Search results for: recurrent neural networks (RNN)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3957

Search results for: recurrent neural networks (RNN)

3087 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs

Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye

Abstract:

This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.

Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label

Procedia PDF Downloads 119
3086 Social Networks Global Impact on Protest Movements and Human Rights Activism

Authors: Marcya Burden, Savonna Greer

Abstract:

In the wake of social unrest around the world, protest movements have been captured like never before. As protest movements have evolved, so too have their visibility and sources of coverage. Long gone are the days of print media as our only glimpse into the action surrounding a protest. Now, with social networks such as Facebook, Instagram and Snapchat, we have access to real-time video footage of protest movements and human rights activism that can reach millions of people within seconds. This research paper investigated various social media network platforms’ statistical usage data in the areas of human rights activism and protest movements, paralleling with other past forms of media coverage. This research demonstrates that social networks are extremely important to protest movements and human rights activism. With over 2.9 billion users across social media networks globally, these platforms are the heart of most recent protests and human rights activism. This research shows the paradigm shift from the Selma March of 1965 to the more recent protests of Ferguson in 2014, Ni Una Menos in 2015, and End Sars in 2018. The research findings demonstrate that today, almost anyone may use their social networks to protest movement leaders and human rights activists. From a student to an 80-year-old professor, the possibility of reaching billions of people all over the world is limitless. Findings show that 82% of the world’s internet population is on social networks 1 in every 5 minutes. Over 65% of Americans believe social media highlights important issues. Thus, there is no need to have a formalized group of people or even be known online. A person simply needs to be engaged on their respective social media networks (Facebook, Twitter, Instagram, Snapchat) regarding any cause they are passionate about. Information may be exchanged in real time around the world and a successful protest can begin.

Keywords: activism, protests, human rights, networks

Procedia PDF Downloads 91
3085 Outcomes of Pregnancy in Women with TPO Positive Status after Appropriate Dose Adjustments of Thyroxin: A Prospective Cohort Study

Authors: Revathi S. Rajan, Pratibha Malik, Nupur Garg, Smitha Avula, Kamini A. Rao

Abstract:

This study aimed to analyse the pregnancy outcomes in patients with TPO positivity after appropriate L-Thyroxin supplementation with close surveillance. All pregnant women attending the antenatal clinic at Milann-The Fertility Center, Bangalore, India- from Aug 2013 to Oct 2014 whose booking TSH was more than 2.5 mIU/L were included along with those pregnant women with prior hypothyroidism who were TPO positive. Those with TPO positive status were vigorously managed with appropriate thyroxin supplementation and the doses were readjusted every 3 to 4 weeks until delivery. Women with recurrent pregnancy loss were also tested for TPO positivity and if tested positive, were monitored serially with TSH and fT4 levels every 3 to 4 weeks and appropriately supplemented with thyroxin when the levels fluctuated. The testing was done after an informed consent in all these women. The statistical software namely SAS 9.2, SPSS 15.0, Stata 10.1, MedCalc 9.0.1, Systat 12.0 and R environment ver.2.11.1 were used for the analysis of the data. 460 pregnant women were screened for thyroid dysfunction at booking of which 52% were hypothyroid. Majority of them (31.08%) were subclinically hypothyroid and the remaining were overt. 25% of the total no. of patients screened were TPO positive. The various pregnancy complications that were observed in the TPO positive women were gestational glucose intolerance [60%], threatened abortion [21%], midtrimester abortion [4.3%], premature rupture of membranes [4.3%], cervical funneling [4.3%] and fetal growth restriction [3.5%]. 95.6% of the patients who followed up till the end delivered beyond 30 weeks. 42.6% of these patients had previous history of recurrent abortions or adverse obstetric outcome and 21.7% of the delivered babies required NICU admission. Obstetric outcomes in our study in terms of midtrimester abortions, placental abruption, and preterm delivery improved for the better after close monitoring of the thyroid hormone [TSH and fT4] levels every 3 to 4 weeks with appropriate dose adjustment throughout pregnancy. Euthyroid women with TPO positive status enrolled in the study incidentally were those with recurrent abortions/infertility and required thyroxin supplements due to elevated Thyroid hormone (TSH, fT4) levels during the course of their pregnancy. Significant associations were found with age>30 years and Hyperhomocysteinemia [p=0.017], recurrent pregnancy loss or previous adverse obstetric outcomes [p=0.067] and APLA [p=0.029]. TPO antibody levels >600 I U/ml were significantly associated with development of gestational hypertension [p=0.041] and fetal growth restriction [p=0.082]. Euthyroid women with TPO positivity were also screened periodically to counter fluctuations of the thyroid hormone levels with appropriate thyroxin supplementation. Thus, early identification along with aggressive management of thyroid dysfunction and stratification of these patients based on their TPO status with appropriate thyroxin supplementation beginning in the first trimester will aid risk modulation and also help avert complications.

