Search results for: post classification change detection
14705 Colorimetric Detection of Ceftazdime through Azo Dye Formation on Polyethylenimine-Melamine Foam
Authors: Pajaree Donkhampa, Fuangfa Unob
Abstract:
Ceftazidime is an antibiotic drug commonly used to treat several human and veterinary infections. However, the presence of ceftazidime residues in the environment may induce microbial resistance and cause side effects to humans. Therefore, monitoring the level of ceftazidime in environmental resources is important. In this work, a melamine foam platform was proposed for simultaneous extraction and colorimetric detection of ceftazidime based on the azo dye formation on the surface. The melamine foam was chemically modified with polyethyleneimine (PEI) and characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Ceftazidime is a sample that was extracted on the PEI-modified melamine foam and further reacted with nitrite in an acidic medium to form an intermediate diazonium ion. The diazotized molecule underwent an azo coupling reaction with chromotropic acid to generate a red-colored compound. The material color changed from pale yellow to pink depending on the ceftazidime concentration. The photo of the obtained material was taken by a smartphone camera and the color intensity was determined by Image J software. The material fabrication and ceftazidime extraction and detection procedures were optimized. The detection of a sub-ppm level of ceftazidime was achieved without using a complex analytical instrument.Keywords: colorimetric detection, ceftazidime, melamine foam, extraction, azo dye
Procedia PDF Downloads 16914704 Common Laws Principles: A Way to Solve Global Environmental Change
Authors: Neelam Kadyan
Abstract:
Global environmental change is happening at an alarming rate in the present world. Floods, Tsunamis’, Avalanches, Change in Weather patterns, Rise in sea temperature, Landslides, are only few evidences of this change. To regulate such alarming growth of global change in environment certain regulatory system or mechanism is required. Nuisance,negligence,absolute liability,strict liability and trespass are some of the effective common law principles which are helpful in environmental problems. What we need today is sufficient law and adequate machinery to enforce the legal standards. Without law environmental standards cannot be enforced and once again there is need to adopt the common law approach in solving the problem of environmental change as through this approach the affected person can get compensation and as the same time it puts check on wrongdoer.Keywords: global environmental problems, nuisance, negligence, trespass, strict liability, absolute liability
Procedia PDF Downloads 56714703 Model of Optimal Centroids Approach for Multivariate Data Classification
Authors: Pham Van Nha, Le Cam Binh
Abstract:
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization
Procedia PDF Downloads 20914702 Functional Neurocognitive Imaging (fNCI): A Diagnostic Tool for Assessing Concussion Neuromarker Abnormalities and Treating Post-Concussion Syndrome in Mild Traumatic Brain Injury Patients
Authors: Parker Murray, Marci Johnson, Tyson S. Burnham, Alina K. Fong, Mark D. Allen, Bruce McIff
Abstract:
Purpose: Pathological dysregulation of Neurovascular Coupling (NVC) caused by mild traumatic brain injury (mTBI) is the predominant source of chronic post-concussion syndrome (PCS) symptomology. fNCI has the ability to localize dysregulation in NVC by measuring blood-oxygen-level-dependent (BOLD) signaling during the performance of fMRI-adapted neuropsychological evaluations. With fNCI, 57 brain areas consistently affected by concussion were identified as PCS neural markers, which were validated on large samples of concussion patients and healthy controls. These neuromarkers provide the basis for a computation of PCS severity which is referred to as the Severity Index Score (SIS). The SIS has proven valuable in making pre-treatment decisions, monitoring treatment efficiency, and assessing long-term stability of outcomes. Methods and Materials: After being scanned while performing various cognitive tasks, 476 concussed patients received an SIS score based on the neural dysregulation of the 57 previously identified brain regions. These scans provide an objective measurement of attentional, subcortical, visual processing, language processing, and executive functioning abilities, which were used as biomarkers for post-concussive neural dysregulation. Initial SIS scores were used to develop individualized therapy incorporating cognitive, occupational, and neuromuscular modalities. These scores were also used to establish pre-treatment benchmarks and measure post-treatment improvement. Results: Changes in SIS were calculated in percent change from pre- to post-treatment. Patients showed a mean improvement of 76.5 percent (σ= 23.3), and 75.7 percent of patients showed at least 60 percent improvement. Longitudinal reassessment of 24 of the patients, measured an average of 7.6 months post-treatment, shows that SIS improvement is maintained and improved, with an average of 90.6 percent improvement from their original scan. Conclusions: fNCI provides a reliable measurement of NVC allowing for identification of concussion pathology. Additionally, fNCI derived SIS scores direct tailored therapy to restore NVC, subsequently resolving chronic PCS resulting from mTBI.Keywords: concussion, functional magnetic resonance imaging (fMRI), neurovascular coupling (NVC), post-concussion syndrome (PCS)
