Search results for: virtual and constructive models
7162 Investigating the performance of machine learning models on PM2.5 forecasts: A case study in the city of Thessaloniki
Authors: Alexandros Pournaras, Anastasia Papadopoulou, Serafim Kontos, Anastasios Karakostas
Abstract:
The air quality of modern cities is an important concern, as poor air quality contributes to human health and environmental issues. Reliable air quality forecasting has, thus, gained scientific and governmental attention as an essential tool that enables authorities to take proactive measures for public safety. In this study, the potential of Machine Learning (ML) models to forecast PM2.5 at local scale is investigated in the city of Thessaloniki, the second largest city in Greece, which has been struggling with the persistent issue of air pollution. ML models, with proven ability to address timeseries forecasting, are employed to predict the PM2.5 concentrations and the respective Air Quality Index 5-days ahead by learning from daily historical air quality and meteorological data from 2014 to 2016 and gathered from two stations with different land use characteristics in the urban fabric of Thessaloniki. The performance of the ML models on PM2.5 concentrations is evaluated with common statistical methods, such as R squared (r²) and Root Mean Squared Error (RMSE), utilizing a portion of the stations’ measurements as test set. A multi-categorical evaluation is utilized for the assessment of their performance on respective AQIs. Several conclusions were made from the experiments conducted. Experimenting on MLs’ configuration revealed a moderate effect of various parameters and training schemas on the model’s predictions. Their performance of all these models were found to produce satisfactory results on PM2.5 concentrations. In addition, their application on untrained stations showed that these models can perform well, indicating a generalized behavior. Moreover, their performance on AQI was even better, showing that the MLs can be used as predictors for AQI, which is the direct information provided to the general public.Keywords: Air Quality, AQ Forecasting, AQI, Machine Learning, PM2.5
Procedia PDF Downloads 777161 Quantitative Structure-Activity Relationship Study of Some Quinoline Derivatives as Antimalarial Agents
Authors: M. Ouassaf, S. Belaid
Abstract:
A series of quinoline derivatives with antimalarial activity were subjected to two-dimensional quantitative structure-activity relationship (2D-QSAR) studies. Three models were implemented using multiple regression linear MLR, a regression partial least squares (PLS), nonlinear regression (MNLR), to see which descriptors are closely related to the activity biologic. We relied on a principal component analysis (PCA). Based on our results, a comparison of the quality of, MLR, PLS, and MNLR models shows that the MNLR (R = 0.914 and R² = 0.835, RCV= 0.853) models have substantially better predictive capability because the MNLR approach gives better results than MLR (R = 0.835 and R² = 0,752, RCV=0.601)), PLS (R = 0.742 and R² = 0.552, RCV=0.550) The model of MNLR gave statistically significant results and showed good stability to data variation in leave-one-out cross-validation. The obtained results suggested that our proposed model MNLR may be useful to predict the biological activity of derivatives of quinoline.Keywords: antimalarial, quinoline, QSAR, PCA, MLR , MNLR, MLR
Procedia PDF Downloads 1567160 Scope of Virtualization
Authors: Pavneet Kaur, Palak Sharma
Abstract:
Virtualization is a term that basically describe creation of virtual version of something like operating system, network, etc. Virtualization is a technology which is in use from 1970, but with new developments and inventions, it is now useful in education, software development etc. This paper will describe basic introduction of virtualization, along with its various categories. It will also describe use of virtualization in software engineering, its various benefits and shortcomings.Keywords: virtualization, hardware, software, os
Procedia PDF Downloads 3697159 Difficulties for Implementation of Telenursing: An Experience Report
Authors: Jacqueline A. G. Sachett, Cláudia S. Nogueira, Diana C. P. Lima, Jessica T. S. Oliveira, Guilherme K. M. Salazar, Lílian K. Aguiar
Abstract:
The Polo Amazon Telehealth offers several tools for professionals working in Primary Health Care as a second formative opinion, teleconsulting and training between the different areas, whether medicine, dentistry, nursing, physiotherapy, among others. These activities have a monthly schedule of free access to the municipalities of Amazonas registered. With this premise, and in partnership with the University of the State of Amazonas (UEA), is promoting the practice of the triad; teaching-research-extension in order to collaborate with the enrichment and acquisition of knowledge through educational practices carried out through teleconferences. Therefore, nursing is to join efforts and inserts as a collaborator of this project running, contributing to the education and training of these professionals who are part of the health system in full Amazon. The aim of this study is to report the experience of academic of Amazonas State University nursing course, about the experience in the extension project underway in Polo Telemedicine Amazon. This was a descriptive study, the experience report type, about the experience of nursing academic UEA, by extension 'Telenursing: teleconsulting and second formative opinion for FHS professionals in the state of Amazonas' project, held in Polo Telemedicine Amazon, through an agreement with the UEA and funded by the Foundation of Amazonas Research from July / 2012 to July / 2016. Initially developed active search of members of the Family Health Strategy professionals, in order to provide training and training teams to use the virtual clinic, as well as the virtual environment is the focus of this tool design. The election period was an aggravating factor for the implementation of teleconsulting proposal, due to change of managers in each municipality, requiring the stoppage until they assume their positions. From this definition, we established the need for new