Search results for: operation estimation
3805 Numerical Study on the Performance of Upgraded Victorian Brown Coal in an Ironmaking Blast Furnace
Authors: Junhai Liao, Yansong Shen, Aibing Yu
Abstract:
A 3D numerical model is developed to simulate the complicated in-furnace combustion phenomena in the lower part of an ironmaking blast furnace (BF) while using pulverized coal injection (PCI) technology to reduce the consumption of relatively expensive coke. The computational domain covers blowpipe-tuyere-raceway-coke bed in the BF. The model is validated against experimental data in terms of gaseous compositions and coal burnout. Parameters, such as coal properties and some key operational variables, play an important role on the performance of coal combustion. Their diverse effects on different combustion characteristics are examined in the domain, in terms of gas compositions, temperature, and burnout. The heat generated by the combustion of upgraded Victorian brown coal is able to meet the heating requirement of a BF, hence making upgraded brown coal injected into BF possible. It is evidenced that the model is suitable to investigate the mechanism of the PCI operation in a BF. Prediction results provide scientific insights to optimize and control of the PCI operation. This model cuts the cost to investigate and understand the comprehensive combustion phenomena of upgraded Victorian brown coal in a full-scale BF.Keywords: blast furnace, numerical study, pulverized coal injection, Victorian brown coal
Procedia PDF Downloads 2433804 Experimental Investigation of Compressed Natural Gas Injector for Direct Injection System
Authors: Rafal Sochaczewski, Grzegorz Baranski, Adam Majczak
Abstract:
This paper presents the bench research results on a CNG injector at steady state. The quantities measured included voltage and current in a solenoid, pressure of gas behind an injector and injector’s flow rate. Accordingly, injector’s operation parameters were determined according to needle’s lift and injection pressure. The discrepancies between the theoretical (electric) and actual time of injection were defined to specify injector’s opening and closing lag times and the uniqueness of these values in successive cycles of gas injection. It has been demonstrated that needle’s lift has got a stronger impact on injector’s operating parameters than injection pressure. With increasing injection pressure, the force increases and closes an injection valve, which adversely affects uniqueness of injector’s operation. The paper also describes the concept of an injector dedicated to direct CNG injection into a combustion chamber in a dual-fuel engine. The injector’s design enables us to replace 80% of diesel fuel in a dual-fuel engine with a maximum power of 85 kW. Minimum injection pressure is 1,4 MPa then. Simultaneously, injector’s characteristics for varied needle’s lifts and injector’s nonlinear operating points were developed. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development, under Grant Agreement No. PBS1/A6/4/2012.Keywords: CNG injector, diesel engine, direct injection, dual fuel
Procedia PDF Downloads 2763803 The Sea Striker: The Relevance of Small Assets Using an Integrated Conception with Operational Performance Computations
Authors: Gaëtan Calvar, Christophe Bouvier, Alexis Blasselle
Abstract:
This paper presents the Sea Striker, a compact hydrofoil designed with the goal to address some of the issues raised by the recent evolutions of naval missions, threats and operation theatres in modern warfare. Able to perform a wide range of operations, the Sea Striker is a 40-meter stealth surface combatant equipped with a gas turbine and aft and forward foils to reach high speeds. The Sea Striker's stealthiness is enabled by the combination of composite structure, exterior design, and the advanced integration of sensors. The ship is fitted with a powerful and adaptable combat system, ensuring a versatile and efficient response to modern threats. Lightly Manned with a core crew of 10, this hydrofoil is highly automated and can be remoted pilote for special force operation or transit. Such a kind of ship is not new: it has been used in the past by different navies, for example, by the US Navy with the USS Pegasus. Nevertheless, the recent evolutions in science and technologies on the one hand, and the emergence of new missions, threats and operation theatres, on the other hand, put forward its concept as an answer to nowadays operational challenges. Indeed, even if multiples opinions and analyses can be given regarding the modern warfare and naval surface operations, general observations and tendencies can be drawn such as the major increase in the sensors and weapons types and ranges and, more generally, capacities; the emergence of new versatile and evolving threats and enemies, such as asymmetric groups, swarm drones or hypersonic missile; or the growing number of operation theatres located in more coastal and shallow waters. These researches were performed with a complete study of the ship after several operational performance computations in order to justify the relevance of using ships like the Sea Striker in naval surface operations. For the selected scenarios, the conception process enabled to measure the performance, namely a “Measure of Efficiency” in the NATO framework for 2 different kinds of models: A centralized, classic model, using large and powerful ships; and A distributed model relying on several Sea Strikers. After this stage, a was performed. Lethal, agile, stealth, compact and fitted with a complete set of sensors, the Sea Striker is a new major player in modern warfare and constitutes a very attractive response between the naval unit and the combat helicopter, enabling to reach high operational performances at a reduced cost.Keywords: surface combatant, compact, hydrofoil, stealth, velocity, lethal
Procedia PDF Downloads 1173802 A Two-Stage Bayesian Variable Selection Method with the Extension of Lasso for Geo-Referenced Data
Authors: Georgiana Onicescu, Yuqian Shen
Abstract:
Due to the complex nature of geo-referenced data, multicollinearity of the risk factors in public health spatial studies is a commonly encountered issue, which leads to low parameter estimation accuracy because it inflates the variance in the regression analysis. To address this issue, we proposed a two-stage variable selection method by extending the least absolute shrinkage and selection operator (Lasso) to the Bayesian spatial setting, investigating the impact of risk factors to health outcomes. Specifically, in stage I, we performed the variable selection using Bayesian Lasso and several other variable selection approaches. Then, in stage II, we performed the model selection with only the selected variables from stage I and compared again the methods. To evaluate the performance of the two-stage variable selection methods, we conducted a simulation study with different distributions for the risk factors, using geo-referenced count data as the outcome and Michigan as the research region. We considered the cases when all candidate risk factors are independently normally distributed, or follow a multivariate normal distribution with different correlation levels. Two other Bayesian variable selection methods, Binary indicator, and the combination of Binary indicator and Lasso were considered and compared as alternative methods. The simulation results indicated that the proposed two-stage Bayesian Lasso variable selection method has the best performance for both independent and dependent cases considered. When compared with the one-stage approach, and the other two alternative methods, the two-stage Bayesian Lasso approach provides the highest estimation accuracy in all scenarios considered.Keywords: Lasso, Bayesian analysis, spatial analysis, variable selection
Procedia PDF Downloads 1443801 Gariep Dam Basin Management for Satisfying Ecological Flow Requirements
Authors: Dimeji Abe, Nonso Okoye, Gideon Ikpimi, Prince Idemudia
Abstract:
Multi-reservoir optimization operation has been a critical issue for river basin management. Water, as a scarce resource, is in high demand and the problems associated with the reservoir as its storage facility are enormous. The complexity in balancing the supply and demand of this prime resource has created the need to examine the best way to solve the problem using optimization techniques. The objective of this study is to evaluate the performance of the multi-objective meta-heuristic algorithm for the operation of Gariep Dam for satisfying ecological flow requirements. This study uses an evolutionary algorithm called backtrack search algorithm (BSA) to determine the best way to optimise the dam operations of hydropower production, flood control, and water supply without affecting the environmental flow requirement for the survival of aquatic bodies and sustain life downstream of the dam. To achieve this objective, the operations of the dam that corresponds to different tradeoffs between the objectives are optimized. The results indicate the best model from the algorithm that satisfies all the objectives without any constraint violation. It is expected that hydropower generation will be improved and more water will be available for ecological flow requirements with the use of the algorithm. This algorithm also provides farmers with more irrigation water as well to improve their business.Keywords: BSA evolutionary algorithm, metaheuristics, optimization, river basin management
Procedia PDF Downloads 2453800 Comparing Xbar Charts: Conventional versus Reweighted Robust Estimation Methods for Univariate Data Sets
Authors: Ece Cigdem Mutlu, Burak Alakent
Abstract:
Maintaining the quality of manufactured products at a desired level depends on the stability of process dispersion and location parameters and detection of perturbations in these parameters as promptly as possible. Shewhart control chart is the most widely used technique in statistical process monitoring to monitor the quality of products and control process mean and variability. In the application of Xbar control charts, sample standard deviation and sample mean are known to be the most efficient conventional estimators in determining process dispersion and location parameters, respectively, based on the assumption of independent and normally distributed datasets. On the other hand, there is no guarantee that the real-world data would be normally distributed. In the cases of estimated process parameters from Phase I data clouded with outliers, efficiency of traditional estimators is significantly reduced, and performance of Xbar charts are undesirably low, e.g. occasional outliers in the rational subgroups in Phase I data set may considerably affect the sample mean and standard deviation, resulting a serious delay in detection of inferior products in Phase II. For more efficient application of control charts, it is required to use robust estimators against contaminations, which may exist in Phase I. In the current study, we present a simple approach to construct robust Xbar control charts using average distance to the median, Qn-estimator of scale, M-estimator of scale with logistic psi-function in the estimation of process dispersion parameter, and Harrell-Davis qth quantile estimator, Hodge-Lehmann estimator and M-estimator of location with Huber psi-function and logistic psi-function in the estimation of process location parameter. Phase I efficiency of proposed estimators and Phase II performance of Xbar charts constructed from these estimators are compared with the conventional mean and standard deviation statistics both under normality and against diffuse-localized and symmetric-asymmetric contaminations using 50,000 Monte Carlo simulations on MATLAB. Consequently, it is found that robust estimators yield parameter estimates with higher efficiency against all types of contaminations, and Xbar charts constructed using robust estimators have higher power in detecting disturbances, compared to conventional methods. Additionally, utilizing individuals charts to screen outlier subgroups and employing different combination of dispersion and location estimators on subgroups and individual observations are found to improve the performance of Xbar charts.Keywords: average run length, M-estimators, quality control, robust estimators
Procedia PDF Downloads 1903799 Multibody Constrained Dynamics of Y-Method Installation System for a Large Scale Subsea Equipment
Authors: Naeem Ullah, Menglan Duan, Mac Darlington Uche Onuoha
Abstract:
The lowering of subsea equipment into the deep waters is a challenging job due to the harsh offshore environment. Many researchers have introduced various installation systems to deploy the payload safely into the deep oceans. In general practice, dual floating vessels are not employed owing to the prevalent safety risks and hazards caused by ever-increasing dynamical effects sourced by mutual interaction between the bodies. However, while keeping in the view of the optimal grounds, such as economical one, the Y-method, the two conventional tugboats supporting the equipment by the two independent strands connected to a tri-plate above the equipment, has been employed to study multibody dynamics of the dual barge lifting operations. In this study, the two tugboats and the suspended payload (Y-method) are deployed for the lowering of subsea equipment into the deep waters as a multibody dynamic system. The two-wire ropes are used for the lifting and installation operation by this Y-method installation system. 6-dof (degree of freedom) for each body are considered to establish coupled 18-dof multibody model by embedding technique or velocity transformation technique. The fundamental and prompt advantage of this technique is that the constraint forces can be eliminated directly, and no extra computational effort is required for the elimination of the constraint forces. The inertial frame of reference is taken at the surface of the water as the time-independent frame of reference, and the floating frames of reference are introduced in each body as the time-dependent frames of reference in order to formulate the velocity transformation matrix. The local transformation of the generalized coordinates to the inertial frame of reference is executed by applying the Euler Angle approach. The spherical joints are articulated amongst the multibody as the kinematic joints. The hydrodynamic force, the two-strand forces, the hydrostatic force, and the mooring forces are taken into consideration as the external forces. The radiation force of the hydrodynamic force is obtained by employing the Cummins equation. The wave exciting part of the hydrodynamic force is obtained by using force response amplitude operators (RAOs) that are obtained by the commercial solver ‘OpenFOAM’. The strand force is obtained by considering the wire rope as an elastic spring. The nonlinear hydrostatic force is obtained by the pressure integration technique at each time step of the wave movement. The mooring forces are evaluated by using Faltinsen analytical approach. ‘The Runge Kutta Method’ of Fourth-Order is employed to evaluate the coupled equations of motion obtained for 18-dof multibody model. The results are correlated with the simulated Orcaflex Model. Moreover, the results from Orcaflex Model are compared with the MOSES Model from previous studies. The MBDS of single barge lifting operation from the former studies are compared with the MBDS of the established dual barge lifting operation. The dynamics of the dual barge lifting operation are found larger in magnitude as compared to the single barge lifting operation. It is noticed that the traction at the top connection point of the cable decreases with the increase in the length, and it becomes almost constant after passing through the splash zone.Keywords: dual barge lifting operation, Y-method, multibody dynamics, shipbuilding, installation of subsea equipment, shipbuilding
Procedia PDF Downloads 2033798 Wind Resource Estimation and Economic Analysis for Rakiraki, Fiji
Authors: Kaushal Kishore
Abstract:
Immense amount of imported fuels are used in Fiji for electricity generation, transportation and for carrying out miscellaneous household work. To alleviate its dependency on fossil fuel, paramount importance has been given to instigate the utilization of renewable energy sources for power generation and to reduce the environmental dilapidation. Amongst the many renewable energy sources, wind has been considered as one of the best identified renewable sources that are comprehensively available in Fiji. In this study the wind resource assessment for three locations in Rakiraki, Fiji has been carried out. The wind resource estimation at Rokavukavu, Navolau and at Tuvavatu has been analyzed. The average wind speed at 55 m above ground level (a.g.l) at Rokavukavu, Navolau, and Tuvavatu sites are 5.91 m/s, 8.94 m/s and 8.13 m/s with the turbulence intensity of 14.9%, 17.1%, and 11.7% respectively. The moment fitting method has been used to estimate the Weibull parameter and the power density at each sites. A high resolution wind resource map for the three locations has been developed by using Wind Atlas Analysis and Application Program (WAsP). The results obtained from WAsP exhibited good wind potential at Navolau and Tuvavatu sites. A wind farm has been proposed at Navolau and Tuvavatu site that comprises six Vergnet 275 kW wind turbines at each site. The annual energy production (AEP) for each wind farm is estimated and an economic analysis is performed. The economic analysis for the proposed wind farms at Navolau and Tuvavatu sites showed a payback period of 5 and 6 years respectively.Keywords: annual energy production, Rakiraki Fiji, turbulence intensity, Weibull parameter, wind speed, Wind Atlas Analysis and Application Program
Procedia PDF Downloads 1893797 Implant Operation Guiding Device for Dental Surgeons
Authors: Daniel Hyun
Abstract:
Dental implants are one of the top 3 reasons to sue a dentist for malpractice. It involves dental implant complications, usually because of the angle of the implant from the surgery. At present, surgeons usually use a 3D-printed navigator that is customized for the patient’s teeth. However, those can’t be reused for other patients as they require time. Therefore, I made a guiding device to assist the surgeon in implant operations. The surgeon can input the objective of the operation, and the device constantly checks if the surgery is heading towards the objective within the set range, telling the surgeon by manipulating the LED. We tested the prototypes’ consistency and accuracy by checking the graph, average standard deviation, and the average change of the calculated angles. The accuracy of performance was also acquired by running the device and checking the outputs. My first prototype used accelerometer and gyroscope sensors from the Arduino MPU6050 sensor, getting a changeable graph, achieving 0.0295 of standard deviations, 0.25 of average change, and 66.6% accuracy of performance. The second prototype used only the gyroscope, and it got a constant graph, achieved 0.0062 of standard deviation, 0.075 of average change, and 100% accuracy of performance, indicating that the accelerometer sensor aggravated the functionality of the device. Using the gyroscope sensor allowed it to measure the orientations of separate axes without affecting each other and also increased the stability and accuracy of the measurements.Keywords: implant, guide, accelerometer, gyroscope, handpiece
Procedia PDF Downloads 433796 Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions
Authors: Mohammad Ahmad, Sander Gersen, Erwin Wilbers
Abstract:
Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines.Keywords: carbon capture and storage, water solubility, equation of states, fluids engineering