Procedia PDF Downloads 36014701 An Electrochemical DNA Biosensor Based on Oracet Blue as a Label for Detection of Helicobacter pylori
Authors: Saeedeh Hajihosseini, Zahra Aghili, Navid Nasirizadeh
Abstract:
An innovative method of a DNA electrochemical biosensor based on Oracet Blue (OB) as an electroactive label and gold electrode (AuE) for detection of Helicobacter pylori, was offered. A single–stranded DNA probe with a thiol modification was covalently immobilized on the surface of the AuE by forming an Au–S bond. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of reduction of the OB binding to double– stranded DNA (ds–DNA). Our results showed that OB–based DNA biosensor has a decent potential for detection of single–base mismatch in target DNA. Selectivity of the proposed DNA biosensor was further confirmed in the presence of non–complementary and complementary DNA strands. Under optimum conditions, the electrochemical signal had a linear relationship with the concentration of the target DNA ranging from 0.3 nmol L-1 to 240.0 nmol L-1, and the detection limit was 0.17 nmol L-1, whit a promising reproducibility and repeatability.Keywords: DNA biosensor, oracet blue, Helicobacter pylori, electrode (AuE)
Procedia PDF Downloads 26714700 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion
Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang
Abstract:
Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.Keywords: roads, defect detection, visualization, deep learning
Procedia PDF Downloads 1314699 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays
Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev
Abstract:
In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.Keywords: antenna array, signal detection, ToA, AoA estimation
Procedia PDF Downloads 49914698 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models
Authors: Ethan James
Abstract:
Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina
Procedia PDF Downloads 18314697 Anonymous Editing Prevention Technique Using Gradient Method for High-Quality Video
Authors: Jiwon Lee, Chanho Jung, Si-Hwan Jang, Kyung-Ill Kim, Sanghyun Joo, Wook-Ho Son
Abstract:
Since the advances in digital imaging technologies have led to development of high quality digital devices, there are a lot of illegal copies of copyrighted video content on the internet. Thus, we propose a high-quality (HQ) video watermarking scheme that can prevent these illegal copies from spreading out. The proposed scheme is applied spatial and temporal gradient methods to improve the fidelity and detection performance. Also, the scheme duplicates the watermark signal temporally to alleviate the signal reduction caused by geometric and signal-processing distortions. Experimental results show that the proposed scheme achieves better performance than previously proposed schemes and it has high fidelity. The proposed scheme can be used in broadcast monitoring or traitor tracking applications which need fast detection process to prevent illegally recorded video content from spreading out.Keywords: editing prevention technique, gradient method, luminance change, video watermarking
Procedia PDF Downloads 45714696 An AK-Chart for the Non-Normal Data
Authors: Chia-Hau Liu, Tai-Yue Wang
Abstract:
Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data
Procedia PDF Downloads 42314695 The 10,000 Fold Effect of Retrograde Neurotransmission: A New Concept for Cerebral Palsy Revival by the Use of Nitric Oxide Donars
Authors: V. K. Tewari, M. Hussain, H. K. D. Gupta
Abstract:
Background: Nitric Oxide Donars (NODs) (intrathecal sodium nitroprusside (ITSNP) and oral tadalafil 20mg post ITSNP) has been studied in this context in cerebral palsy patients for fast recovery. This work proposes two mechanisms for acute cases and one mechanism for chronic cases, which are interrelated, for physiological recovery. a) Retrograde Neurotransmission (acute cases): 1) Normal excitatory impulse: at the synaptic level, glutamate activates NMDA receptors, with nitric oxide synthetase (NOS) on the postsynaptic membrane, for further propagation by the calcium-calmodulin complex. Nitric oxide (NO, produced by NOS) travels backward across the chemical synapse and binds the axon-terminal NO receptor/sGC of a presynaptic neuron, regulating anterograde neurotransmission (ANT) via retrograde neurotransmission (RNT). Heme is the ligand-binding site of the NO receptor/sGC. Heme exhibits > 10,000-fold higher affinity for NO than for oxygen (the 10,000-fold effect) and is completed in 20 msec. 2) Pathological conditions: normal synaptic activity, including both ANT and