. Normally the academic education is focused on the domain specific design, implementation and testing of technical systems. Necessary systems engineering expertise like knowledge about requirements analysis, product cost estimation, management or social skills are poorly taught. Thus, there is the need of new academic concepts for teaching systems engineering skills. This paper presents a project-orientated training concept to prepare students from different technical degree programs for systems engineering activities. The training concept has been initially implemented and applied in the industrial engineering master program of the University of Applied Sciences Offenburg.Keywords: educational systems engineering training, requirements analysis, system modelling, SysML
Procedia PDF Downloads 3461091 Studies on Influence of Rub on Vibration Signature of Rotating Machines
Authors: K. N. Umesh, K. S. Srinivasan
Abstract:
The influence of rotor rub was studied with respect to light rub and heavy rub conditions. The investigations were carried out for both below and above critical speeds. The time domain waveform has revealed truncation of the waveform during rubbing conditions. The quantum of rubbing has been indicated by the quantum of truncation. The orbits for light rub have indicated a single loop whereas for heavy rub multi looped orbits have been observed. In the heavy rub condition above critical speed both sub harmonics and super harmonics are exhibited. The orbit precess in a direction opposite to the direction of the rotation of the rotor. When the rubbing was created above the critical speed the orbit shape was of '8' shape indicating the rotor instability. Super-harmonics and sub-harmonics of vibration signals have been observed for light rub and heavy rub conditions and for speeds above critical.Keywords: rotor rub, orbital analysis, frequency analysis, vibration signatures
Procedia PDF Downloads 3131090 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 421089 Acausal and Causal Model Construction with FEM Approach Using Modelica
Authors: Oke Oktavianty, Tadayuki Kyoutani, Shigeyuki Haruyama, Junji Kaneko, Ken Kaminishi
Abstract:
Modelica has many advantages and it is very useful in modeling and simulation especially for the multi-domain with a complex technical system. However, the big obstacle for a beginner is to understand the basic concept and to build a new system model for a real system. In order to understand how to solve the simple circuit model by hand translation and to get a better understanding of how modelica works, we provide a detailed explanation about solver ordering system in horizontal and vertical sorting and make some proposals for improvement. In this study, some difficulties in using modelica software with the original concept and the comparison with Finite Element Method (FEM) approach is discussed. We also present our textual modeling approach using FEM concept for acausal and causal model construction. Furthermore, simulation results are provided that demonstrate the comparison between using textual modeling with original coding in modelica and FEM concept.Keywords: FEM, a causal model, modelica, horizontal and vertical sorting
Procedia PDF Downloads 3081088 A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal
Authors: Ti-An Tsai, Chun-Chih Wang, Hung-Wen Wang, I-Ling Chang, Lien-Wen Chen
Abstract:
In this study, we demonstrate a high-resolution refractive index sensor based on a magnetic photonic crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution.Keywords: magnetic photonic crystal, refractive index sensor, sensitivity, high-resolution
Procedia PDF Downloads 5911087 A Landscape of Research Data Repositories in Re3data.org Registry: A Case Study of Indian Repositories
Authors: Prashant Shrivastava
Abstract:
The purpose of this study is to explore re3dat.org registry to identify research data repositories registration workflow process. Further objective is to depict a graph for present development of research data repositories in India. Preliminarily with an approach to understand re3data.org registry framework and schema design then further proceed to explore the status of research data repositories of India in re3data.org registry. Research data repositories are getting wider relevance due to e-research concepts. Now available registry re3data.org is a good tool for users and researchers to identify appropriate research data repositories as per their research requirements. In Indian environment, a compatible National Research Data Policy is the need of the time to boost the management of research data. Registry for Research Data Repositories is a crucial tool to discover specific information in specific domain. Also, Research Data Repositories in India have not been studied. Re3data.org registry and status of Indian research data repositories both discussed in this study.Keywords: research data, research data repositories, research data registry, re3data.org
Procedia PDF Downloads 3241086 Energy Recovery from Swell with a Height Inferior to 1.5 m
Authors: A. Errasti, F. Doffagne, O. Foucrier, S. Kao, A. Meigne, H. Pellae, T. Rouland
Abstract:
Renewable energy recovery is an important domain of research in past few years in view of protection of our ecosystem. Several industrial companies are setting up widespread recovery systems to exploit wave energy. Most of them have a large size, are implanted near the shores and exploit current flows. However, as oceans represent 70% of Earth surface, a huge space is still unexploited to produce energy. Present analysis focuses on surface small scale wave energy recovery. The principle is exactly the opposite of wheel damper for a car on a road. Instead of maintaining the car body as non-oscillatory as possible by adapted control, a system is designed so that its oscillation amplitude under wave action will be maximized with respect to a boat carrying it in view of differential potential energy recuperation. From parametric analysis of system equations, interesting domains have been selected and expected energy output has been evaluated.Keywords: small scale wave, potential energy, optimized energy recovery, auto-adaptive system
Procedia PDF Downloads 2591085 Flap Structure Geometry in Breakthrough Structure: A Case Study from the Southern Tunisian Atlas Example, Orbata Anticline
Authors: Soulef Amamria, Mohamed Sadok Bensalem, Mohamed Ghanmi
Abstract:
The structural and sedimentological study of fault-related- folds in the Southern Tunisian Atlas is distinguished by a special geometry of the gravitational structures. This distinct geometry is observable in the example of a flap structure in Jebel Ben Zannouch with the formation of a stuck syncline. This geometry can be explained by the mechanism of major thrusting in Orbata anticline in the occidental extremity of Gafsa chains, with asymmetrical flank dips and hinge migration kinematics. These kinematics was originally controlled by the Breakthrough structure; the study of this special geometry of gravity flap structure depends on the sedimentation domain, shortening ratios, and erosion speed. This study constitutes one of the complete examples of kinematic model validation on a field scale.Keywords: fault-related-folds, southern Tunisian Atlas, flap structure, breakthrough
Procedia PDF Downloads 1011084 Nonparametric Quantile Regression for Multivariate Spatial Data
Authors: S. H. Arnaud Kanga, O. Hili, S. Dabo-Niang
Abstract:
Spatial prediction is an issue appealing and attracting several fields such as agriculture, environmental sciences, ecology, econometrics, and many others. Although multiple non-parametric prediction methods exist for spatial data, those are based on the conditional expectation. This paper took a different approach by examining a non-parametric spatial predictor of the conditional quantile. The study especially observes the stationary multidimensional spatial process over a rectangular domain. Indeed, the proposed quantile is obtained by inverting the conditional distribution function. Furthermore, the proposed estimator of the conditional distribution function depends on three kernels, where one of them controls the distance between spatial locations, while the other two control the distance between observations. In addition, the almost complete convergence and the convergence in mean order q of the kernel predictor are obtained when the sample considered is alpha-mixing. Such approach of the prediction method gives the advantage of accuracy as it overcomes sensitivity to extreme and outliers values.Keywords: conditional quantile, kernel, nonparametric, stationary
Procedia PDF Downloads 1541083 Assessment of Heavy Metals Contamination Levels in Groundwater: A Case Study of the Bafia Agricultural Area, Centre Region Cameroon
Authors: Carine Enow-Ayor Tarkang, Victorine Neh Akenji, Dmitri Rouwet, Jodephine Njdma, Andrew Ako Ako, Franco Tassi, Jules Remy Ngoupayou Ndam
Abstract:
Groundwater is the major water resource in the whole of Bafia used for drinking, domestic, poultry and agricultural purposes, and being an area of intense agriculture, there is a great necessity to do a quality assessment. Bafia is one of the main food suppliers in the Centre region of Cameroon, and so to meet their demands, the farmers make use of fertilizers and other agrochemicals to increase their yield. Less than 20% of the population in Bafia has access to piped-borne water due to the national shortage, according to the authors best knowledge very limited studies have been carried out in the area to increase awareness of the groundwater resources. The aim of this study was to assess heavy metal contamination levels in ground and surface waters and to evaluate the effects of agricultural inputs on water quality in the Bafia area. 57 water samples (including 31 wells, 20 boreholes, 4 rivers and 2 springs) were analyzed for their physicochemical parameters, while collected samples were filtered, acidified with HNO3 and analyzed by ICP-MS for their heavy metal content (Fe, Ti, Sr, Al, Mn). Results showed that most of the water samples are acidic to slightly neutral and moderately mineralized. Ti concentration was significantly high in the area (mean value 130µg/L), suggesting another Ti source besides the natural input from Titanium oxides. The high amounts of Mn and Al in some cases also pointed to additional input, probably from fertilizers that are used in the farmlands. Most of the water samples were found to be significantly contaminated with heavy metals exceeding the WHO allowable limits (Ti-94.7%, Al-19.3%, Mn-14%, Fe-5.2% and Sr-3.5% above limits), especially around farmlands and topographic low areas. The heavy metal concentration was evaluated using the heavy metal pollution index (HPI), heavy metal evaluation index (HEI) and degree of contamination (Cd), while the Ficklin diagram was used for the water based on changes in metal content and pH. The high mean values of HPI and Cd (741 and 5, respectively), which exceeded the critical limit, indicate