training. The first video conference took place on 03.14.2013 for learning and training in the use of Virtual Learning Environment and Virtual Clinic, with the participation of municipalities of Novo Aripuanã, São Paulo de Olivença and Manacapuru. During the whole project was carried out literature about what is being done and produced at the national level about the subject. By the time the telenursing project has received twenty-five (25) consultancy requests. The consultants sent by nursing professionals, all have been answered to date. Faced with the lived experience, particularly in video conferencing, face to cause difficulties issues, such as the fluctuation in the number of participants in activities, difficulty of participants to reconcile the opening hours of the units with the schedule of video conferencing, transmission difficulties and changes schedule. It was concluded that the establishment of connection between the Telehealth points is one of the main factors for the implementation of Telenursing and that this feature is still new for nursing. However, effective training and updating, may provide to these professional category subsidies to quality health care in the Amazon.Keywords: Amazon, teleconsulting, telehealth, telenursing
Procedia PDF Downloads 3107158 An Adaptive Hybrid Surrogate-Assisted Particle Swarm Optimization Algorithm for Expensive Structural Optimization
Authors: Xiongxiong You, Zhanwen Niu
Abstract:
Choosing an appropriate surrogate model plays an important role in surrogates-assisted evolutionary algorithms (SAEAs) since there are many types and different kernel functions in the surrogate model. In this paper, an adaptive selection of the best suitable surrogate model method is proposed to solve different kinds of expensive optimization problems. Firstly, according to the prediction residual error sum of square (PRESS) and different model selection strategies, the excellent individual surrogate models are integrated into multiple ensemble models in each generation. Then, based on the minimum root of mean square error (RMSE), the best suitable surrogate model is selected dynamically. Secondly, two methods with dynamic number of models and selection strategies are designed, which are used to show the influence of the number of individual models and selection strategy. Finally, some compared studies are made to deal with several commonly used benchmark problems, as well as a rotor system optimization problem. The results demonstrate the accuracy and robustness of the proposed method.Keywords: adaptive selection, expensive optimization, rotor system, surrogates assisted evolutionary algorithms
Procedia PDF Downloads 1417157 Importance of Solubility and Bubble Pressure Models to Predict Pressure of Nitrified Oil Based Drilling Fluid in Dual Gradient Drilling
Authors: Sajjad Negahban, Ruihe Wang, Baojiang Sun
Abstract:
Gas-lift dual gradient drilling is a solution for deepwater drilling challenges. As well, Continuous development of drilling technology leads to increase employment of mineral oil based drilling fluids and synthetic-based drilling fluids, which have adequate characteristics such as: high rate of penetration, lubricity, shale inhibition and low toxicity. The paper discusses utilization of nitrified mineral oil base drilling for deepwater drilling and for more accurate prediction of pressure in DGD at marine riser, solubility and bubble pressure were considered in steady state hydraulic model. The Standing bubble pressure and solubility correlations, and two models which were acquired from experimental determination were applied in hydraulic model. The effect of the black oil correlations, and new solubility and bubble pressure models was evaluated on the PVT parameters such as oil formation volume factor, density, viscosity, volumetric flow rate. Eventually, the consequent simulated pressure profile due to these models was presented.Keywords: solubility, bubble pressure, gas-lift dual gradient drilling, steady state hydraulic model
Procedia PDF Downloads 2757156 Impact of Primary Care Telemedicine Consultations On Health Care Resource Utilisation: A Systematic Review
Authors: Anastasia Constantinou, Stephen Morris
Abstract:
Background: The adoption of synchronous and asynchronous telemedicine modalities for primary care consultations has exponentially increased since the COVID-19 pandemic. However, there is limited understanding of how virtual consultations influence healthcare resource utilization and other quality measures including safety, timeliness, efficiency, patient and provider satisfaction, cost-effectiveness and environmental impact. Aim: Quantify the rate of follow-up visits, emergency department visits, hospitalizations, request for investigations and prescriptions and comment on the effect on different quality measures associated with different telemedicine modalities used for primary care services and primary care referrals to secondary care Design and setting: Systematic review in primary care Methods: A systematic search was carried out across three databases (Medline, PubMed and Scopus) between August and November 2023, using terms related to telemedicine, general practice, electronic referrals, follow-up, use and efficiency and supported by citation searching. This was followed by screening according to pre-defined criteria, data extraction and critical appraisal. Narrative synthesis and metanalysis of quantitative data was used to summarize findings. Results: The search identified 2230 studies; 50 studies are included in this review. There was a prevalence of asynchronous modalities in both primary care services (68%) and referrals from primary care to secondary care (83%), and most of the study participants were females (63.3%), with mean age of 48.2. The average follow-up for virtual consultations in primary care was 28.4% (eVisits: 36.8%, secure messages 18.7%, videoconference 23.5%) with no significant difference between them or F2F consultations. There was an average annual reduction of primary care visits by 0.09/patient, an increase in telephone visits by 0.20/patient, an increase in ED encounters by 0.011/patient, an increase in hospitalizations by 0.02/patient and an increase in out