RNT, is absent. A NO donor (SNP) releases NO from NOS in the postsynaptic region. NO travels backward across a chemical synapse to bind to the heme of a NO receptor in the axon terminal of a presynaptic neuron, generating an impulse, as under normal conditions. b) Vasopasm: (acute cases) Perforators show vasospastic activity. NO vasodilates the perforators via the NO-cAMP pathway. c) Long-Term Potentiation (LTP): (chronic cases) The NO–cGMP-pathway plays a role in LTP at many synapses throughout the CNS and at the neuromuscular junction. LTP has been reviewed both generally and with respect to brain regions specific for memory/learning. Aims/Study Design: The principles of “generation of impulses from the presynaptic region to the postsynaptic region by very potent RNT (10,000-fold effect)” and “vasodilation of arteriolar perforators” are the basis of the authors’ hypothesis to treat cerebral palsy cases. Case-control prospective study. Materials and Methods: The experimental population included 82 cerebral palsy patients (10 patients were given control treatments without NOD or with 5% dextrose superfusion, and 72 patients comprised the NOD group). The mean time for superfusion was 5 months post-cerebral palsy. Pre- and post-NOD status was monitored by Gross Motor Function Classification System for Cerebral Palsy (GMFCS), MRI, and TCD studies. Results: After 7 days in the NOD group, the mean change in the GMFCS score was an increase of 1.2 points mean; after 3 months, there was an increase of 3.4 points mean, compared to the control-group increase of 0.1 points at 3 months. MRI and TCD documented the improvements. Conclusions: NOD (ITSNP boosts up the recovery and oral tadalafil maintains the recovery to a well-desired level) acts swiftly in the treatment of CP, acting within 7 days on 5 months post-cerebral palsy either of the three mechanisms.Keywords: cerebral palsy, intrathecal sodium nitroprusside, oral tadalafil, perforators, vasodilations, retrograde transmission, the 10, 000-fold effect, long-term potantiation
Procedia PDF Downloads 36414694 Clustering Color Space, Time Interest Points for Moving Objects
Authors: Insaf Bellamine, Hamid Tairi
Abstract:
Detecting moving objects in sequences is an essential step for video analysis. This paper mainly contributes to the Color Space-Time Interest Points (CSTIP) extraction and detection. We propose a new method for detection of moving objects. Two main steps compose the proposed method. First, we suggest to apply the algorithm of the detection of Color Space-Time Interest Points (CSTIP) on both components of the Color Structure-Texture Image Decomposition which is based on a Partial Differential Equation (PDE): a color geometric structure component and a color texture component. A descriptor is associated to each of these points. In a second stage, we address the problem of grouping the points (CSTIP) into clusters. Experiments and comparison to other motion detection methods on challenging sequences show the performance of the proposed method and its utility for video analysis. Experimental results are obtained from very different types of videos, namely sport videos and animation movies.Keywords: Color Space-Time Interest Points (CSTIP), Color Structure-Texture Image Decomposition, Motion Detection, clustering
Procedia PDF Downloads 37914693 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods
Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja
Abstract:
In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.Keywords: alzheimer, machine learning, deep learning, EEG
Procedia PDF Downloads 12914692 Constraining the Potential Nickel Laterite Area Using Geographic Information System-Based Multi-Criteria Rating in Surigao Del Sur
Authors: Reiner-Ace P. Mateo, Vince Paolo F. Obille
Abstract:
The traditional method of classifying the potential mineral resources requires a significant amount of time and money. In this paper, an alternative way to classify potential mineral resources with GIS application in Surigao del Sur. The three (3) analog map data inputs integrated to GIS are geologic map, topographic map, and land cover/vegetation map. The indicators used in the classification of potential nickel laterite integrated from the analog map data inputs are a geologic indicator, which is the presence of ultramafic rock from the geologic map; slope indicator and the presence of plateau edges from the topographic map; areas of forest land, grassland, and shrublands from the land cover/vegetation map. The potential mineral of the area was classified from low up to very high potential. The produced mineral potential classification map of Surigao del Sur has an estimated 4.63% low nickel laterite potential, 42.15% medium nickel laterite potential, 43.34% high nickel laterite potential, and 9.88% very high nickel laterite from its ultramafic terrains. For the validation of the produced map, it was compared with known occurrences of nickel laterite in the area using a nickel mining tenement map from the area with the application of remote sensing. Three (3) prominent nickel mining companies were delineated in the study area. The generated potential classification map of nickel-laterite in Surigao Del Sur may be of aid to the mining companies which are currently in the exploration phase in the study area. Also, the currently operating nickel mines in the study area can help to validate the reliability of the mineral classification map produced.Keywords: mineral potential classification, nickel laterites, GIS, remote sensing, Surigao del Sur