that the water samples are highly contaminated, with intense pollution from Ti, Al and Mn. Based on the HPI and Cd, 93% and 35% of the samples, respectively, are unacceptable for drinking purposes. The lowest HPI value point also had the lowest EC (50 µS/cm), indicating lower mineralization and less anthropogenic influence. According to the Ficklin diagram, 89% of the samples fell within the near-neutral low-metal domain, while 9% fell in the near-neutral extreme-metal domain. Two significant factors were extracted from the PCA, explaining 70.6% of the total variance. The first factor revealed intense anthropogenic activity (especially from fertilizers), while the second factor revealed water-rock interactions. Agricultural activities thus have an impact on the heavy metal content of groundwater in the area; hence, much attention should be given to the affected areas in order to protect human health/life and thus sustainably manage this precious resource.Keywords: Bafia, contamination, degree of contamination, groundwater, heavy metal pollution index
Procedia PDF Downloads 871082 Predicting Shot Making in Basketball Learnt Fromadversarial Multiagent Trajectories
Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan
Abstract:
In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain-specific knowledge. Although intuitive, recent work in deep learning has shown, this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories, we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.Keywords: basketball, computer vision, image processing, convolutional neural network
Procedia PDF Downloads 1531081 Objects Tracking in Catadioptric Images Using Spherical Snake
Authors: Khald Anisse, Amina Radgui, Mohammed Rziza
Abstract:
Tracking objects on video sequences is a very challenging task in many works in computer vision applications. However, there is no article that treats this topic in catadioptric vision. This paper is an attempt that tries to describe a new approach of omnidirectional images processing based on inverse stereographic projection in the half-sphere. We used the spherical model proposed by Gayer and al. For object tracking, our work is based on snake method, with optimization using the Greedy algorithm, by adapting its different operators. The algorithm will respect the deformed geometries of omnidirectional images such as spherical neighborhood, spherical gradient and reformulation of optimization algorithm on the spherical domain. This tracking method that we call "spherical snake" permitted to know the change of the shape and the size of object in different replacements in the spherical image.Keywords: computer vision, spherical snake, omnidirectional image, object tracking, inverse stereographic projection
Procedia PDF Downloads 4021080 New Requirements of the Fifth Dimension of War: Planning of Cyber Operation Capabilities
Authors: Mehmet Kargaci
Abstract:
Transformation of technology and strategy has been the main factor for the evolution of war. In addition to land, maritime, air and space domains, cyberspace has become the fifth domain with emerge of internet. The current security environment has become more complex and uncertain than ever before. Moreover, warfare has evaluated from conventional to irregular, asymmetric and hybrid war. Weak actors such as terrorist organizations and non-state actors has increasingly conducted cyber-attacks against strong adversaries. Besides, states has developed cyber capabilities in order to defense critical infrastructure regarding the cyber threats. Cyber warfare will be key in future security environment. Although what to do has been placed in operational plans, how to do has lacked and ignored as to cyber defense and attack. The purpose of the article is to put forward a model for how to conduct cyber capabilities in a conventional war. First, cyber operations capabilities will be discussed. Second put forward the necessities of cyberspace environment and develop a model for how to plan an operation using cyber operation capabilities, finally the assessment of the applicability of cyber operation capabilities and offers will be presented.Keywords: cyber war, cyber threats, cyber operation capabilities, operation planning
Procedia PDF Downloads 3351079 Identification of Soft Faults in Branched Wire Networks by Distributed Reflectometry and Multi-Objective Genetic Algorithm
Authors: Soumaya Sallem, Marc Olivas
Abstract:
This contribution presents a method for detecting, locating, and characterizing soft faults in a complex wired network. The proposed method is based on multi-carrier reflectometry MCTDR (Multi-Carrier Time Domain Reflectometry) combined with a multi-objective genetic algorithm. In order to ensure complete network coverage and eliminate diagnosis ambiguities, the MCTDR test signal is injected at several points on the network, and the data is merged between different reflectometers (sensors) distributed on the network. An adapted multi-objective genetic algorithm is used to merge data in order to obtain more accurate faults location and characterization. The proposed method performances are evaluated from numerical and experimental results.Keywords: wired network, reflectometry, network distributed diagnosis, multi-objective genetic algorithm
Procedia PDF Downloads 1941078 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model
Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis
Abstract:
Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry
Procedia PDF Downloads 225