Search results for: squared prediction risk
7296 Demographic Bomb or Bonus in All Provinces in 100 Years after Indonesian Independence
Authors: Fitri CaturLestari
Abstract:
According to National Population and Family Planning Board (BKKBN), demographic bonus will occur in 2025-2035, when the number of people within the productive age bracket is higher than the number of elderly people and children. This time will be a gold moment for Indonesia to achieve maximum productivity and prosperity. But it will be a demographic bomb if it isn’t balanced by economic and social aspect considerations. Therefore it is important to make a prediction mapping of all provinces in Indonesia whether in demographic bomb or bonus condition after 100 years Indonesian independence. The purpose of this research were to make the demographic mapping based on the economic and social aspects of the provinces in Indonesia and categorizing them into demographic bomb and bonus condition. The research data are gained from Statistics Indonesia (BPS) as the secondary data. The multiregional component method, regression and quadrant analysis were used to predict the number of people, economic growth, Human Development Index (HDI), and gender equality in education and employment. There were different characteristic of provinces in Indonesia from economic aspect and social aspect. The west Indonesia was already better developed than the east one. The prediction result, many provinces in Indonesia will get demographic bonus but the others will get demographic bomb. It is important to prepare particular strategy to particular provinces with all of their characteristic based on the prediction result so the demographic bomb can be minimalized.Keywords: demography, economic growth, gender, HDI
Procedia PDF Downloads 3357295 Health Risk Assessment According to Exposure with Heavy Metals and Physicochemical Parameters; Water Quality Index and Contamination Degree Evaluation in Bottled Water
Authors: Samaneh Abolli, Mahmood Alimohammadi
Abstract:
The survey analyzed 71 bottled water brands in Tehran, Iran, examining 10 physicochemical parameters and 16 heavy metals. The water quality index (WQI) approach was used to assess water quality, and methods such as carcinogen risk (CR) and hazard index (HI) were employed to evaluate health risks. The results indicated that the bottled water had good quality overall, but some brands were of poor or very poor quality. The study also revealed significant human health risks, especially for children, due to the presence of minerals and heavy metals in bottled water. Correlation analyses and risk assessments for various substances were conducted, providing valuable insights into the potential health impacts of the analyzed bottled water.Keywords: bottled wate, rwater quality index, health risk assessment, contamination degree, heavy metal evaluation index
Procedia PDF Downloads 537294 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms
Authors: Senol Dogan, Gunay Karli
Abstract:
Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model
Procedia PDF Downloads 2107293 Risk-Based Regulation as a Model of Control in the South African Meat Industry
Authors: R. Govender, T. C. Katsande, E. Madoroba, N. M. Thiebaut, D. Naidoo
Abstract:
South African control over meat safety is managed by the Department of Agriculture, Forestry and Fisheries (DAFF). Veterinary services department in each of the nine provinces in the country is tasked with overseeing the farm and abattoir segments of the meat supply chain. Abattoirs are privately owned. The number of abattoirs over the years has increased. This increase has placed constraints on government resources required to monitor these abattoirs. This paper presents empirical research results on the hygienic processing of meat in high and low throughout abattoirs. This paper presents a case for the adoption of risk-based regulation as a method of government control over hygiene and safe meat processing at abattoirs in South Africa. Recommendations are made to the DAFF regarding policy considerations on risk-based regulation as a model of control in South Africa.Keywords: risk-based regulation, abattoir, food control, meat safety
Procedia PDF Downloads 3157292 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2
Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk
Abstract:
Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.Keywords: ecosystem services, grassland management, machine learning, remote sensing
Procedia PDF Downloads 2187291 An Application of Extreme Value Theory as a Risk Measurement Approach in Frontier Markets
Authors: Dany Ng Cheong Vee, Preethee Nunkoo Gonpot, Noor Sookia
Abstract:
In this paper, we consider the application of Extreme Value Theory as a risk measurement tool. The Value at Risk, for a set of indices, from six Stock Exchanges of Frontier markets is calculated using the Peaks over Threshold method and the performance of the model index-wise is evaluated using coverage tests and loss functions. Our results show that 'fat-tailedness' alone of the data is not enough to justify the use of EVT as a VaR approach. The structure of the returns dynamics is also a determining factor. This approach works fine in markets which have had extremes occurring in the past thus making the model capable of coping with extremes coming up (Colombo, Tunisia and Zagreb Stock Exchanges). On the other hand, we find that indices with lower past than present volatility fail to adequately deal with future extremes (Mauritius and Kazakhstan). We also conclude that using EVT alone produces quite static VaR figures not reflecting the actual dynamics of the data.Keywords: extreme value theory, financial crisis 2008, value at risk, frontier markets
Procedia PDF Downloads 2767290 Household Perspectives and Resistance to Preventive Relocation in Flood Prone Areas: A Case Study in the Polwatta River Basin, Southern Sri Lanka
Authors: Ishara Madusanka, So Morikawa
Abstract:
Natural disasters, particularly floods, pose severe challenges globally, affecting both developed and developing countries. In many regions, especially Asia, riverine floods are prevalent and devastating. Integrated flood management incorporates structural and non-structural measures, with preventive relocation emerging as a cost-effective and proactive strategy for areas repeatedly impacted by severe flooding. However, preventive relocation is often hindered by economic, psychological, social, and institutional barriers. This study investigates the factors influencing resistance to preventive relocation and evaluates the role of flood risk information in shaping relocation decisions through risk perception. A conceptual model was developed, incorporating variables such as Flood Risk Information (FRI), Place Attachment (PA), Good Living Conditions (GLC), and Adaptation to Flooding (ATF), with Flood Risk Perception (FRP) serving as a mediating variable. The research was conducted in Welipitiya in the Polwatta river basin, Matara district, Sri Lanka, a region experiencing recurrent flood damage. For this study, an experimental design involving a structured questionnaire survey was utilized, with 185 households participating. The treatment group received flood risk information, including flood risk maps and historical data, while the control group did not. Data were collected in 2023 and analyzed using independent sample t-tests and Partial Least Squares Structural Equation Modeling (PLS-SEM). PLS-SEM was chosen for its ability to model latent variables, handle complex relationships, and suitability for exploratory research. Multi-group Analysis (MGA) assessed variations across different flood risk areas. Findings indicate that flood risk information had a limited impact on flood risk perception and relocation decisions, though its effect was significant in specific high-risk areas. Place attachment was a significant factor influencing relocation decisions across the sample. One potential reason for the limited impact of flood risk information on relocation decisions could be the lack of specificity in the information provided. The results suggest that while flood risk information alone may not significantly influence relocation decisions, it is crucial in specific contexts. Future studies and practitioners should focus on providing more detailed risk information and addressing psychological factors like place attachments to enhance preventive relocation efforts.Keywords: flood risk communication, flood risk perception, place attachment, preventive relocation, structural equation modeling
Procedia PDF Downloads 317289 Prevalence of High Risk Human Papillomavirus in Cervical Dysplasia and Cancer Samples from Twin Cities in Pakistan
Authors: Sana Gul, Sheeba Murad, Aneela Javed
Abstract:
Introduction: Human Papilloma Virus (HPV) is small DNA virus mostly infecting mucosa and cutaneous keratinocytes. So far, more than 200 Human papillomaviruses are known. HPV have been divided into high- and low-risk on the basis of their oncogenic potential. High risk HPV is considered to be the main etiological cause for cervical cancer. Objective: Current study was designed to screen the local cervical cancer patients from the twin cities of Pakistan for the occurance of high risk HPV. Methodology: A total of 67 formalin fixed paraffin-embedded samples of cervical cancer biopsies were obtained from the government hospitals in Islamabad and Rawalpindi. Cervical cancer biopsies were examined for the presence of HPV DNA. Polymerase chain reaction (PCR) was used for the amplification of a region in the HPV-L1 gene for the general detection of the Papilloma virus and for the genotype specific detection of high risk HPV 16 and 18 using the GP5/GP6 primers and genotype specific primers respectively. Results: HPV DNA was detected in 59 out of 67 samples analyzed. 30 samples showed the presence of HPV16 while 22 samples were positive for HPV 18 . HPV subtype could not be determined in 7 samples. Conclusion: Our results show a strong association between HPV infection and cervical cancer among women in twin cities of Pakistan. One way to minimize the disease burden in relation to HPV infection in Pakistani population is the use of prophylactic vaccines and routine screening. An early diagnosis of HPV infection will allow better health management to reduce the risk of developing cervical cancer.Keywords: cervical cancer, Pakistan, human papillomavirus, HPV 16