Procedia PDF Downloads 12414691 The Role Support Groups Play in Decreasing Depression and PTSD in Cancer Survivors: A Literature Review
Authors: Julianne Macmullen
Abstract:
Due to advances in technology and early detection and treatment of cancer, many cancer patients are surviving longer than five years post-diagnosis. Most cancer patients suffer from depression, anxiety, and post-traumatic stress disorder (PTSD) at some point during diagnosis, treatment, and survivorship. A subgroup of patients will continue to suffer from depression and PTSD and require early intervention. Support groups provide patients with the emotional and informational support they require while also giving survivors a sense of community, friendship, and purpose. This type of support is recognized by researchers to improve the quality of life while also decreasing depression and PTSD symptoms. The gaps in the literature include cultural diversity, minorities, and support groups involving cancer types other than breast cancer. Another gap in the literature includes the perceptions of cancer patients as well as longitudinal studies to determine the relationships between support groups and decreased depression and PTSD rates over time. Future research is required to fill the gaps in the literature mentioned previously. Future research is also needed to analyze the difference in age groups and different types of support groups such as professionally-led, peer-led, and online. Implications for practice involve providers assessing for the symptoms of depression and PTSD in order to offer prompt treatment and support services to those patients. In conclusion, social support by way of support groups improves the quality of life, gives survivors a sense of purpose to help others while also gaining the support they need, and reduces the rate of depressive episodes related to PTSD.Keywords: cancer survivor, survivorship, post-traumatic stress disorder (PTSD), depression, support groups
Procedia PDF Downloads 17714690 Timely Detection and Identification of Abnormalities for Process Monitoring
Authors: Hyun-Woo Cho
Abstract:
The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.Keywords: detection, monitoring, identification, measurement data, multivariate techniques
Procedia PDF Downloads 23714689 Case Study of Migrants, Cultures and Environmental Crisis
Authors: Christina Y. P. Ting
Abstract:
Migration is a global phenomenon with movements of migrants from developed and developing countries to the host societies. Migrants have changed the host countries’ demography – its population structure and also its ethnic cultural diversity. Acculturation of migrants in terms of their adoption of the host culture is seen as important to ensure that they ‘fit into’ their adopted country so as to participate in everyday public life. However, this research found that the increase of the China-born migrants’ post-migration consumption level had impact on Australia’s environment reflected not only because of their adoption of elements of the host culture, but also retention of aspects of Chinese culture – indicating that the influence of bi-culturalism was in operation. This research, which was based on the face-to-face interview with 61 China-born migrants in the suburb of Box Hill, Melbourne, investigated the pattern of change in the migrants’ consumption upon their settlement in Australia. Using an ecological footprint calculator, their post-migration footprints were found to be larger than pre-migration footprint. The uniquely-derived CALD (Culturally and Linguistically Diverse) Index was used to measure individuals’ strength of connectedness to ethnic culture. Multi-variant analysis was carried out to understand which independent factors that influence consumption best explain the change in footprint (which is the difference between pre-and post-migration footprints, as a dependent factor). These independent factors ranged from socio-economic and demographics to the cultural context, that is, the CALD Index and indicators of acculturation. The major findings from the analysis were: Chinese culture (as measured by the CALD Index) and indicators of acculturation such as length of residency and using English in communications besides the traditional factors such as age, income and education level made significant contributions to the large increase in the China-born group’s post-migration consumption level. This paper as part of a larger study found that younger migrants’ large change in their footprint were related to high income and low level of education. This group of migrants also practiced bi-cultural