Procedia PDF Downloads 3023795 Tracing Sources of Sediment in an Arid River, Southern Iran
Authors: Hesam Gholami
Abstract:
Elevated suspended sediment loads in riverine systems resulting from accelerated erosion due to human activities are a serious threat to the sustainable management of watersheds and ecosystem services therein worldwide. Therefore, mitigation of deleterious sediment effects as a distributed or non-point pollution source in the catchments requires reliable provenance information. Sediment tracing or sediment fingerprinting, as a combined process consisting of sampling, laboratory measurements, different statistical tests, and the application of mixing or unmixing models, is a useful technique for discriminating the sources of sediments. From 1996 to the present, different aspects of this technique, such as grouping the sources (spatial and individual sources), discriminating the potential sources by different statistical techniques, and modification of mixing and unmixing models, have been introduced and modified by many researchers worldwide, and have been applied to identify the provenance of fine materials in agricultural, rural, mountainous, and coastal catchments, and in large catchments with numerous lakes and reservoirs. In the last two decades, efforts exploring the uncertainties associated with sediment fingerprinting results have attracted increasing attention. The frameworks used to quantify the uncertainty associated with fingerprinting estimates can be divided into three groups comprising Monte Carlo simulation, Bayesian approaches and generalized likelihood uncertainty estimation (GLUE). Given the above background, the primary goal of this study was to apply geochemical fingerprinting within the GLUE framework in the estimation of sub-basin spatial sediment source contributions in the arid Mehran River catchment in southern Iran, which drains into the Persian Gulf. The accuracy of GLUE predictions generated using four different sets of statistical tests for discriminating three sub-basin spatial sources was evaluated using 10 virtual sediments (VS) samples with known source contributions using the root mean square error (RMSE) and mean absolute error (MAE). Based on the results, the contributions modeled by GLUE for the western, central and eastern sub-basins are 1-42% (overall mean 20%), 0.5-30% (overall mean 12%) and 55-84% (overall mean 68%), respectively. According to the mean absolute fit (MAF; ≥ 95% for all target sediment samples) and goodness-of-fit (GOF; ≥ 99% for all samples), our suggested modeling approach is an accurate technique to quantify the source of sediments in the catchments. Overall, the estimated source proportions can help watershed engineers plan the targeting of conservation programs for soil and water resources.Keywords: sediment source tracing, generalized likelihood uncertainty estimation, virtual sediment mixtures, Iran
Procedia PDF Downloads 743794 Derivation of Fragility Functions of Marine Drilling Risers Under Ocean Environment
Authors: Pranjal Srivastava, Piyali Sengupta
Abstract:
The performance of marine drilling risers is crucial in the offshore oil and gas industry to ensure safe drilling operation with minimum downtime. Experimental investigations on marine drilling risers are limited in the literature owing to the expensive and exhaustive test setup required to replicate the realistic riser model and ocean environment in the laboratory. Therefore, this study presents an analytical model of marine drilling riser for determining its fragility under ocean environmental loading. In this study, the marine drilling riser is idealized as a continuous beam having a concentric circular cross-section. Hydrodynamic loading acting on the marine drilling riser is determined by Morison’s equations. By considering the equilibrium of forces on the marine drilling riser for the connected and normal drilling conditions, the governing partial differential equations in terms of independent variables z (depth) and t (time) are derived. Subsequently, the Runge Kutta method and Finite Difference Method are employed for solving the partial differential equations arising from the analytical model. The proposed analytical approach is successfully validated with respect to the experimental results from the literature. From the dynamic analysis results of the proposed analytical approach, the critical design parameters peak displacements, upper and lower flex joint rotations and von Mises stresses of marine drilling risers are determined. An extensive parametric study is conducted to explore the effects of top tension, drilling depth, ocean current speed and platform drift on the critical design parameters of the marine drilling riser. Thereafter, incremental dynamic analysis is performed to derive the fragility functions of shallow water and deep-water marine drilling risers under ocean environmental loading. The proposed methodology can also be adopted for downtime estimation of marine drilling risers incorporating the ranges of uncertainties associated with the ocean environment, especially at deep and ultra-deepwater.Keywords: drilling riser, marine, analytical model, fragility
Procedia PDF Downloads 1473793 Comparison of Performance of Proton Exchange Membrane Fuel Cell Membrane Electrode Assemblies Prepared from 10 and 15-Micron Proton Exchange Membranes
Authors: Yingjeng James Li, Chiao-Chih Hu
Abstract:
Membrane electrode assemblies (MEAs) for proton exchange membrane fuel cell (PEMFC) applications were prepared by using 10 and 15 um PEMs. Except for different membrane thicknesses, these MEAs were prepared by the same conditions. They were prepared by using catalyst coated membrane (CCM) process. The catalyst employed is 40% Pt/C, and the Pt loading is 0.5mg/cm² for the sum of anode and cathode. Active area of the MEAs employed in this study is 5cm*5cm=25cm². In polarization measurements, the flow rates were always set at 1.2 stoic for anode and 3.0 stoic for cathode. The outlets were in open-end mode. The flow filed is tri-serpentine design. The cell temperatures and the humidification conditions were varied for the purpose of MEA performance observations. It was found that the performance of these two types of MEAs is about the same at fully or partially humidified operation conditions; however, 10um MEA exhibits higher current density in dry or low humidified conditions. For example, at 70C cell, 100% RH, and 0.6V condition, both MEAs have similar current density which is 1320 and 1342mA/cm² for 15um and 10um product, respectively. However, when in operation without external humidification, 10um MEA can produce 1085mA/cm²; whereas 15um MEA produces only 720mA/cm².Keywords: fuel cell, membrane electrode assembly, PEFC, PEMFC, proton exchange membrane