Procedia PDF Downloads 3417288 Morality in Actual Behavior: The Moderation Effect of Identification with the Ingroup and Religion on Norm Compliance
Authors: Shauma L. Tamba
Abstract:
This study examined whether morality is the most important aspect in actual behavior. The prediction was that people tend to behave in line with moral (as compared to competence) norms, especially when such norms are presented by their ingroup. The actual behavior that was tested was support for a military intervention without a mandate from the UN. In addition, this study also examined whether identification with the ingroup and religion moderated the effect of group and norm on support for the norm that was prescribed by their ingroup. The prediction was that those who identified themselves higher with the ingroup moral would show a higher support for the norm. Furthermore, the prediction was also that those who have religion would show a higher support for the norm in the ingroup moral rather than competence. In an online survey, participants were asked to read a scenario in which a military intervention without a mandate was framed as either the moral (but stupid) or smart (but immoral) thing to do by members of their own (ingroup) or another (outgroup) society. This study found that when people identified themselves with the smart (but immoral) norm, they showed a higher support for the norm. However, when people identified themselves with the moral (but stupid) norm, they tend to show a lesser support towards the norm. Most of the results in the study did not support the predictions. Possible explanations and implications are discussed.Keywords: morality, competence, ingroup identification, religion, group norm
Procedia PDF Downloads 4087287 Application of the Electrical Resistivity Tomography and Tunnel Seismic Prediction 303 Methods for Detection Fracture Zones Ahead of Tunnel: A Case Study
Authors: Nima Dastanboo, Xiao-Qing Li, Hamed Gharibdoost
Abstract:
The purpose of this study is to investigate about the geological properties ahead of a tunnel face with using Electrical Resistivity Tomography ERT and Tunnel Seismic Prediction TSP303 methods. In deep tunnels with hydro-geological conditions, it is important to study the geological structures of the region before excavating tunnels. Otherwise, it would lead to unexpected accidents that impose serious damage to the project. For constructing Nosoud tunnel in west of Iran, the ERT and TSP303 methods are employed to predict the geological conditions dynamically during the excavation. In this paper, based on the engineering background of Nosoud tunnel, the important results of applying these methods are discussed. This work demonstrates seismic method and electrical tomography as two geophysical techniques that are able to detect a tunnel. The results of these two methods were being in agreement with each other but the results of TSP303 are more accurate and quality. In this case, the TSP 303 method was a useful tool for predicting unstable geological structures ahead of the tunnel face during excavation. Thus, using another geophysical method together with TSP303 could be helpful as a decision support in excavating, especially in complicated geological conditions.Keywords: tunnel seismic prediction (TSP303), electrical resistivity tomography (ERT), seismic wave, velocity analysis, low-velocity zones
Procedia PDF Downloads 1487286 Risk Factors’ Analysis on Shanghai Carbon Trading
Authors: Zhaojun Wang, Zongdi Sun, Zhiyuan Liu
Abstract:
First of all, the carbon trading price and trading volume in Shanghai are transformed by Fourier transform, and the frequency response diagram is obtained. Then, the frequency response diagram is analyzed and the Blackman filter is designed. The Blackman filter is used to filter, and the carbon trading time domain and frequency response diagram are obtained. After wavelet analysis, the carbon trading data were processed; respectively, we got the average value for each 5 days, 10 days, 20 days, 30 days, and 60 days. Finally, the data are used as input of the Back Propagation Neural Network model for prediction.Keywords: Shanghai carbon trading, carbon trading price, carbon trading volume, wavelet analysis, BP neural network model