Keywords: TPO antibody, subclinical hypothyroidism, anti nuclear antibody, thyroxin

Procedia PDF Downloads 321
3084 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques

Authors: Masoomeh Alsadat Mirshafaei

Abstract:

The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.

Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest

Procedia PDF Downloads 28
3083 Rational Allocation of Resources in Water Infrastructure Development Projects

Authors: M. Macchiaroli, V. Pellecchia, L. Dolores

Abstract:

Within any European and world model of management of the integrated water service (in Italy only since 2012 is regulated by a national Authority, that is ARERA), a significant part is covered by the development of assets in terms of hydraulic networks and wastewater collection networks, including all their relative building works. The process of selecting the investments to be made starts from the preventive analysis of critical issues (water losses, unserved areas, low service standards, etc.) who occur in the managed territory of the Operator. Through the Program of Interventions (Provision by ARERA n. 580/2019/R/idr), the Operator provides to program the projects that can meet the emerged needs to determine the improvement of the water service levels. This phase (analyzed and solved by the author with a work published in 2019) involves the use of evaluation techniques (cost-benefit analysis, multi-criteria, and multi-objective techniques, neural networks, etc.) useful in selecting the most appropriate design answers to the different criticalities. However, at this point, the problem of establishing the time priorities between the various works deemed necessary remains open. That is, it is necessary to hierarchize the investments. In this decision-making moment, the interests of the private Operator are often opposed, which favors investments capable of generating high profitability, compared to those of the public controller (ARERA), which favors investments in greater social impact. In support of the concertation between these two actors, the protocol set out in the research has been developed, based on the AHP and capable of borrowing from the programmatic documents an orientation path for the settlement of the conflict. The protocol is applied to a case study of the Campania Region in Italy and has been professionally applied in the shared decision process between the manager and the local Authority.

Keywords: analytic hierarchy process, decision making, economic evaluation of projects, integrated water service

Procedia PDF Downloads 120
3082 Identification of Bayesian Network with Convolutional Neural Network

Authors: Mohamed Raouf Benmakrelouf, Wafa Karouche, Joseph Rynkiewicz

Abstract:

In this paper, we propose an alternative method to construct a Bayesian Network (BN). This method relies on a convolutional neural network (CNN classifier), which determinates the edges of the network skeleton. We train a CNN on a normalized empirical probability density distribution (NEPDF) for predicting causal interactions and relationships. We have to find the optimal Bayesian network structure for causal inference. Indeed, we are undertaking a search for pair-wise causality, depending on considered causal assumptions. In order to avoid unreasonable causal structure, we consider a blacklist and a whitelist of causality senses. We tested the method on real data to assess the influence of education on the voting intention for the extreme right-wing party. We show that, with this method, we get a safer causal structure of variables (Bayesian Network) and make to identify a variable that satisfies the backdoor criterion.

Keywords: Bayesian network, structure learning, optimal search, convolutional neural network, causal inference

Procedia PDF Downloads 171
3081 Smart Trust Management for Vehicular Networks

Authors: Amel Ltifi, Ahmed Zouinkhi, Med Salim Bouhlel

Abstract:

Spontaneous networks such as VANET are in general deployed in an open and thus easily accessible environment. Therefore, they are vulnerable to attacks. Trust management is one of a set of security solutions dedicated to this type of networks. Moreover, the strong mobility of the nodes (in the case of VANET) makes the establishment of a trust management system complex. In this paper, we present a concept of ‘Active Vehicle’ which means an autonomous vehicle that is able to make decision about trustworthiness of alert messages transmitted about road accidents. The behavior of an “Active Vehicle” is modeled using Petri Nets.