Procedia PDF Downloads 2413792 Simulation and Experimental Research on Pocketing Operation for Toolpath Optimization in CNC Milling
Authors: Rakesh Prajapati, Purvik Patel, Avadhoot Rajurkar
Abstract:
Nowadays, manufacturing industries augment their production lines with modern machining centers backed by CAM software. Several attempts are being made to cut down the programming time for machining complex geometries. Special programs/software have been developed to generate the digital numerical data and to prepare NC programs by using suitable post-processors for different machines. By selecting the tools and manufacturing process then applying tool paths and NC program are generated. More and more complex mechanical parts that earlier were being cast and assembled/manufactured by other processes are now being machined. Majority of these parts require lots of pocketing operations and find their applications in die and mold, turbo machinery, aircraft, nuclear, defense etc. Pocketing operations involve removal of large quantity of material from the metal surface. The modeling of warm cast and clamping a piece of food processing parts which the used of Pro-E and MasterCAM® software. Pocketing operation has been specifically chosen for toolpath optimization. Then after apply Pocketing toolpath, Multi Tool Selection and Reduce Air Time give the results of software simulation time and experimental machining time.Keywords: toolpath, part program, optimization, pocket
Procedia PDF Downloads 2883791 Fuel Quality of Biodiesel from Chlorella protothecoides Microalgae Species
Authors: Mukesh Kumar, Mahendra Pal Sharma
Abstract:
Depleting fossil fuel resources coupled with serious environmental degradation has led to the search for alternative resources for biodiesel production as a substitute of Petro-diesel. Currently, edible, non-edible oils and microalgal plant species are cultivated for biodiesel production. Looking at the demerits of edible and non-edible oil resources, the focus is being given to grow microalgal species having high oil productivities, less maturity time and less land requirement. Out of various microalgal species, Chlorella protothecoides is considered as the most promising species for biodiesel production owing to high oil content (58 %), faster growth rate (24–48 h) and high biomass productivity (1214 mg/l/day). The present paper reports the results of optimization of reaction parameters of transesterification process as well as the kinetics of transesterification with 97% yield of biodiesel. The measurement of fuel quality of microalgal biodiesel shows that the biodiesel exhibit very good oxidation stability (O.S) of 7 hrs, more than ASTM D6751 (3 hrs) and EN 14112 (6 hrs) specifications. The CP and PP of 0 and -3 °C are finding as per ASTM D 2500-11 and ASTM D 97-12 standards. These results show that the microalgal biodiesel does not need any enhancement in O.S & CFP and hence can be recommended to be directly used as MB100 or its blends into diesel engine operation. Further, scope is available for the production of binary blends using poor quality biodiesel for engine operation.Keywords: fuel quality, methyl ester yield, microalgae, transesterification
Procedia PDF Downloads 2153790 Modeling of Micro-Grid System Components Using MATLAB/Simulink
Authors: Mahmoud Fouad, Mervat Badr, Marwa Ibrahim
Abstract:
Micro-grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. Renewable power sources such as wind, solar and hydro offer high potential of benign power for future micro-grid systems. Micro-Grid (MG) is basically a low voltage (LV) or medium voltage (MV) distribution network which consists of a number of called distributed generators (DG’s); micro-sources such as photovoltaic array, fuel cell, wind turbine etc. energy storage systems and loads; operating as a single controllable system, that could be operated in both grid-connected and islanded mode. The capacity of the DG’s is sufficient to support all; or most, of the load connected to the micro-grid. This paper presents a micro-grid system based on wind and solar power sources and addresses issues related to operation, control, and stability of the system. Using Matlab/Simulink, the system is modeled and simulated to identify the relevant technical issues involved in the operation of a micro-grid system based on renewable power generation units.Keywords: micro-grid system, photovoltaic, wind turbine, energy storage, distributed generation, modeling
Procedia PDF Downloads 4353789 Designing for Sustainable Public Housing from Property Management and Financial Feasibility Perspectives
Authors: Kung-Jen Tu
Abstract:
Many public housing properties developed by local governments in Taiwan in the 1980s have deteriorated severely as these rental apartment buildings aged. The lack of building maintainability considerations during project design phase as well as insufficient maintenance funds have made it difficult and costly for local governments to maintain and keep public housing properties in good shape. In order to assist the local governments in achieving and delivering sustainable public housing, this paper intends to present a developed design evaluation method to be used to evaluate the presented design schemes from property management and financial feasibility perspectives during project design phase of public housing projects. The design evaluation results, i.e. the property management and financial implications of presented design schemes that could occur later during the building operation and maintenance phase, will be reported to the client (the government) and design schemes revised consequently. It is proposed that the design evaluation be performed from two main perspectives: (1) Operation and property management perspective: Three criteria such as spatial appropriateness, people and vehicle circulation and control, property management working spaces are used to evaluate the ‘operation and PM effectiveness’ of a design scheme. (2) Financial feasibility perspective: Four types of financial analyses are performed to assess the long term financial feasibility of a presented design scheme, such as operational and rental income analysis, management fund analysis, regular operational and property management service expense analysis, capital expense analysis. The ongoing Chung-Li Public Housing Project developed by the Taoyuan City Government will be used as a case to demonstrate how the presented design evaluation method is implemented. The results of property management assessment as well as the annual operational and capital expenses of a proposed design scheme are presented.Keywords: design evaluation method, management fund, operational and capital expenses, rental apartment buildings