Procedia PDF Downloads 3917285 Structural Vulnerability of Banking Network – Systemic Risk Approach
Authors: Farhad Reyazat, Richard Werner
Abstract:
This paper contributes to the existent literature by developing a framework that explains how to monitor potential threats to banking sector stability. The study explores structural vulnerabilities at the country level, but also look at bilateral exposures within a network context. The study contributes in analysing of the European banking systemic risk at aggregated level, which integrates the characteristics of bank size, and interconnectedness relative to the size of the economy which ultimate risk belong to, taking to account the concentration ratio of the banking industry within the whole economy. The nature of the systemic risk depends on the interplay of the network topology with the nature of financial transactions over the network, assets and buffer stemming from bank size, correlations, and the nature of the shocks to the financial system. The study’s results illustrate the contribution of banks’ size, size of economy and concentration of counterparty exposures to a given country’s banks in explaining its systemic importance, how much the banking network depends on a few traditional hubs activities and the changes of this dependencies over the last 9 years. The role of few of traditional hubs such as Swiss banks and British Banks and also Irish banks- where the financial sector is fairly new and grew strongly between 1990s till 2008- take the fourth position on 2014 reducing the relative size since 2006 where they had the first position. In-degree concentration index analysis in the study shows concentration index of banking network was not changed since financial crisis 2007-8. In-degree concentration index on first quarter of 2014 indicates that US, UK and Germany together, getting over 70% of the network exposures. The result of comparing the in-degree concentration index with 2007-4Q, shows the same group having over 70% of the network exposure, however the UK getting more important role in the hub and the market share of US and Germany are slightly diminished.Keywords: systemic risk, counterparty risk, financial stability, interconnectedness, banking concentration, european banks risk, network effect on systemic risk, concentration risk
Procedia PDF Downloads 4907284 Value at Risk and Expected Shortfall of Firms in the Main European Union Stock Market Indexes: A Detailed Analysis by Economic Sectors and Geographical Situation
Authors: Emma M. Iglesias
Abstract:
We have analyzed extreme movements of the main stocks traded in the Eurozone in the 2000-2012 period. Our results can help future very-risk-averse investors to choose their portfolios in the Eurozone for risk management purposes. We find two main results. First, we can clearly classify firms by economic sector according to their different estimated VaR values in five of the seven countries we analyze. In special, we find sectors in general where companies have very high (telecommunications and banking) and very low (petroleum, utilities, energy and consumption) estimated VaR values. Second, we only find differences according to the geographical situation of where the stocks are traded in two countries: (1) all firms in the Irish stock market (the only financially rescued country we analyze) have very high estimated VaR values in all sectors; while (2) in Spain all firms have very low estimated VaR values including in the banking and the telecommunications sectors. All our results are supported when we study also the expected shortfall of the firms.Keywords: risk management, firms, pareto tail thickness parameter, GARCH-type models, value-at-risk, extreme value theory, heavy tails, stock indexes, eurozone
Procedia PDF Downloads 3717283 Risk Management Approach for Lean, Agile, Resilient and Green Supply Chain
Authors: Benmoussa Rachid, Deguio Roland, Dubois Sebastien, Rasovska Ivana
Abstract:
Implementation of LARG (Lean, Agile, Resilient, Green) practices in the supply chain management is a complex task mainly because ecological, economical and operational goals are usually in conflict. To implement these LARG practices successfully, companies’ need relevant decision making tools allowing processes performance control and improvement strategies visibility. To contribute to this issue, this work tries to answer the following research question: How to master performance and anticipate problems in supply chain LARG practices implementation? To answer this question, a risk management approach (RMA) is adopted. Indeed, the proposed RMA aims basically to assess the ability of a supply chain, guided by “Lean, Green and Achievement” performance goals, to face “agility and resilience risk” factors. To proof its relevance, a logistics academic case study based on simulation is used to illustrate all its stages. It shows particularly how to build the “LARG risk map” which is the main output of this approach.Keywords: agile supply chain, lean supply chain, green supply chain, resilient supply chain, risk approach