Keywords: active vehicle, cooperation, petri nets, trust management, VANET

Procedia PDF Downloads 399
3080 Home Legacy Device Output Estimation Using Temperature and Humidity Information by Adaptive Neural Fuzzy Inference System

Authors: Sung Hyun Yoo, In Hwan Choi, Jun Ho Jung, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Home energy management system (HEMS) has been issued to reduce the power consumption. The HEMS performs electric power control for the indoor electric device. However, HEMS commonly treats the smart devices. In this paper, we suggest the output estimation of home legacy device using the artificial neural fuzzy inference system (ANFIS). This paper discusses the overview and the architecture of the system. In addition, accurate performance of the output estimation using the ANFIS inference system is shown via a numerical example.

Keywords: artificial neural fuzzy inference system (ANFIS), home energy management system (HEMS), smart device, legacy device

Procedia PDF Downloads 537
3079 Predictive Analysis of the Stock Price Market Trends with Deep Learning

Authors: Suraj Mehrotra

Abstract:

The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.

Keywords: machine learning, testing set, artificial intelligence, stock analysis

Procedia PDF Downloads 92
3078 Comprehensive Evaluation of Thermal Environment and Its Countermeasures: A Case Study of Beijing

Authors: Yike Lamu, Jieyu Tang, Jialin Wu, Jianyun Huang

Abstract:

With the development of economy and science and technology, the urban heat island effect becomes more and more serious. Taking Beijing city as an example, this paper divides the value of each influence index of heat island intensity and establishes a mathematical model – neural network system based on the fuzzy comprehensive evaluation index of heat island effect. After data preprocessing, the algorithm of weight of each factor affecting heat island effect is generated, and the data of sex indexes affecting heat island intensity of Shenyang City and Shanghai City, Beijing, and Hangzhou City are input, and the result is automatically output by the neural network system. It is of practical significance to show the intensity of heat island effect by visual method, which is simple, intuitive and can be dynamically monitored.

Keywords: heat island effect, neural network, comprehensive evaluation, visualization

Procedia PDF Downloads 132
3077 Park’s Vector Approach to Detect an Inter Turn Stator Fault in a Doubly Fed Induction Machine by a Neural Network

Authors: Amel Ourici

Abstract:

An electrical machine failure that is not identified in an initial stage may become catastrophic and it may suffer severe damage. Thus, undetected machine faults may cascade in it failure, which in turn may cause production shutdowns. Such shutdowns are costly in terms of lost production time, maintenance costs, and wasted raw materials. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator fault in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect this fault, is based on Park’s Vector Approach, using a neural network.

Keywords: doubly fed induction machine, PWM inverter, inter turn stator fault, Park’s vector approach, neural network

Procedia PDF Downloads 605
3076 Performance Analysis of Wireless Sensor Networks in Areas for Sports Activities and Environmental Preservation

Authors: Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, José Anderson Rodrigues de Souza, Ítalo de Pontes Oliveira

Abstract:

This paper presents a analysis of performance the Received Strength Signal Indicator (RSSI) to Wireless Sensor Networks, with a finality of investigate a behavior of ZigBee devices operating into real environments. The test of performance was realize using two Series 1 ZigBee Module and two modules of development Arduino Uno R3, evaluating in this form a measurements of RSSI into environments like places of sports, preservation forests and water reservoir.

Keywords: wireless sensor networks, RSSI, Arduino, environments

Procedia PDF Downloads 616
3075 Biocompatibility Tests for Chronic Application of Sieve-Type Neural Electrodes in Rats

Authors: Jeong-Hyun Hong, Wonsuk Choi, Hyungdal Park, Jinseok Kim, Junesun Kim

Abstract:

Identifying the chronic functions of an implanted neural electrode is an important factor in acquiring neural signals through the electrode or restoring the nerve functions after peripheral nerve injury. The purpose of this study was to investigate the biocompatibility of the chronic implanted neural electrode into the sciatic nerve. To do this, a sieve-type neural electrode was implanted at proximal and distal ends of a transected sciatic nerve as an experimental group (Sieve group, n=6), and the end-to-end epineural repair was operated with the cut sciatic nerve as a control group (reconstruction group, n=6). All surgeries were performed on the sciatic nerve of the right leg in Sprague Dawley rats. Behavioral tests were performed before and 1, 4, 7, 10, 14, and weekly days until 5 months following surgery. Changes in sensory function were assessed by measuring paw withdrawal responses to mechanical and cold stimuli. Motor function was assessed by motion analysis using a Qualisys program, which showed a range of motion (ROM) related to the joints. Neurofilament-heavy chain and fibronectin expression were detected 5 months after surgery. In both groups, the paw withdrawal response to mechanical stimuli was slightly decreased from 3 weeks after surgery and then significantly decreased at 6 weeks after surgery. The paw withdrawal response to cold stimuli was increased from 4 days following surgery in both groups and began to decrease from 6 weeks after surgery. The ROM of the ankle joint was showed a similar pattern in both groups. There was significantly increased from 1 day after surgery and then decreased from 4 days after surgery. Neurofilament-heavy chain expression was observed throughout the entire sciatic nerve tissues in both groups. Especially, the sieve group was showed several neurofilaments that passed through the channels of the sieve-type neural electrode. In the reconstruction group, however, a suture line was seen through neurofilament-heavy chain expression up to 5 months following surgery. In the reconstruction group, fibronectin was detected throughout the sciatic nerve. However, in the sieve group, the fibronectin was observed only in the surrounding nervous tissues of an implanted neural electrode. The present results demonstrated that the implanted sieve-type neural electrode induced a focal inflammatory response. However, the chronic implanted sieve-type neural electrodes did not cause any further inflammatory response following peripheral nerve injury, suggesting the possibility of the chronic application of the sieve-type neural electrodes. This work was supported by the Basic Science Research Program funded by the Ministry of Science (2016R1D1A1B03933986), and by the convergence technology development program for bionic arm (2017M3C1B2085303).

Keywords: biocompatibility, motor functions, neural electrodes, peripheral nerve injury, sensory functions

Procedia PDF Downloads 143
3074 Reconstruction Spectral Reflectance Cube Based on Artificial Neural Network for Multispectral Imaging System

Authors: Iwan Cony Setiadi, Aulia M. T. Nasution

Abstract:

The multispectral imaging (MSI) technique has been used for skin analysis, especially for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel. For ergonomic purpose, our multispectral imaging system is decomposed in two parts: a light source compartment based on LED with 11 different wavelenghts and a monochromatic 8-Bit CCD camera with C-Mount Objective Lens. The software based on GUI MATLAB to control the system was also developed. Our system provides 11 monoband images and is coupled with a software reconstructing hyperspectral cubes from these multispectral images. In this paper, we proposed a new method to build a hyperspectral reflectance cube based on artificial neural network algorithm. After preliminary corrections, a neural network is trained using the 32 natural color from X-Rite Color Checker Passport. The learning procedure involves acquisition, by a spectrophotometer. This neural network is then used to retrieve a megapixel multispectral cube between 380 and 880 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. As hyperspectral cubes contain spectra for each pixel; comparison should be done between the theoretical values from the spectrophotometer and the reconstructed spectrum. To evaluate the performance of reconstruction, we used the Goodness of Fit Coefficient (GFC) and Root Mean Squared Error (RMSE). To validate reconstruction, the set of 8 colour patches reconstructed by our MSI system and the one recorded by the spectrophotometer were compared. The average GFC was 0.9990 (standard deviation = 0.0010) and the average RMSE is 0.2167 (standard deviation = 0.064).

Keywords: multispectral imaging, reflectance cube, spectral reconstruction, artificial neural network

Procedia PDF Downloads 317
3073 Medical Neural Classifier Based on Improved Genetic Algorithm

Authors: Fadzil Ahmad, Noor Ashidi Mat Isa

Abstract:

This study introduces an improved genetic algorithm procedure that focuses search around near optimal solution corresponded to a group of elite chromosome. This is achieved through a novel crossover technique known as Segmented Multi Chromosome Crossover. It preserves the highly important information contained in a gene segment of elite chromosome and allows an offspring to carry information from gene segment of multiple chromosomes. In this way the algorithm has better possibility to effectively explore the solution space. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of artificial neural network in pattern recognition of medical problem, the cancer and diabetes disease. The experimental result shows that the average classification accuracy of the cancer and diabetes dataset has improved by 0.1% and 0.3% respectively using the new algorithm.