Procedia PDF Downloads 3083788 Evaluating the Effect of Modern Technologies and Technics to Supply Energy of Buildings Using New Energies
Authors: Ali Reza Ghaffari, Hassan Saghi
Abstract:
Given the limitation of fossil resources to supply energy to buildings, recent years have seen a revival of interest in new technologies that produce the energy using new forms of energy in many developed countries. In this research, first the potentials of new energies in Iran are discussed and then based on case studies undertaken in a building in Tehran, the effects of utilizing new solar energy technology for supplying the energy of buildings are investigated. Then, by analyzing the data recorded over a four-year period, the technical performance of this system is investigated. According to the experimental operation plan, this system requires an auxiliary heating circuit for continuous operation over a year. Also, in the economic analysis, real conditions are considered and the results are recorded based on long-term data. Considering the purchase and commissioning building, supplementary energy consumption, etc. a comparison is drawn between the costs of using a solar water heater in a residential unit with the energy costs of a similar unit equipped with a conventional gas water heater. Given the current price of energy, using a solar water heater in the country will not economical, but considering the global energy prices, this system will have a return on investment after 4.5 years. It also produces 81% less pollution and saves about $21.5 on environmental pollution cleanup.Keywords: energy supply, new energies, new technologies, buildings
Procedia PDF Downloads 1623787 Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment
Authors: R. Sharma, S. Kumar, C. Sharma
Abstract:
A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water.Keywords: chlorophenolics, effluent, electrochemical treatment, wastewater
Procedia PDF Downloads 3873786 A Case Study on Barriers in Total Productive Maintenance Implementation in the Abu Dhabi Power Industry
Authors: A. Alseiari, P. Farrell
Abstract:
Maintenance has evolved into an imperative function, and contributes significantly to efficient and effective equipment performance. Total Productive Maintenance (TPM) is an ideal approach to support the development and implementation of operation performance improvement. It systematically aims to understand the function of equipment, the service quality relationship with equipment and the probable critical equipment failure conditions. Implementation of TPM programmes need strategic planning and there has been little research applied in this area within Middle-East power plants. In the power sector of Abu Dhabi, technologically and strategically, the power industry is extremely important, and it thus needs effective and efficient equipment management support. The aim of this paper is to investigate barriers to successful TPM implementation in the Abu Dhabi power industry. The study has been conducted in the context of a leading power company in the UAE. Semi-structured interviews were conducted with 16 employees, including maintenance and operation staff, and senior managers. The findings of this research identified seven key barriers, thus: managerial; organisational; cultural; financial; educational; communications; and auditing. With respect to the understanding of these barriers and obstacles in TPM implementation, the findings can contribute towards improved equipment operations and maintenance in power organisations.Keywords: Abu Dhabi Power Industry, TPM implementation, key barriers, organisational culture, critical success factors
Procedia PDF Downloads 2453785 Multi-Tooled Robotic Hand for Tele-Operation of Explosive Devices
Authors: Faik Derya Ince, Ugur Topgul, Alp Gunay, Can Bayoglu, Dante J. Dorantes-Gonzalez
Abstract:
Explosive attacks are arguably the most lethal threat that may occur in terrorist attacks. In order to counteract this issue, explosive ordnance disposal operators put their lives on the line to dispose of a possible improvised explosive device. Robots can make the disposal process more accurately and saving human lives. For this purpose, there is a demand for more accurate and dexterous manipulating robotic hands that can be teleoperated from a distance. The aim of this project is to design a robotic hand that contains two active and two passive DOF for each finger, as well as a minimum set of tools for mechanical cutting and screw driving within the same robotic hand. Both hand and toolset, are teleoperated from a distance from a haptic robotic glove in order to manipulate dangerous objects such as improvised explosive devices. SolidWorks® Computer-Aided Design, computerized dynamic simulation, and MATLAB® kinematic and static analysis were used for the robotic hand and toolset design. Novel, dexterous and robust solutions for the fingers were obtained, and six servo motors are used in total to remotely control the multi-tooled robotic hand. This project is still undergoing and presents currents results. Future research steps are also presented.Keywords: Explosive Manipulation, Robotic Hand, Tele-Operation, Tool Integration
Procedia PDF Downloads 1423784 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM
Authors: Prateek Singh, Dilshad Ahmad
Abstract:
Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish
Procedia PDF Downloads 2083783 Temperature Distribution in Friction Stir Welding Using Finite Element Method
Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah, Nur’amirah Busu, M. Arif Fadzleen Zainal Abidin, M. Amlie A. Kasim
Abstract:
Temperature distribution in Friction Stir Welding (FSW) of 6061-T6 Aluminum Alloy is modeled using the Finite Element Method (FEM). In order to obtain temperature distribution in the welded aluminum plates during welding operation, transient thermal finite element analyses are performed. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and workpiece is used in the analysis. Three-dimensional model for simulated process is carried out by using Altair HyperWork, a commercially available software. Transient thermal finite element analyses are performed in order to obtain the temperature distribution in the welded Aluminum plates during welding operation. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the workpiece.Keywords: frictions stir welding, temperature distribution, finite element method, altair hyperwork