Procedia PDF Downloads 3127282 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials
Authors: Behzad Behnia, Noah LaRussa-Trott
Abstract:
In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model
Procedia PDF Downloads 1417281 Salter Pelvic Osteotomy for the Treatment of Developmental Dysplasia of the Hip: Assessment of Postoperative Results and Risk Factors
Authors: Suvorov Vasyl, Filipchuk Viktor
Abstract:
Background: If non-surgical treatment of developmental dysplasia of the hip (DDH) fails or if DDH is late-detected, surgery is necessary. Salter pelvic osteotomy (SPO) is an effective surgical option for such cases. The objectives of this study were to assess the results after SPO, evaluate risk factors, and reveal those radiological parameters that may correlate with the results. Mid- and long-term postoperative results after SPO in 17 patients (22 hip joints) were analyzed. Risk factors included those that do not depend on the surgeon (patient's age, value of the acetabular index (AI) preoperatively, DDH Tonnis grade) and those that depend on the surgeon (amount of AI correction). To radiological parameters which may correlate with the amount of AI correction, we referred distance "d" and the lateral rotation angle. Results: SPO allows performing AI correction in ranges 24.1 ± 6.5°. Excellent and good clinical results were obtained in 95.5% of patients; excellent and good radiological results in 86.4% of patients. Risk factors that do not depend on the surgeon were older patient’s age and higher preoperative AI values (p < 0.05). The risk factor that depends on the surgeon was the amount of AI correction (p < 0.05). The distance "d" was recognized as a radiological parameter that may indicate sufficient AI correction (p < 0.05). Conclusion: In older patients with a higher preoperative AI value, the results will be predictably worse. The surgeon may influence the result with a greater amount of AI correction (which may also be indicated radiologically by the distance "d" values).Keywords: developmental dysplasia of the hip, results, risk factor, pelvic osteotomy, salter osteotomy
Procedia PDF Downloads 1317280 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology
Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan
Abstract:
Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.Keywords: surface roughness, fused deposition modelling (FDM), adaptive neuro fuzzy inference system (ANFIS), orientation
Procedia PDF Downloads 4607279 Risk Assessment of Oil Spill Pollution by Integration of Gnome, Aloha and Gis in Bandar Abbas Coast, Iran
Authors: Mehrnaz Farzingohar, Mehran Yasemi, Ahmad Savari
Abstract:
The oil products are imported and exported via Rajaee’s tanker terminal. Within loading and discharging in several cases the oil is released into the berths and made oil spills. The spills are distributed within short time and seriously affected Rajaee port’s environment and even extended areas. The trajectory and fate of oil spills investigated by modeling and parted by three risk levels base on the modeling results. First GNOME (General NOAA Operational Modeling Environment) applied to trajectory the liquid oil. Second, ALOHA (Areal Location Of Hazardous Atmosphere) air quality model, is integrated to predict the oil evaporation path within the air. Base on the identified zones the high risk areas are signed by colored dots which their densities calculated and clarified on a map which displayed the harm places. Wind and water circulation moved the pollution to the East of Rajaee Port that accumulated about 12 km of coastline. Approximately 20 km of north east of Qeshm Island shore is covered by the three levels of risky areas. Since the main wind direction is SSW the pollution pushed to the east and the highest risk zones formed on the crests edges hence the low risk appeared on the concavities. This assessment help the management and emergency systems to monitor the exposure places base on the priority factors and find the best approaches to protect the environment.Keywords: oil spill, modeling, pollution, risk assessment
Procedia PDF Downloads 3887278 Features of Formation and Development of Possessory Risk Management Systems of Organization in the Russian Economy
Authors: Mikhail V. Khachaturyan, Inga A. Koryagina, Maria Nikishova
Abstract:
The study investigates the impact of the ongoing financial crisis, started in the 2nd half of 2014, on marketing budgets spent by Fast-moving consumer goods companies. In these conditions, special importance is given to efficient possessory risk management systems. The main objective for establishing and developing possessory risk management systems for FMCG companies in a crisis is to analyze the data relating to the external environment and consumer behavior in a crisis. Another important objective for possessory risk management systems of FMCG companies is to develop measures and mechanisms to maintain and stimulate sales. In this regard, analysis of risks and threats which consumers define as the main reasons affecting their level of consumption become important. It is obvious that in crisis conditions the effective risk management systems responsible for development and implementation of strategies for consumer demand stimulation, as well as the identification, analysis, assessment and management of other types of risks of economic security will be the key to sustainability of a company. In terms of financial and economic crisis, the problem of forming and developing possessory risk management systems becomes critical not only in the context of management models of FMCG companies, but for all the companies operating in other sectors of the Russian economy. This study attempts to analyze the specifics of formation and development of company possessory risk management systems. In the modern economy, special importance among all the types of owner’s risks has the risk of reduction in consumer activity. This type of risk is common not only for the consumer goods trade. Study of consumer activity decline is especially important for Russia due to domestic market of consumer goods being still in the development stage, despite its significant growth. In this regard, it is especially important to form and develop possessory risk management systems for FMCG companies. The authors offer their own interpretation of the process of forming and developing possessory risk management systems within owner’s management models of FMCG companies as well as in Russian economy in general. Proposed methods and mechanisms of problem analysis of formation and development of possessory risk management systems in FMCG companies and the results received can be helpful for researchers interested in problems of consumer goods market development in Russia and overseas.Keywords: FMCG companies, marketing budget, risk management, owner, Russian economy, organization, formation, development, system
Procedia PDF Downloads 3777277 The Integrated Methodological Development of Reliability, Risk and Condition-Based Maintenance in the Improvement of the Thermal Power Plant Availability
Authors: Henry Pariaman, Iwa Garniwa, Isti Surjandari, Bambang Sugiarto
Abstract:
Availability of a complex system of thermal power plant is strongly influenced by the reliability of spare parts and maintenance management policies. A reliability-centered maintenance (RCM) technique is an established method of analysis and is the main reference for maintenance planning. This method considers the consequences of failure in its implementation, but does not deal with further risk of down time that associated with failures, loss of production or high maintenance costs. Risk-based maintenance (RBM) technique provides support strategies to minimize the risks posed by the failure to obtain maintenance task considering cost effectiveness. Meanwhile, condition-based maintenance (CBM) focuses on monitoring the application of the conditions that allow the planning and scheduling of maintenance or other action should be taken to avoid the risk of failure prior to the time-based maintenance. Implementation of RCM, RBM, CBM alone or combined RCM and RBM or RCM and CBM is a maintenance technique used in thermal power plants. Implementation of these three techniques in an integrated maintenance will increase the availability of thermal power plants compared to the use of maintenance techniques individually or in combination of two techniques. This study uses the reliability, risks and conditions-based maintenance in an integrated manner to increase the availability of thermal power plants. The method generates MPI (Priority Maintenance Index) is RPN (Risk Priority Number) are multiplied by RI (Risk Index) and FDT (Failure Defense Task) which can generate the task of monitoring and assessment of conditions other than maintenance tasks. Both MPI and FDT obtained from development of functional tree, failure mode effects analysis, fault-tree analysis, and risk analysis (risk assessment and risk evaluation) were then used to develop and implement a plan and schedule maintenance, monitoring and assessment of the condition and ultimately perform availability analysis. The results of this study indicate that the reliability, risks and conditions-based maintenance methods, in an integrated manner can increase the availability of thermal power plants.Keywords: integrated maintenance techniques, availability, thermal power plant, MPI, FDT
Procedia PDF Downloads 7947276 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic
Authors: Aneta Oblouková, Eva Vítková
Abstract:
The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in the years 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research was obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in the years 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for the years 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in the years 2019-2021 were also calculated using a chosen method -a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate
Procedia PDF Downloads 1207275 CPPI Method with Conditional Floor: The Discrete Time Case
Authors: Hachmi Ben Ameur, Jean Luc Prigent
Abstract:
We propose an extension of the CPPI method, which is based on conditional floors. In this framework, we examine in particular the TIPP and margin based strategies. These methods allow keeping part of the past gains and protecting the portfolio value against future high drawdowns of the financial market. However, as for the standard CPPI method, the investor can benefit from potential market rises. To control the risk of such strategies, we introduce both Value-at-Risk (VaR) and Expected Shortfall (ES) risk measures. For each of these criteria, we show that the conditional floor must be higher than a lower bound. We illustrate these results, for a quite general ARCH type model, including the EGARCH (1,1) as a special case.Keywords: CPPI, conditional floor, ARCH, VaR, expected ehortfall
Procedia PDF Downloads 3057274 Infilling Strategies for Surrogate Model Based Multi-disciplinary Analysis and Applications to Velocity Prediction Programs
Authors: Malo Pocheau-Lesteven, Olivier Le Maître
Abstract:
Engineering and optimisation of complex systems is often achieved through multi-disciplinary analysis of the system, where each subsystem is modeled and interacts with other subsystems to model the complete system. The coherence of the output of the different sub-systems is achieved through the use of compatibility constraints, which enforce the coupling between the different subsystems. Due to the complexity of some sub-systems and the computational cost of evaluating their respective models, it is often necessary to build surrogate models of these subsystems to allow repeated evaluation these subsystems at a relatively low computational cost. In this paper, gaussian processes are used, as their probabilistic nature is leveraged to evaluate the likelihood of satisfying the compatibility constraints. This paper presents infilling strategies to build accurate surrogate models of the subsystems in areas where they are likely to meet the compatibility constraint. It is shown that these infilling strategies can reduce the computational cost of building surrogate models for a given level of accuracy. An application of these methods to velocity prediction programs used in offshore racing naval architecture further demonstrates these method's applicability in a real engineering context. Also, some examples of the application of uncertainty quantification to field of naval architecture are presented.Keywords: infilling strategy, gaussian process, multi disciplinary analysis, velocity prediction program
Procedia PDF Downloads 1577273 Comparing Breast Cancer Risk and the Risk Factors between Heterosexual Women and Sexual Minority Women in Taiwan: A Preliminary Result
Authors: Ya-Ching Wang, Yi-Maun Subeq
Abstract:
Background: There is a lack of evidence to understand differences in risk for developing breast cancer between sexual minority women and heterosexual women in Taiwan. The purpose of this study is to compare differences in risk for developing breast cancer between the two groups of Taiwanese women. Methods: An online cross-sectional survey was used to collect data. A total of 238 Taiwanese women (mean age 30.69 years old, SD=8.231, range 20-60) were recruited between December 2016 and February 2017, including 115 heterosexual women and 123 sexual minority women. Results: There were no significant differences between heterosexual women and sexual minority women in body mass index, history of non-malignant breast disease, age at menarche and menopause, use of hormone replacement therapy, use of hormone replacement therapy, nor the prevalence of breast cancer. The sexual minority women had higher rates of current drinking, smoking and using breast-bindings and also reported exercise more a week; the heterosexual women had higher rates of pregnancy, children, breastfeed, miscarriages, abortion and use of birth control pills. Discussion/Conclusion: There were significant differences between heterosexual women and sexual minority women in reproductive factors and behavioral risk factors for the development of breast cancer. In particular, the finding that the sexual minority women had higher rate of using breast-bindings (56.6%) than the heterosexual women (4.7%) should be further explore, in order to understand whether long-term breast compression is associated with the development of breast cancer.Keywords: breast cancer, risk, sexual orientation, Taiwan