of hours visits by 0.019/patient. Laboratory testing was requested on average for 10.9% of telemedicine patients, imaging or procedures for 5.6% and prescriptions for 58.7% of patients. When looking at referrals to secondary care, on average 36.7% of virtual referrals required follow-up visit, with the average rate of follow-up for electronic referrals being higher than for videoconferencing (39.2% vs 23%, p=0.167). Technical failures were reported on average for 1.4% of virtual consultations to primary care. When using carbon footprint estimates, we calculate that the use of telemedicine in primary care services can potentially provide a net decrease in carbon footprint by 0.592kgCO2/patient/year. When follow-up rates are taken into account, we estimate that virtual consultations reduce carbon footprint for primary care services by 2.3 times, and for secondary care referrals by 2.2 times. No major concerns regarding quality of care, or patient satisfaction were identified. 5/7 studies that addressed cost-effectiveness, reported increased savings. Conclusions: Telemedicine provides quality, cost-effective, and environmentally sustainable care for patients in primary care with inconclusive evidence regarding the rates of subsequent healthcare utilization. The evidence is limited by heterogeneous, small-scale studies and lack of prospective comparative studies. Further research to identify the most appropriate telemedicine modality for different patient populations, clinical presentations, service provision (e.g. used to follow-up patients instead of initial diagnosis) as well as further education for patients and providers alike on how to make best use of this service is expected to improve outcomes and influence practice.Keywords: telemedicine, healthcare utilisation, digital interventions, environmental impact, sustainable healthcare
Procedia PDF Downloads 577155 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: artificial intelligence and office, NLP, deep learning, text classification
Procedia PDF Downloads 2007154 Effects of Virtual Reality Treadmill Training on Gait and Balance Performance of Patients with Stroke: Review
Authors: Hanan Algarni
Abstract:
Background: Impairment of walking and balance skills has negative impact on functional independence and community participation after stroke. Gait recovery is considered a primary goal in rehabilitation by both patients and physiotherapists. Treadmill training coupled with virtual reality technology is a new emerging approach that offers patients with feedback, open and random skills practice while walking and interacting with virtual environmental scenes. Objectives: To synthesize the evidence around the effects of the VR treadmill training on gait speed and balance primarily, functional independence and community participation secondarily in stroke patients. Methods: Systematic review was conducted; search strategy included electronic data bases: MEDLINE, AMED, Cochrane, CINAHL, EMBASE, PEDro, Web of Science, and unpublished literature. Inclusion criteria: Participant: adult >18 years, stroke, ambulatory, without severe visual or cognitive impartments. Intervention: VR treadmill training alone or with physiotherapy. Comparator: any other interventions. Outcomes: gait speed, balance, function, community participation. Characteristics of included studies were extracted for analysis. Risk of bias assessment was performed using Cochrane's ROB tool. Narrative synthesis of findings was undertaken and summary of findings in each outcome was reported using GRADEpro. Results: Four studies were included involving 84 stroke participants with chronic hemiparesis. Interventions intensity ranged (6-12 sessions, 20 minutes-1 hour/session). Three studies investigated the effects on gait speed and balance. 2 studies investigated functional outcomes and one study assessed community participation. ROB assessment showed 50% unclear risk of selection bias and 25% of unclear risk of detection bias across the studies. Heterogeneity was identified in the intervention effects at post training and follow up. Outcome measures, training intensity and durations also varied across the studies, grade of evidence was low for balance, moderate for speed and function outcomes, and high for community participation. However, it is important to note that grading was done on few numbers of studies in each outcome. Conclusions: The summary of findings suggests positive and statistically significant effects (p<0.05) of VR treadmill training compared to other interventions on gait speed, dynamic balance skills, function and participation directly after training. However, the effects were not sustained at follow up in two studies (2 weeks-1 month) and other studies did not perform follow up measurements. More RCTs with larger sample sizes and higher methodological quality are required to examine the long term effects of VR treadmill effects on function independence and community participation after stroke, in order to draw conclusions and produce stronger robust evidence.Keywords: virtual reality, treadmill, stroke, gait rehabilitation
Procedia PDF Downloads 2747153 Validation and Projections for Solar Radiation up to 2100: HadGEM2-AO Global Circulation Model
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini
Abstract:
The objective of this work is to evaluate the results of solar radiation projections between 2006 and 2013 for the state of Rio Grande do Sul, Brazil. The projections are provided by the General Circulation Models (MCGs) belonging to the Coupled Model Intercomparison Phase 5 (CMIP5). In all, the results of the simulation of six models are evaluated, compared to monthly data, measured by a network of thirteen meteorological stations of the National Meteorological Institute (INMET). The performance of the models is evaluated by the Nash coefficient and the Bias. The results are presented in the form of tables, graphs and spatialization maps. The ACCESS1-0 RCP 4.5 model presented the best results for the solar radiation simulations, for the most optimistic scenario, in much of the state. The efficiency coefficients (CEF) were between 0.95 and 0.98. In the most pessimistic scenario, HADGen2-AO RCP 8.5 had the best accuracy among the analyzed models, presenting coefficients of efficiency between 0.94 and 0.98. From this validation, solar radiation projection maps were elaborated, indicating a seasonal increase of this climatic variable in some regions of the Brazilian territory, mainly in the spring.Keywords: climate change, projections, solar radiation, validation