Keywords: genetic algorithm, artificial neural network, pattern clasification, classification accuracy

Procedia PDF Downloads 470
3072 Blockchain Security in MANETs

Authors: Nada Mouchfiq, Ahmed Habbani, Chaimae Benjbara

Abstract:

The security aspect of the IoT occupies a place of great importance especially after the evolution that has known this field lastly because it must take into account the transformations and the new applications .Blockchain is a new technology dedicated to the data sharing. However, this does not work the same way in the different systems with different operating principles. This article will discuss network security using the Blockchain to facilitate the sending of messages and information, enabling the use of new processes and enabling autonomous coordination of devices. To do this, we will discuss proposed solutions to ensure a high level of security in these networks in the work of other researchers. Finally, our article will propose a method of security more adapted to our needs as a team working in the ad hoc networks, this method is based on the principle of the Blockchain and that we named ”MPR Blockchain”.

Keywords: Ad hocs networks, blockchain, MPR, security

Procedia PDF Downloads 178
3071 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.

Keywords: deep learning, optical Soliton, neural network, partial differential equation

Procedia PDF Downloads 122
3070 A Computer-Aided System for Detection and Classification of Liver Cirrhosis

Authors: Abdel Hadi N. Ebraheim, Eman Azomi, Nefisa A. Fahmy

Abstract:

This paper designs and implements a computer-aided system (CAS) to help detect and diagnose liver cirrhosis in patients with Chronic Hepatitis C. Our system reduces the required features (tests) the patient is asked to do to tests to their minimal best most informative subset of tests, with a diagnostic accuracy above 99%, and hence saving both time and costs. We use the Support Vector Machine (SVM) with cross-validation, a Multilayer Perceptron Neural Network (MLP), and a Generalized Regression Neural Network (GRNN) that employs a base of radial functions for functional approximation, as classifiers. Our system is tested on 199 subjects, of them 99 Chronic Hepatitis C.The subjects were selected from among the outpatient clinic in National Herpetology and Tropical Medicine Research Institute (NHTMRI).

Keywords: liver cirrhosis, artificial neural network, support vector machine, multi-layer perceptron, classification, accuracy

Procedia PDF Downloads 456
3069 Deep Neural Network Approach for Navigation of Autonomous Vehicles

Authors: Mayank Raj, V. G. Narendra

Abstract:

Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.

Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence

Procedia PDF Downloads 151
3068 Heat Source Temperature for Centered Heat Source on Isotropic Plate with Lower Surface Forced Cooling Using Neural Network and Three Different Materials

Authors: Fadwa Haraka, Ahmad Elouatouati, Mourad Taha Janan

Abstract:

In this study, we propose a neural network based method in order to calculate the heat source temperature of isotropic plate with lower surface forced cooling. To validate the proposed model, the heat source temperatures values will be compared to the analytical method -variables separation- and finite element model. The mathematical simulation is done through 3D numerical simulation by COMSOL software considering three different materials: Aluminum, Copper, and Graphite. The proposed method will lead to a formulation of the heat source temperature based on the thermal and geometric properties of the base plate.

Keywords: thermal model, thermal resistance, finite element simulation, neural network

Procedia PDF Downloads 351
3067 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 117
3066 The Evolutionary Characteristics and Mechanisms and of Multi-scale Intercity Innovation Enclave Networks in China’s Yangtze River Delta Region

Authors: Yuhua Yang, Yingcheng Li

Abstract:

As a new form of intercity economic cooperation, innovation enclaves have received much attention from governments and scholars in China, which are of great significance in promoting the flow of innovation elements and advancing regional integration. Utilizing inter-city linkages of innovation enclaves within and beyond the Yangtze River Delta Region, we construct multi-scalar innovation enclave networks in 2018 and 2022, and analyze the evolutionary characteristics and underlying mechanisms of the networks. Overall, we find that: (1) The intercity innovation enclave networks have the characteristics of preferential connection and are gradually forming a clear multi-scale and hierarchical structure, with Shanghai, Hangzhou and Nanjing as the core and other cities as the general nodes; (2) The intercity innovation enclave networks exhibit local clustering dominated by geographical proximity connections, and are becoming more noticeable in the effect of distance decay and functionally polycentric as the spatial scale decreases; (3) The intercity innovation enclave networks are influenced by both functional distance and multidimensional proximity. While the innovation potential differences caused by urban attributes internally drive the formation of innovation enclave cooperation, geographic proximity, technological proximity and institutional proximity externally affect the selection of cooperation partners.

Keywords: economic enclave, intercity cooperation, proximity, yangtze river delta region

Procedia PDF Downloads 18
3065 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations

Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang

Abstract:

Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.