Procedia PDF Downloads 5433782 Government Size and Economic Growth: Testing the Non-Linear Hypothesis for Nigeria
Authors: R. Santos Alimi
Abstract:
Using time-series techniques, this study empirically tested the validity of existing theory which stipulates there is a nonlinear relationship between government size and economic growth; such that government spending is growth-enhancing at low levels but growth-retarding at high levels, with the optimal size occurring somewhere in between. This study employed three estimation equations. First, for the size of government, two measures are considered as follows: (i) share of total expenditures to gross domestic product, (ii) share of recurrent expenditures to gross domestic product. Second, the study adopted real GDP (without government expenditure component), as a variant measure of economic growth other than the real total GDP, in estimating the optimal level of government expenditure. The study is based on annual Nigeria country-level data for the period 1970 to 2012. Estimation results show that the inverted U-shaped curve exists for the two measures of government size and the estimated optimum shares are 19.81% and 10.98%, respectively. Finally, with the adoption of real GDP (without government expenditure component), the optimum government size was found to be 12.58% of GDP. Our analysis shows that the actual share of government spending on average (2000 - 2012) is about 13.4%.This study adds to the literature confirming that the optimal government size exists not only for developed economies but also for developing economy like Nigeria. Thus, a public intervention threshold level that fosters economic growth is a reality; beyond this point economic growth should be left in the hands of the private sector. This finding has a significant implication for the appraisal of government spending and budgetary policy design.Keywords: public expenditure, economic growth, optimum level, fully modified OLS
Procedia PDF Downloads 4203781 Implementing Service Innovation in Public Transport Sector: Drivers and Challenges
Authors: Chaoren Lu
Abstract:
Public policy is playing as one driving force that influencing service innovation implementation in public sector. However, public policy implications cannot be automatically derived from the analyses of innovation issues, and there lacks of researches about the influences of public policy onto innovation. Moreover, innovation in service system is hard to predictable and whether policy encourages or hidden innovation is still lack of study. Especially, by given the context that multiple actors are active involving within the service delivery process in public transport sector, the complex driving forces and challenges are emerged towards the service operation. This study is aim to analysis the service innovation practices within service operating organizations to understand the drivers and challenges of service operation based on policy requirements, and where the innovation idea generating from. The case studies of Changzhou Transit Group and Nanjing Jiangnan Public Transit Group will be launched. This paper reveals the ambidexterity between top-down and bottom-up demands within the public transport service operating organizations contribute to the innovation ideas. Meanwhile, it contributes to the understanding of fundamental elements of service innovation is the new relationship creation and new way of sharing knowledge. The policy contributes to the trigger of creation of such relationship. The research question is: what are the sources of service innovation practices in local public transport system in China in in facing the policy implementation?Keywords: public value, service innovation, public transport service, China
Procedia PDF Downloads 3213780 Natural Monopolies and Their Regulation in Georgia
Authors: Marina Chavleishvili
Abstract:
Introduction: Today, the study of monopolies, including natural monopolies, is topical. In real life, pure monopolies are natural monopolies. Natural monopolies are used widely and are regulated by the state. In particular, the prices and rates are regulated. The paper considers the problems associated with the operation of natural monopolies in Georgia, in particular, their microeconomic analysis, pricing mechanisms, and legal mechanisms of their operation. The analysis was carried out on the example of the power industry. The rates of natural monopolies in Georgia are controlled by the Georgian National Energy and Water Supply Regulation Commission. The paper analyzes the positive role and importance of the regulatory body and the issues of improving the legislative base that will support the efficient operation of the branch. Methodology: In order to highlight natural monopolies market tendencies, the domestic and international markets are studied. An analysis of monopolies is carried out based on the endogenous and exogenous factors that determine the condition of companies, as well as the strategies chosen by firms to increase the market share. According to the productivity-based competitiveness assessment scheme, the segmentation opportunities, business environment, resources, and geographical location of monopolist companies are revealed. Main Findings: As a result of the analysis, certain assessments and conclusions were made. Natural monopolies are quite a complex and versatile economic element, and it is important to specify and duly control their frame conditions. It is important to determine the pricing policy of natural monopolies. The rates should be transparent, should show the level of life in the country, and should correspond to the incomes. The analysis confirmed the significance of the role of the Antimonopoly Service in the efficient management of natural monopolies. The law should adapt to reality and should be applied only to regulate the market. The present-day differential electricity tariffs varying depending on the consumed electrical power need revision. The effects of the electricity price discrimination are important, segmentation in different seasons in particular. Consumers use more electricity in winter than in summer, which is associated with extra capacities and maintenance costs. If the price of electricity in winter is higher than in summer, the electricity consumption will decrease in winter. The consumers will start to consume the electricity more economically, what will allow reducing extra capacities. Conclusion: Thus, the practical realization of the views given in the paper will contribute to the efficient operation of natural monopolies. Consequently, their activity will be oriented not on the reduction but on the increase of increments of the consumers or producers. Overall, the optimal management of the given fields will allow for improving the well-being throughout the country. In the article, conclusions are made, and the recommendations are developed to deliver effective policies and regulations toward the natural monopolies in Georgia.Keywords: monopolies, natural monopolies, regulation, antimonopoly service