consumption in retaining ethnic culture and adopting the host culture. These findings have importantly highlighted that for a host society to tackle environmental crisis, governments need not only to understand the relationship between age and consumption behaviour, but also to understand and embrace the migrants’ ethnic cultures, which may act as bridges and/or fences in relationships. In conclusion, for governments to deal with national issues such as environmental crisis within a cultural diverse population, it necessitates an understanding of age and aspects of ethnic culture that may act as bridges and fences. This understanding can aid in putting in place policies that enable the co-existence of a hybrid of the ethnic and host cultures in order to create and maintain a harmonious and secured living environment for population groups.Keywords: bicultural consumer, CALD index, consumption, ethnic culture, migrants
Procedia PDF Downloads 24714688 Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images
Authors: Sofia Matoug, Amr Abdel-Dayem
Abstract:
This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.Keywords: Alzheimer, brain images, classification techniques, Magnetic Resonance Images MRI
Procedia PDF Downloads 30314687 Factors of Successful Transition of Individuals with Intellectual Disabilities from School to Employment
Authors: Mubarak S. Aldosari
Abstract:
Transition of adolescents with mild intellectual disabilities (ID) from secondary level to post-school employment level is a critical step for them and their families. Transition of adolescents with mild ID to post secondary levels faces serious difficulties and challenges. The current research highlighted the important factors related to the success of transition of students with mild ID to post-school employment such as vocational training, Self-determination skills, Social skills, and family involvement.Keywords: adolescents with mild intellectual disabilities, post-school employment, vocational training, self-determination skills, social skills, family involvement
Procedia PDF Downloads 29314686 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming
Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad
Abstract:
Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration
Procedia PDF Downloads 21614685 Effect of Three Desensitizers on Dentinal Tubule Occlusion and Bond Strength of Dentin Adhesives
Authors: Zou Xuan, Liu Hongchen
Abstract:
The ideal dentin desensitizing agent should not only have good biological safety, simple clinical operation mode, the superior treatment effect, but also should have a durable effect to resist the oral environmental temperature change and oral mechanical abrasion, so as to achieve a persistent desensitization effect. Also, when using desensitizing agent to prevent the post-operative hypersensitivity, we should not only prevent it from affecting crowns’ retention, but must understand its effects on bond strength of dentin adhesives. There are various of desensitizers and dentin adhesives in clinical treatment. They have different chemical or physical properties. Whether the use of desensitizing agent would affect the bond strength of dentin adhesives still need further research. In this in vitro study, we built the hypersensitive dentin model and post-operative dentin model, to evaluate the sealing effects and durability on exposed tubule by three different dentin desensitizers and to evaluate the sealing effects and the bond strength of dentin adhesives after using three different dentin desensitizers on post-operative dentin. The result of this study could provide some important references for clinical use of dentin desensitizing agent. 1. As to the three desensitizers, the hypersensitive dentin model was built to evaluate their sealing effects on exposed tubule by SEM observation and dentin permeability analysis. All of them could significantly reduce the dentin permeability. 2. Test specimens of three groups treated by desensitizers were subjected to aging treatment with 5000 times thermal cycling and toothbrush abrasion, and then dentin permeability was measured to evaluate the sealing durability of these three desensitizers on exposed tubule. The sealing durability of three groups were different. 3. The post-operative dentin model was built to evaluate the sealing effects of the three desensitizers on post-operative dentin by SEM and methylene blue. All of three desensitizers could reduce the dentin permeability significantly. 4. The influences of three desensitizers on the bonding efficiency of total-etch and self-etch adhesives were evaluated with the micro-tensile bond strength study and bond interface morphology observation. The dentin bond strength for Green or group was significantly lower than the other two groups (P<0.05).Keywords: dentin, desensitizer, dentin permeability, thermal cycling, micro-tensile bond strength
Procedia PDF Downloads 39414684 An Advanced YOLOv8 for Vehicle Detection in Intelligent Traffic Management
Authors: A. Degale Desta, Cheng Jian
Abstract:
Background: Vehicle detection accuracy is critical to intelligent transportation systems and autonomous driving. The state-of-the-art object identification technology YOLOv8 has shown significant gains in efficiency and detection accuracy. This study uses the BDD100K dataset, which is renowned for its extensive and varied annotations, to assess how well YOLOv8 performs in vehicle detection. Objectives: The primary objective of this research is to assess YOLOv8's performance in intelligent transportation system vehicle identification and its ability to accurately identify cars in urban environments for safety prioritization. Methods: The primary objective of this research is to assess YOLOv8's performance in intelligent transportation system vehicle identification and its ability to accurately identify cars in urban environments for safety prioritization. Results: The results show that YOLOv8 achieves high mAP, recall, precision, and F1-score values, indicating state-of-the-art performance. This suggests that YOLOv8 can identify cars in complex urban environments with a high degree of accuracy and reliable results in a variety of traffic scenarios. Conclusion: The results indicate that YOLOv8 is a useful tool for enhancing vehicle detection accuracy in intelligent transportation systems, hence advancing urban public safety and security. The model's demonstrated performance shows how well it may be incorporated into autonomous driving applications to improve situational awareness and responsiveness.Keywords: vehicle detection, YOLOv8, BDD100K, object detection, deep learning
Procedia PDF Downloads 1214683 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation
Authors: R. Nagarani
Abstract:
An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.Keywords: community detection, complex network, genetic algorithm, package, refactoring
Procedia PDF Downloads 42014682 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni
Authors: Devineni Vijay Bhaskar, Yendluri Raja
Abstract:
We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve
Procedia PDF Downloads 12314681 Trend Analysis of Annual Total Precipitation Data in Konya
Authors: Naci Büyükkaracığan
Abstract:
Hydroclimatic observation values are used in the planning of the project of water resources. Climate variables are the first of the values used in planning projects. At the same time, the climate system is a complex and interactive system involving the atmosphere, land surfaces, snow and bubbles, the oceans and other water structures. The amount and distribution of precipitation, which is an important climate parameter, is a limiting environmental factor for dispersed living things. Trend analysis is applied to the detection of the presence of a pattern or trend in the data set. Many trends work in different parts of the world are usually made for the determination of climate change. The detection and attribution of past trends and variability in climatic variables is essential for explaining potential future alteration resulting from anthropogenic activities. Parametric and non-parametric tests are used for determining the trends in climatic variables. In this study, trend tests were applied to annual total precipitation data obtained in period of 1972 and 2012, in the Konya Basin. Non-parametric trend tests, (Sen’s T, Spearman’s Rho, Mann-Kendal, Sen’s T trend, Wald-Wolfowitz) and parametric test (mean square) were applied to annual total precipitations of 15 stations for trend analysis. The linear slopes (change per unit time) of trends are calculated by using a non-parametric estimator developed by Sen. The beginning of trends is determined by using the Mann-Kendall rank correlation test. In addition, homogeneities in precipitation trends are tested by using a method developed by Van Belle and Hughes. As a result of tests, negative linear slopes were found in annual total precipitations in Konya.Keywords: trend analysis, precipitation, hydroclimatology, Konya
Procedia PDF Downloads 22014680 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier
Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim
Abstract:
There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.Keywords: data mining, document classifier, text mining, topic modeling
Procedia PDF Downloads 40314679 A Scoping Review of Trends in Climate Change Research in Ghana
Authors: Emmanuel Bintaayi Jeil, Kabila Abass, David Forkuor, Divine Odame Appiah
Abstract:
In Ghana, the nature and trends of climate change-related research are not clear. This study synthesises various research evidence on climate change published in Ghana between 1999 and 2018. Data for the review was gathered using a set of search words performed in Google Scholar, Web of Science, ProQuest, and ScienceDirect following scoping review guidelines stipulated by the Joanna Briggs Institute. Data were analysed using a scoping review. A total of 114 eligible articles were identified and included in the synthesis. Findings revealed that research on climate change in Ghana is growing steadily, and most of the studies were conducted in 2018. Trends in climate change research in Ghana relate to agriculture and development. There is a lack of attention on climate change issues related to women, water availability and management, and health. Future research should therefore focus on addressing these issues in addition to alternative livelihoods for vulnerable people.Keywords: scoping review, trends, climate change, research, Ghana