Procedia PDF Downloads 3657272 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 1027271 Atypical Myocardial Infarction in a Young Patient: Exploring the Intersection of Acute Anxiety Disorders and Antipsychotic Medication Use
Authors: Irfan Khan, Chiemeka David Ekene Arize, Hilly Swami, Suprabha Jha
Abstract:
Background: The rise of myocardial infarction (MI) among young adults, especially those with psychiatric conditions on antipsychotic medications, highlights the need to explore non-traditional cardiovascular risk factors. Case Presentation: We discuss a 24-year-old male with acute MI, diagnosed with an acute anxiety disorder, treated with risperidone and quetiapine, and with a history of occasional smoking. Despite no significant medical history, his presentation underscores the complex interactions between psychiatric conditions, antipsychotic medication, and lifestyle choices in the etiology of MI. Discussion: This case sheds light on the intricate relationship between minimal smoking habits, the use of atypical antipsychotics, and psychiatric illness as contributory factors to cardiovascular risk in young patients. It suggests a synergistic effect, amplifying the risk of MI, which is not adequately captured by traditional risk models. Conclusion: The case emphasizes the importance of an integrated care appro ach for young MI patients with psychiatric conditions and highlights the urgent need for further research to understand the compounded cardiovascular risk posed by psychiatric medications and lifestyle factors. It advocates for comprehensive risk assessments that consider these non-traditional factors to improve outcomes for this vulnerable patient population.Keywords: myocardial infarction, young adults, psychiatric illness, antipsychotic medications, smoking
Procedia PDF Downloads 167270 Behind Fuzzy Regression Approach: An Exploration Study
Authors: Lavinia B. Dulla
Abstract:
The exploration study of the fuzzy regression approach attempts to present that fuzzy regression can be used as a possible alternative to classical regression. It likewise seeks to assess the differences and characteristics of simple linear regression and fuzzy regression using the width of prediction interval, mean absolute deviation, and variance of residuals. Based on the simple linear regression model, the fuzzy regression approach is worth considering as an alternative to simple linear regression when the sample size is between 10 and 20. As the sample size increases, the fuzzy regression approach is not applicable to use since the assumption regarding large sample size is already operating within the framework of simple linear regression. Nonetheless, it can be suggested for a practical alternative when decisions often have to be made on the basis of small data.Keywords: fuzzy regression approach, minimum fuzziness criterion, interval regression, prediction interval
Procedia PDF Downloads 2997269 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 557268 Scoring Approach to Identify High-Risk Corridors for Winter Safety Measures in the Iranian Roads Network
Authors: M. Mokhber, J. Hedayati
Abstract:
From the managerial perspective, it is important to devise an operational plan based on top priorities due to limited resources, diversity of measures and high costs needed to improve safety in infrastructure. Dealing with the high-risk corridors across Iran, this study prioritized the corridors according to statistical data on accidents involving fatalities, injury or damage over three consecutive years. In collaboration with the Iranian Police Department, data were collected and modified. Then, the prioritization criteria were specified based on the expertise opinions and international standards. In this study, the prioritization criteria included accident severity and accident density. Finally, the criteria were standardized and weighted (equal weights) to score each high-risk corridor. The prioritization phase involved the scoring and weighting procedure. The high-risk corridors were divided into twelve groups out of 50. The results of data analysis for a three-year span suggested that the first three groups (150 corridors) along with a quarter of Iranian road network length account for nearly 60% of traffic accidents. In the next step, according to variables including weather conditions particular roads for the purpose of winter safety measures were extracted from the abovementioned categories. According to the results ranking, 9 roads with the overall length of about 1000 Km of high-risk corridors are considered as preferences of safety measures.Keywords: high-risk corridors, HRCs, road safety rating, road scoring, winter safety measures
Procedia PDF Downloads 1787267 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm
Authors: Amir Hossein Hejazi, Nima Amjady
Abstract:
In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm
Procedia PDF Downloads 572