Procedia PDF Downloads 2057152 Stock Price Prediction Using Time Series Algorithms
Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava
Abstract:
This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series
Procedia PDF Downloads 1417151 Bioclimatic Devices in the Historical Rural Building: A Carried out Analysis on Some Rural Architectures in Puglia
Authors: Valentina Adduci
Abstract:
The developing research aims to define in general the criteria of environmental sustainability of rural buildings in Puglia and particularly in the manor farm. The main part of the study analyzes the relationship / dependence between the rural building and the landscape which, after many stratifications, results clearly identified and sometimes also characterized in a positive way. The location of the manor farm, in fact, is often conditioned by the infrastructural network and by the structure of the agricultural landscape. The manor farm, without the constraints due to the urban pattern’s density, was developed in accordance with a logical settlement that gives priority to the environmental aspects. These vernacular architectures are the most valuable example of how our ancestors have planned their dwellings according to nature. The 237 farms, analysis’ object, have been reported in cartography through the GIS system; a symbol has been assigned to each of them to identify the architectural typology and a different color for the historical period of construction. A datasheet template has been drawn up, and it has made possible a deeper understanding of each manor farm. This method provides a faster comparison of the most recurring characters in all the considered buildings, except for those farms which benefited from special geographical conditions, such as proximity to the road network or waterways. Below there are some of the most frequently constants derived from the statistical study of the examined buildings: southeast orientation of the main facade; placement of the sheep pen on the ground tilted and exposed to the south side; larger windowed surface on the south elevation; smaller windowed surface on the north elevation; presence of shielding vegetation near the more exposed elevations to the solar radiation; food storage’s rooms located on the ground floor or in the basement; animal shelter located in north side of the farm; presence of tanks and wells, sometimes combined with a very accurate channeling storm water system; thick layers of masonry walls, inside of which were often obtained hollow spaces to house stairwells or depots for the food storage; exclusive use of local building materials. The research aims to trace the ancient use of bioclimatic constructive techniques in the Apulian rural architecture and to define those that derive from an empirical knowledge and those that respond to an already encoded design. These constructive expedients are especially useful to obtain an effective passive cooling, to promote the natural ventilation and to built ingenious systems for the recovery and the preservation of rainwater and are still found in some of the manor farms analyzed, most of them are, today, in a serious state of neglect.Keywords: bioclimatic devices, farmstead, rural landscape, sustainability
Procedia PDF Downloads 3837150 In-Context Meta Learning for Automatic Designing Pretext Tasks for Self-Supervised Image Analysis
Authors: Toktam Khatibi
Abstract:
Self-supervised learning (SSL) includes machine learning models that are trained on one aspect and/or one part of the input to learn other aspects and/or part of it. SSL models are divided into two different categories, including pre-text task-based models and contrastive learning ones. Pre-text tasks are some auxiliary tasks learning pseudo-labels, and the trained models are further fine-tuned for downstream tasks. However, one important disadvantage of SSL using pre-text task solving is defining an appropriate pre-text task for each image dataset with a variety of image modalities. Therefore, it is required to design an appropriate pretext task automatically for each dataset and each downstream task. To the best of our knowledge, the automatic designing of pretext tasks for image analysis has not been considered yet. In this paper, we present a framework based on In-context learning that describes each task based on its input and output data using a pre-trained image transformer. Our proposed method combines the input image and its learned description for optimizing the pre-text task design and its hyper-parameters using Meta-learning models. The representations learned from the pre-text tasks are fine-tuned for solving the downstream tasks. We demonstrate that our proposed framework outperforms the compared ones on unseen tasks and image modalities in addition to its superior performance for previously known tasks and datasets.Keywords: in-context learning (ICL), meta learning, self-supervised learning (SSL), vision-language domain, transformers
Procedia PDF Downloads 807149 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping
Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo
Abstract:
Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping
Procedia PDF Downloads 707148 Local Energy and Flexibility Markets to Foster Demand Response Services within the Energy Community
Authors: Eduardo Rodrigues, Gisela Mendes, José M. Torres, José E. Sousa
Abstract:
In the sequence of the liberalisation of the electricity sector a progressive engagement of consumers has been considered and targeted by sector regulatory policies. With the objective of promoting market competition while protecting consumers interests, by transferring some of the upstream benefits to the end users while reaching a fair distribution of system costs, different market models to value consumers’ demand flexibility at the energy community level are envisioned. Local Energy and Flexibility Markets (LEFM) involve stakeholders interested in providing or procure local flexibility for community, services and markets’ value. Under the scope of DOMINOES, a European research project supported by Horizon 2020, the local market concept developed is expected to: • Enable consumers/prosumers empowerment, by allowing them to value their demand flexibility and Distributed Energy Resources (DER); • Value local liquid flexibility to support innovative distribution grid management, e.g., local balancing and congestion management, voltage control and grid restoration; • Ease the wholesale market uptake of DER, namely small-scale flexible loads aggregation as Virtual Power Plants (VPPs), facilitating Demand Response (DR) service provision; • Optimise the management and local sharing of Renewable Energy Sources (RES) in Medium Voltage (MV) and Low Voltage (LV) grids, trough energy transactions within an energy community; • Enhance the development of energy markets through innovative business models, compatible with ongoing policy developments, that promote the easy access of retailers and other service providers to the local markets, allowing them to take advantage of communities’ flexibility to optimise their portfolio and subsequently their participation in external markets. The general concept proposed foresees a flow of market actions, technical validations, subsequent deliveries of energy and/or flexibility and balance settlements. Since the market operation should be dynamic and capable of addressing different requests, either prioritising balancing and prosumer services or system’s operation, direct procurement of flexibility within the local market must also be considered. This paper aims to highlight the research on the definition of suitable DR models to be used by the Distribution System Operator (DSO), in case of technical needs, and by the retailer, mainly for portfolio optimisation and solve unbalances. The models to be proposed and implemented within relevant smart distribution grid and microgrid validation environments, are focused on day-ahead and intraday operation scenarios, for predictive management and near-real-time control respectively under the DSO’s perspective. At local level, the DSO will be able to procure flexibility in advance to tackle different grid constrains (e.g., demand peaks, forecasted voltage and current problems and maintenance works), or during the operating day-to-day, to answer unpredictable constraints (e.g., outages, frequency deviations and voltage problems). Due to the inherent risks of their active market participation retailers may resort to DR models to manage their portfolio, by optimising their market actions and solve unbalances. The interaction among the market actors involved in the DR activation and in flexibility exchange is explained by a set of sequence diagrams for the DR modes of use from the DSO and the energy provider perspectives. • DR for DSO’s predictive management – before the operating day; • DR for DSO’s real-time control – during the operating day; • DR for retailer’s day-ahead operation; • DR for retailer’s intraday operation.Keywords: demand response, energy communities, flexible demand, local energy and flexibility markets
Procedia PDF Downloads 997147 Repeatable Scalable Business Models: Can Innovation Drive an Entrepreneurs Un-Validated Business Model?
Authors: Paul Ojeaga
Abstract:
Can the level of innovation use drive un-validated business models across regions? To what extent does industrial sector attractiveness drive firm’s success across regions at the time of start-up? This study examines the role of innovation on start-up success in six regions of the world (namely Sub Saharan Africa, the Middle East and North Africa, Latin America, South East Asia Pacific, the European Union and the United States representing North America) using macroeconomic variables. While there have been studies using firm level data, results from such studies are not suitable for national policy decisions. The need to drive a regional innovation policy also begs for an answer, therefore providing room for this study. Results using dynamic panel estimation show that innovation counts in the early infancy stage of new business life cycle. The results are robust even after controlling for time fixed effects and the study present variance-covariance estimation robust standard errors.Keywords: industrial economics, un-validated business models, scalable models, entrepreneurship
Procedia PDF Downloads 2817146 Adapted Intersection over Union: A Generalized Metric for Evaluating Unsupervised Classification Models
Authors: Prajwal Prakash Vasisht, Sharath Rajamurthy, Nishanth Dara
Abstract:
In a supervised machine learning approach, metrics such as precision, accuracy, and coverage can be calculated using ground truth labels to help in model tuning, evaluation, and selection. In an unsupervised setting, however, where the data has no ground truth, there are few interpretable metrics that can guide us to do the same. Our approach creates a framework to adapt the Intersection over Union metric, referred to as Adapted IoU, usually used to evaluate supervised learning models, into the unsupervised domain, which solves the problem by factoring in subject matter expertise and intuition about the ideal output from the model. This metric essentially provides a scale that allows us to compare the performance across numerous unsupervised models or tune hyper-parameters and compare different versions of the same model.Keywords: general metric, unsupervised learning, classification, intersection over union
Procedia PDF Downloads 477145 Parochial View of Religion: A Major Hindrance to Peaceful Coexistence in Nigerian Society
Authors: Abdulazeez Balogun Shittu
Abstract:
This paper examines the relationship between parochial religiosity and peaceful coexistence in Nigeria. Parochial views, characterized by exclusive interpretations and dogmatic adherence to one's faith, are identified as a significant obstacle to interreligious harmony and social cohesion. Using a mixed-methods approach, the paper investigates how parochial religiosity fosters intergroup tensions, undermines inclusive governance, and hinders constructive dialogue. The parochial religiosity significantly hinders peaceful coexistence in Nigerian society. This research contributes to the ongoing discourse on religion, conflict, and peace building, emphasizing the urgency of addressing parochial religiosity as a major obstacle to harmonious coexistence in multi-religious states in general and Nigerian society in particular.Keywords: parochial religiosity, peaceful coexistence, Nigerian society, interfaith relations, religious conflicts
Procedia PDF Downloads 207144 Literature Review and Approach for the Use of Digital Factory Models in an Augmented Reality Application for Decision Making in Restructuring Processes
Authors: Rene Hellmuth, Jorg Frohnmayer
Abstract:
The requirements of the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Even today, the methods and process models used in factory planning are predominantly based on the classical planning principles of Schmigalla, Aggteleky and Kettner, which, however, are not specifically designed for reorganization. In addition, they are designed for a largely static environmental situation and a manageable planning complexity as well as for medium to long-term planning cycles with a low variability of the factory. Existing approaches already regard factory planning as a continuous process that makes it possible to react quickly to adaptation requirements. However, digital factory models are not yet used as a source of information for building data. Approaches which consider building information modeling (BIM) or digital factory models in general either do not refer to factory conversions or do not yet go beyond a concept. This deficit can be further substantiated. A method for factory conversion planning using a current digital building model is lacking. A corresponding approach must take into account both the existing approaches to factory planning and the use of digital factory models in practice. A literature review will be conducted first. In it, approaches to classic factory planning and approaches to conversion planning are examined. In addition, it will be investigated which approaches already contain digital factory models. In the second step, an approach is presented how digital factory models based on building information modeling can be used as a basis for augmented reality tablet applications. This application is suitable for construction sites and provides information on the costs and time required for conversion variants. Thus a fast decision making is supported. In summary, the paper provides an overview of existing factory planning approaches and critically examines the use of digital tools. Based on this preliminary work, an approach is presented, which suggests the sensible use of digital factory models for decision support in the case of conversion variants of the factory building. The augmented reality application is designed to summarize the most important information for decision-makers during a reconstruction process.Keywords: augmented reality, digital factory model, factory planning, restructuring
Procedia PDF Downloads 1387143 UniFi: Universal Filter Model for Image Enhancement
Authors: Aleksei Samarin, Artyom Nazarenko, Valentin Malykh
Abstract:
Image enhancement is becoming more and more popular, especially on mobile devices. Nowadays, it is a common approach to enhance an image using a convolutional neural network (CNN). Such a network should be of significant size; otherwise, a possibility for the artifacts to occur is overgrowing. The existing large CNNs are computationally expensive, which could be crucial for mobile devices. Another important flaw of such models is they are poorly interpretable. There is another approach to image enhancement, namely, the usage of predefined filters in combination with the prediction of their applicability. We present an approach following this paradigm, which outperforms both existing CNN-based and filter-based approaches in the image enhancement task. It is easily adaptable for mobile devices since it has only 47 thousand parameters. It shows the best SSIM 0.919 on RANDOM250 (MIT Adobe FiveK) among small models and is thrice faster than previous models.Keywords: universal filter, image enhancement, neural networks, computer vision
Procedia PDF Downloads 1017142 Characteristics of Inclusive Circular Business Models in Social Entrepreneurship
Authors: Svitlana Yermak, Olubukola Aluko
Abstract:
The purpose of this study was a literature review on the topic of social entrepreneurship, a review of new trends and best practices, the study of existing inclusive business models and their interaction with the principles of the circular economy for possible implementation in the practice of Ukraine in war and post-war times in conditions of scarce resources. Thus, three research questions were identified and substantiated: to determine the characteristics of social entrepreneurship, consider the features in Ukraine and the UK; highlight the criteria for inclusion in social entrepreneurship and its legal support; explore examples of existing inclusive circular business models to illustrate how the two concepts may be combined. A detailed review of the literature selected from the Scopus and Web of Science databases was carried out. The study revealed signs of social entrepreneurship, the main of which are doing business and making a profit, as well as the social orientation of the business, which is prescribed in the constituent documents of the enterprise immediately upon its creation. Considered are the characteristics of social entrepreneurship in the UK and Ukraine. It has been established that in the UK, social entrepreneurship is clearly regulated by the state; there are special legislative norms and support programs, in contrast to Ukraine, where these processes are only partially regulated. The study identified the main criteria for inclusion in inclusive circular business models: economic (sustainability and efficiency, job creation and economic growth, promotion of local development), social (accessibility, equity and fairness, inclusion and participation), and resources in their interconnection. It is substantiated that the resource criterion is especially important for this type of business model. It provides for the efficient and sustainable use of resources, as well as the cyclical nature of resources. And it was concluded that the principles of the circular economy not only do not contradict but, on the contrary, complement and expand the inclusive business models on which social entrepreneurship is based.Keywords: social entrepreneurship, inclusive business models, circular economy, inclusion criteria