Procedia PDF Downloads 12514678 A Novel Treatment of the Arthritic Hip: A Prospective, Cross-Sectional Study on Changes Following Bone Marrow Concentrate Injection and Arthroscopic Debridement
Authors: A. Drapeaux, S. Aviles, E. Garfoot
Abstract:
Stem cell injections are a promising alternative treatment for hip osteoarthritis. Current literature has focused on short-term outcomes for both knee and hip osteoarthritis; however, there is a significant gap for longitudinal benefits for hip OA and limited firm conclusions due to small sample sizes. The purpose of this prospective study was to determine longitudinal changes in pain, function, and radiographs following bone marrow concentrate injection (BMAC) into the osteoarthritic hip joint. Methods: A prospective, cross-sectional study was conducted over the course of 12 months at an orthopedic practice. The study recruited 15 osteoarthritic pre-surgical hips with mild to moderate osteoarthritic severity who were scheduled to undergo hip arthroscopy. Data was collected at both pre-operative and post-operative time frames. Data collected included: hip radiographs, i-HOT-33 questionnaire data, BMAC autologous volume, and demographics. Questionnaire data was captured using Qualtrics XM software, and participants were sent an anonymous link at the following time frames: pre-operative, 2 weeks, 6 weeks, 12 weeks, 6 months, 12 months, and 24 months. Radiographic changes and BMAC volume were collected and reviewed by an orthopedic surgeon and sent to the primary investigator. Data was exported and analyzed in IBM-SPSS. Results: A total of 15 hips from 15 participants (mean age: 49, gender: 50% males, 50% females, BMI: 29.7) were used in the final analysis. Summative i-HOT 33 mean scores significantly changed between pre-operative status and 2-6 weeks post-operative status (p <.001) and pre-operative status and 3-6 months post-operative status (p <.001). There were no significant changes between other post-operative phases or between pre-operative status and 12 months post-operative. Significant improvements were found between summative i-HOT 33 mean (p<.001), daily pain (p<.001), daily sitting (p=.02), daily distance walked (p =.003), and daily limp (p=0.03) and post-operative status (2-6 weeks). No significant differences between demographic variables (gender, age, tobacco use, or diabetes) and i-HOT 33 summative mean scores. Discussion/Implications: The purpose of this study was to determine longitudinal changes in pain and function following a hip joint bone marrow concentrate injection. Results indicate that participants experience a significant improvement in pain and function between pre-operative and 2-6 weeks and 3-6 months post-injection. Participants also self-reported a significant change in average daily pain with sitting and walking between pre-operation and 2-6 weeks post-operative. This study includes a larger sample size of hip osteoarthritis cases; however, future research is warranted to include random controlled trials with a larger sample size.Keywords: adult stem cell, orthopedics, osteoarthritis (hip), patient outcome assessment
Procedia PDF Downloads 6614677 An Advanced Automated Brain Tumor Diagnostics Approach
Authors: Berkan Ural, Arif Eser, Sinan Apaydin
Abstract:
Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs.Keywords: image processing algorithms, magnetic resonance imaging, neural network, pattern recognition
Procedia PDF Downloads 41914676 Medical Advances in Diagnosing Neurological and Genetic Disorders
Authors: Simon B. N. Thompson
Abstract:
Retinoblastoma is a rare type of childhood genetic cancer that affects children worldwide. The diagnosis is often missed due to lack of education and difficulty in presentation of the tumor. Frequently, the tumor on the retina is noticed by photography when the red-eye flash, commonly seen in normal eyes, is not produced. Instead, a yellow or white colored patch is seen or the child has a noticeable strabismus. Early detection can be life-saving though often results in removal of the affected eye. Remaining functioning in the healthy eye when the child is young has resulted in super-vision and high or above-average intelligence. Technological advancement of cameras has helped in early detection. Brain imaging has also made possible early detection of neurological diseases and, together with the monitoring of cortisol levels and yawning frequency, promises to be the next new early diagnostic tool for the detection of neurological diseases where cortisol insufficiency is particularly salient, such as multiple sclerosis and Cushing’s disease.Keywords: cortisol, neurological disease, retinoblastoma, Thompson cortisol hypothesis, yawning
Procedia PDF Downloads 386