Procedia PDF Downloads 863779 Metallurgical Analysis of Surface Defect in Telescopic Front Fork
Authors: Souvik Das, Janak Lal, Arthita Dey, Goutam Mukhopadhyay, Sandip Bhattacharya
Abstract:
Telescopic Front Fork (TFF) used in two wheelers, mainly motorcycle, is made from high strength steel, and is manufactured by high frequency induction welding process wherein hot rolled and pickled coils are used as input raw material for rolling of hollow tubes followed by heat treatment, surface treatment, cold drawing, tempering, etc. The final application demands superior quality TFF tubes w.r.t. surface finish and dimensional tolerances. This paper presents the investigation of two different types of failure of fork during operation. The investigation consists of visual inspection, chemical analysis, characterization of microstructure, and energy dispersive spectroscopy. In this paper, comprehensive investigations of two failed tube samples were investigated. In case of Sample #1, the result revealed that there was a pre-existing crack, known as hook crack, which leads to the cracking of the tube. Metallographic examination exhibited that during field operation the pre-existing hook crack was surfaced out leading to crack in the pipe. In case of Sample #2, presence of internal oxidation with decarburised grains inside the material indicates origin of the defect from slab stage.Keywords: telescopic front fork, induction welding, hook crack, internal oxidation
Procedia PDF Downloads 1313778 Fatigue Analysis and Life Estimation of the Helicopter Horizontal Tail under Cyclic Loading by Using Finite Element Method
Authors: Defne Uz
Abstract:
Horizontal Tail of helicopter is exposed to repeated oscillatory loading generated by aerodynamic and inertial loads, and bending moments depending on operating conditions and maneuvers of the helicopter. In order to ensure that maximum stress levels do not exceed certain fatigue limit of the material and to prevent damage, a numerical analysis approach can be utilized through the Finite Element Method. Therefore, in this paper, fatigue analysis of the Horizontal Tail model is studied numerically to predict high-cycle and low-cycle fatigue life related to defined loading. The analysis estimates the stress field at stress concentration regions such as around fastener holes where the maximum principal stresses are considered for each load case. Critical element identification of the main load carrying structural components of the model with rivet holes is performed as a post-process since critical regions with high-stress values are used as an input for fatigue life calculation. Once the maximum stress is obtained at the critical element and the related mean and alternating components, it is compared with the endurance limit by applying Soderberg approach. The constant life straight line provides the limit for several combinations of mean and alternating stresses. The life calculation based on S-N (Stress-Number of Cycles) curve is also applied with fully reversed loading to determine the number of cycles corresponds to the oscillatory stress with zero means. The results determine the appropriateness of the design of the model for its fatigue strength and the number of cycles that the model can withstand for the calculated stress. The effect of correctly determining the critical rivet holes is investigated by analyzing stresses at different structural parts in the model. In the case of low life prediction, alternative design solutions are developed, and flight hours can be estimated for the fatigue safe operation of the model.Keywords: fatigue analysis, finite element method, helicopter horizontal tail, life prediction, stress concentration
Procedia PDF Downloads 1453777 A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort
Authors: Xiaohua Zou, Yongxin Su
Abstract:
The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty.Keywords: HVAC, few-shot personalized thermal comfort, deep reinforcement learning, demand response
Procedia PDF Downloads 863776 Estimation of Endogenous Brain Noise from Brain Response to Flickering Visual Stimulation Magnetoencephalography Visual Perception Speed
Authors: Alexander N. Pisarchik, Parth Chholak
Abstract:
Intrinsic brain noise was estimated via magneto-encephalograms (MEG) recorded during perception of flickering visual stimuli with frequencies of 6.67 and 8.57 Hz. First, we measured the mean phase difference between the flicker signal and steady-state event-related field (SSERF) in the occipital area where the brain response at the flicker frequencies and their harmonics appeared in the power spectrum. Then, we calculated the probability distribution of the phase fluctuations in the regions of frequency locking and computed its kurtosis. Since kurtosis is a measure of the distribution’s sharpness, we suppose that inverse kurtosis is related to intrinsic brain noise. In our experiments, the kurtosis value varied among subjects from K = 3 to K = 5 for 6.67 Hz and from 2.6 to 4 for 8.57 Hz. The majority of subjects demonstrated leptokurtic kurtosis (K < 3), i.e., the distribution tails approached zero more slowly than Gaussian. In addition, we found a strong correlation between kurtosis and brain complexity measured as the correlation dimension, so that the MEGs of subjects with higher kurtosis exhibited lower complexity. The obtained results are discussed in the framework of nonlinear dynamics and complex network theories. Specifically, in a network of coupled oscillators, phase synchronization is mainly determined by two antagonistic factors, noise, and the coupling strength. While noise worsens phase synchronization, the coupling improves it. If we assume that each neuron and each synapse contribute to brain noise, the larger neuronal network should have stronger noise, and therefore phase synchronization should be worse, that results in smaller kurtosis. The described method for brain noise estimation can be useful for diagnostics of some brain pathologies associated with abnormal brain noise.Keywords: brain, flickering, magnetoencephalography, MEG, visual perception, perception time
Procedia PDF Downloads 148