Procedia PDF Downloads 1017141 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.Keywords: deregulated energy market, forecasting, machine learning, system marginal price
Procedia PDF Downloads 2157140 Dynamic Modeling of Advanced Wastewater Treatment Plants Using BioWin
Authors: Komal Rathore, Aydin Sunol, Gita Iranipour, Luke Mulford
Abstract:
Advanced wastewater treatment plants have complex biological kinetics, time variant influent flow rates and long processing times. Due to these factors, the modeling and operational control of advanced wastewater treatment plants become complicated. However, development of a robust model for advanced wastewater treatment plants has become necessary in order to increase the efficiency of the plants, reduce energy costs and meet the discharge limits set by the government. A dynamic model was designed using the Envirosim (Canada) platform software called BioWin for several wastewater treatment plants in Hillsborough County, Florida. Proper control strategies for various parameters such as mixed liquor suspended solids, recycle activated sludge and waste activated sludge were developed for models to match the plant performance. The models were tuned using both the influent and effluent data from the plant and their laboratories. The plant SCADA was used to predict the influent wastewater rates and concentration profiles as a function of time. The kinetic parameters were tuned based on sensitivity analysis and trial and error methods. The dynamic models were validated by using experimental data for influent and effluent parameters. The dissolved oxygen measurements were taken to validate the model by coupling them with Computational Fluid Dynamics (CFD) models. The Biowin models were able to exactly mimic the plant performance and predict effluent behavior for extended periods. The models are useful for plant engineers and operators as they can take decisions beforehand by predicting the plant performance with the use of BioWin models. One of the important findings from the model was the effects of recycle and wastage ratios on the mixed liquor suspended solids. The model was also useful in determining the significant kinetic parameters for biological wastewater treatment systems.Keywords: BioWin, kinetic modeling, flowsheet simulation, dynamic modeling
Procedia PDF Downloads 1547139 Mission Driven Enterprises in Ecosystems as Drivers for Sustainable System Change
Authors: Monique de Ritter, Annemieke Roobeek
Abstract:
This study takes a holistic multi-layered systems approach on entrepreneurship, innovation, and sustainability. Concretely we looked how mission driven entrepreneurs (level 1) employ new business models and launch innovative products and/or ideas in their enterprises, which are (level 2) operating in entrepreneurial ecosystems (level 3), and how these in turn may generate higher level sustainable change (level 4). We employed a qualitative grounded research approach in which our aim is to contribute to theory. Fourteen in-depth semi-structured interviews were conducted with mission driven entrepreneurs in the Netherlands in which their individual drives, business models, and ecosystems were discussed. Interview transcripts were systematically coded and analysed and the ecosystems were visually mapped. Most important patterns include 1) entrepreneurs have a clear sustainable mission and regard this mission as de raison d’être of their enterprise; 2) entrepreneurs employ new business models with a focus on collaboration for innovation; the business model supports or enhances the sustainable mission of the enterprise, 3) entrepreneurs collaborate in ecosystems in which a) they also regard suppliers as partners for innovation and clients as ambassadors for the sustainable mission, b) would like to improve their relationships with financial institutions as they are in the entrepreneurs’ perspective often lagging behind with their innovative ideas and models, c) they collaborate for knowledge and innovation with several parties, d) personal informal connections are very important, and e) in which the higher sustainable mission is not a point of competition but of collaboration.Keywords: sustainability, entrepreneurship, innovation, ecosystem, business models
Procedia PDF Downloads 3747138 A Fractional Derivative Model to Quantify Non-Darcy Flow in Porous and Fractured Media
Authors: Golden J. Zhang, Dongbao Zhou
Abstract:
Darcy’s law is the fundamental theory in fluid dynamics and engineering applications. Although Darcy linearity was found to be valid for slow, viscous flow, non-linear and non-Darcian flow has been well documented under both small and large velocity fluid flow. Various classical models were proposed and used widely to quantify non-Darcian flow, including the well-known Forchheimer, Izbash, and Swartzendruber models. Applications, however, revealed limitations of these models. Here we propose a general model built upon the Caputo fractional derivative to quantify non-Darcian flow for various flows (laminar to turbulence).Real-world applications and model comparisons showed that the new fractional-derivative model, which extends the fractional model proposed recently by Zhou and Yang (2018), can capture the non-Darcian flow in the relatively small velocity in low-permeability deposits and the relatively high velocity in high-permeability sand. A scale effect was also identified for non-Darcian flow in fractured rocks. Therefore, fractional calculus may provide an efficient tool to improve classical models to quantify fluid dynamics in aquatic environments.Keywords: fractional derivative, darcy’s law, non-darcian flow, fluid dynamics
Procedia PDF Downloads 1267137 LEGO Bricks and Creativity: A Comparison between Classic and Single Sets
Authors: Maheen Zia
Abstract:
Near the early twenty-first century, LEGO decided to diversify its product range which resulted in more specific and single-outcome sets occupying the store shelves than classic kits having fairly all-purpose bricks. Earlier, LEGOs came with more bricks and lesser instructions. Today, there are more single kits being produced and sold, which come with a strictly defined set of guidelines. If one set is used to make a car, the same bricks cannot be put together to produce any other article. Earlier, multiple bricks gave children a chance to be imaginative, think of new items and construct them (by just putting the same pieces differently). The new products are less open-ended and offer a limited possibility for players in both designing and realizing those designs. The article reviews (in the light of existing research) how classic LEGO sets could help enhance a child’s creativity in comparison with single sets, which allow a player to interact (not experiment) with the bricks.Keywords: constructive play, creativity, LEGO, play-based learning
Procedia PDF Downloads 1887136 Using Arellano-Bover/Blundell-Bond Estimator in Dynamic Panel Data Analysis – Case of Finnish Housing Price Dynamics
Authors: Janne Engblom, Elias Oikarinen
Abstract:
A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models are dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Arellano-Bover/Blundell-Bond Generalized method of moments (GMM) estimator which is an extension of the Arellano-Bond model where past values and different transformations of past values of the potentially problematic independent variable are used as instruments together with other instrumental variables. The Arellano–Bover/Blundell–Bond estimator augments Arellano–Bond by making an additional assumption that first differences of instrument variables are uncorrelated with the fixed effects. This allows the introduction of more instruments and can dramatically improve efficiency. It builds a system of two equations—the original equation and the transformed one—and is also known as system GMM. In this study, Finnish housing price dynamics were examined empirically by using the Arellano–Bover/Blundell–Bond estimation technique together with ordinary OLS. The aim of the analysis was to provide a comparison between conventional fixed-effects panel data models and dynamic panel data models. The Arellano–Bover/Blundell–Bond estimator is suitable for this analysis for a number of reasons: It is a general estimator designed for situations with 1) a linear functional relationship; 2) one left-hand-side variable that is dynamic, depending on its own past realizations; 3) independent variables that are not strictly exogenous, meaning they are correlated with past and possibly current realizations of the error; 4) fixed individual effects; and 5) heteroskedasticity and autocorrelation within individuals but not across them. Based on data of 14 Finnish cities over 1988-2012 differences of short-run housing price dynamics estimates were considerable when different models and instrumenting were used. Especially, the use of different instrumental variables caused variation of model estimates together with their statistical significance. This was particularly clear when comparing estimates of OLS with different dynamic panel data models. Estimates provided by dynamic panel data models were more in line with theory of housing price dynamics.Keywords: dynamic model, fixed effects, panel data, price dynamics
Procedia PDF Downloads 15087135 Research on the Evaluation and Delineation of Value Units of New Industrial Parks Based on Implementation-Orientation
Authors: Chengfang Wang, Zichao Wu, Jianying Zhou
Abstract:
At present, much attention is paid to the development of new industrial parks in the era of inventory planning. Generally speaking, there are two types of development models: incremental development models and stock development models. The former relies on key projects to build a value innovation park, and the latter relies on the iterative update of the park to build a value innovation park. Take the Baiyun Western Digital Park as an example, considering the growth model of value units, determine the evaluation target. Based on a GIS platform, comprehensive land-use status, regulatory detailed planning, land use planning, blue-green ecological base, rail transit system, road network system, industrial park distribution, public service facilities, and other factors are used to carry out the land use within the planning multi-factor superimposed comprehensive evaluation, constructing a value unit evaluation system, and delineating value units based on implementation orientation and combining two different development models. The research hopes to provide a reference for the planning and construction of new domestic industrial parks.Keywords: value units, GIS, multi-factor evaluation, implementation orientation
Procedia PDF Downloads 1887134 Variability of Hydrological Modeling of the Blue Nile
Authors: Abeer Samy, Oliver C. Saavedra Valeriano, Abdelazim Negm
Abstract:
The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.Keywords: Blue Nile Basin, climate change, hydrological modeling, watershed
Procedia PDF Downloads 3667133 A Comparative Study of Force Prediction Models during Static Bending Stage for 3-Roller Cone Frustum Bending
Authors: Mahesh Chudasama, Harit Raval
Abstract:
Conical sections and shells of metal plates manufactured by 3-roller conical bending process are widely used in the industries. The process is completed by first bending the metal plates statically and then dynamic roller bending sequentially. It is required to have an analytical model to get maximum bending force, for optimum design of the machine, for static bending stage. Analytical models assuming various stress conditions are considered and these analytical models are compared considering various parameters and reported in this paper. It is concluded from the study that for higher bottom roller inclination, the shear stress affects greatly to the static bending force whereas for lower bottom roller inclination it can be neglected.Keywords: roller-bending, static-bending, stress-conditions, analytical-modeling
Procedia PDF Downloads 251