Keywords: source identification, ordinary differential equations, label propagation, complex networks

Procedia PDF Downloads 2
3064 Integrating Neural Linguistic Programming with Exergaming

Authors: Shyam Sajan, Kamal Bijlani

Abstract:

The widespread effects of digital media help people to explore the world more and get entertained with no effort. People became fond of these kind of sedentary life style. The increase in sedentary time and a decrease in physical activities has negative impacts on human health. Even though the addiction to video games has been exploited in exergames, to make people exercise and enjoy game challenges, the contribution is restricted only to physical wellness. This paper proposes creation and implementation of a game with the help of digital media in a virtual environment. The game is designed by collaborating ideas from neural linguistic programming and Stroop effect that can also be used to identify a person’s mental state, to improve concentration and to eliminate various phobias. The multiplayer game is played in a virtual environment created with Kinect sensor, to make the game more motivating and interactive.

Keywords: exergaming, Kinect Sensor, Neural Linguistic Programming, Stroop Effect

Procedia PDF Downloads 432
3063 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network

Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim

Abstract:

In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.

Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt

Procedia PDF Downloads 352
3062 Deep Learning Approach for Chronic Kidney Disease Complications

Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia

Abstract:

Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.

Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis

Procedia PDF Downloads 131
3061 Using Probabilistic Neural Network (PNN) for Extracting Acoustic Microwaves (Bulk Acoustic Waves) in Piezoelectric Material

Authors: Hafdaoui Hichem, Mehadjebia Cherifa, Benatia Djamel

Abstract:

In this paper, we propose a new method for Bulk detection of an acoustic microwave signal during the propagation of acoustic microwaves in a piezoelectric substrate (Lithium Niobate LiNbO3). We have used the classification by probabilistic neural network (PNN) as a means of numerical analysis in which we classify all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity in order to build a model from which we note the Bulk waves easily. These singularities inform us of presence of Bulk waves in piezoelectric materials. By which we obtain accurate values for each of the coefficient attenuation and acoustic velocity for Bulk waves. This study will be very interesting in modeling and realization of acoustic microwaves devices (ultrasound) based on the propagation of acoustic microwaves.

Keywords: piezoelectric material, probabilistic neural network (PNN), classification, acoustic microwaves, bulk waves, the attenuation coefficient

Procedia PDF Downloads 427
3060 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances

Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun

Abstract:

In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.

Keywords: hydropower, high order neural network, Kalman filter, optimal control

Procedia PDF Downloads 295
3059 The Role of Social Networks in Promoting Ethics in Iranian Sports

Authors: Tayebeh Jameh-Bozorgi, M. Soleymani

Abstract:

In this research, the role of social networks in promoting ethics in Iranian sports was investigated. The research adopted a descriptive-analytic method, and the survey’s population consisted of all the athletes invited to the national football, volleyball, wrestling and taekwondo teams. Considering the limited population, the size of the society was considered as the sample size. After the distribution of the questionnaires, 167 respondents answered the questionnaires correctly. The data collection tool was chosen according to Hamid Ghasemi`s, standard questionnaire for social networking and mass media, which has 28 questions. Reliability of the questionnaire was calculated using Cronbach's alpha coefficient (94%). The content validity of the questionnaire was also approved by the professors. In this study, descriptive statistics and inferential statistical methods were used to analyze the data using statistical software. The benchmark tests used in this research included the following: Binomial test, Friedman test, Spearman correlation coefficient, Vermont Creamers, Good fit test and comparative prototypes. The results showed that athletes believed that social network has a significant role in promoting sport ethics in the community. Telegram has been known to play a big role than other social networks. Moreover, the respondents' view on the role of social networks in promoting sport ethics was significantly different in both men and women groups. In fact, women had a more positive attitude towards the role of social networks in promoting sport ethics than men. The respondents' view of the role of social networks in promoting the ethics of sports in the study groups also had a significant difference. Additionally, there was a significant and reverse relationship between the sports experience and the attitude of national athletes regarding the role of social networks in promoting ethics in sports.

Keywords: ethics, social networks, mass media, Iranian sports, internet

Procedia PDF Downloads 285
3058 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study

Authors: Laidi Maamar, Hanini Salah

Abstract:

The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.

Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria

Procedia PDF Downloads 494