Search results for: love waves
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 971

Search results for: love waves

101 Crowdsensing Project in the Brazilian Municipality of Florianópolis for the Number of Visitors Measurement

Authors: Carlos Roberto De Rolt, Julio da Silva Dias, Rafael Tezza, Luca Foschini, Matteo Mura

Abstract:

The seasonal population fluctuation presents a challenge to touristic cities since the number of inhabitants can double according to the season. The aim of this work is to develop a model that correlates the waste collected with the population of the city and also allow cooperation between the inhabitants and the local government. The model allows public managers to evaluate the impact of the seasonal population fluctuation on waste generation and also to improve planning resource utilization throughout the year. The study uses data from the company that collects the garbage in Florianópolis, a Brazilian city that presents the profile of a city that attracts tourists due to numerous beaches and warm weather. The fluctuations are caused by the number of people that come to the city throughout the year for holidays, summer time vacations or business events. Crowdsensing will be accomplished through smartphones with access to an app for data collection, with voluntary participation of the population. Crowdsensing participants can access information collected in waves for this portal. Crowdsensing represents an innovative and participatory approach which involves the population in gathering information to improve the quality of life. The management of crowdsensing solutions plays an essential role given the complexity to foster collaboration, establish available sensors and collect and process the collected data. Practical implications of this tool described in this paper refer, for example, to the management of seasonal tourism in a large municipality, whose public services are impacted by the floating of the population. Crowdsensing and big data support managers in predicting the arrival, permanence, and movement of people in a given urban area. Also, by linking crowdsourced data to databases from other public service providers - e.g., water, garbage collection, electricity, public transport, telecommunications - it is possible to estimate the floating of the population of an urban area affected by seasonal tourism. This approach supports the municipality in increasing the effectiveness of resource allocation while, at the same time, increasing the quality of the service as perceived by citizens and tourists.

Keywords: big data, dashboards, floating population, smart city, urban management solutions

Procedia PDF Downloads 270
100 Insight2OSC: Using Electroencephalography (EEG) Rhythms from the Emotiv Insight for Musical Composition via Open Sound Control (OSC)

Authors: Constanza Levicán, Andrés Aparicio, Rodrigo F. Cádiz

Abstract:

The artistic usage of Brain-computer interfaces (BCI), initially intended for medical purposes, has increased in the past few years as they become more affordable and available for the general population. One interesting question that arises from this practice is whether it is possible to compose or perform music by using only the brain as a musical instrument. In order to approach this question, we propose a BCI for musical composition, based on the representation of some mental states as the musician thinks about sounds. We developed software, called Insight2OSC, that allows the usage of the Emotiv Insight device as a musical instrument, by sending the EEG data to audio processing software such as MaxMSP through the OSC protocol. We provide two compositional applications bundled with the software, which we call Mapping your Mental State and Thinking On. The signals produced by the brain have different frequencies (or rhythms) depending on the level of activity, and they are classified as one of the following waves: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), gamma (30-50 Hz). These rhythms have been found to be related to some recognizable mental states. For example, the delta rhythm is predominant in a deep sleep, while beta and gamma rhythms have higher amplitudes when the person is awake and very concentrated. Our first application (Mapping your Mental State) produces different sounds representing the mental state of the person: focused, active, relaxed or in a state similar to a deep sleep by the selection of the dominants rhythms provided by the EEG device. The second application relies on the physiology of the brain, which is divided into several lobes: frontal, temporal, parietal and occipital. The frontal lobe is related to abstract thinking and high-level functions, the parietal lobe conveys the stimulus of the body senses, the occipital lobe contains the primary visual cortex and processes visual stimulus, the temporal lobe processes auditory information and it is important for memory tasks. In consequence, our second application (Thinking On) processes the audio output depending on the users’ brain activity as it activates a specific area of the brain that can be measured using the Insight device.

Keywords: BCI, music composition, emotiv insight, OSC

Procedia PDF Downloads 298
99 Decorative Plant Motifs in Traditional Art and Craft Practices: Pedagogical Perspectives

Authors: Geetanjali Sachdev

Abstract:

This paper explores the decorative uses of plant motifs and symbols in traditional Indian art and craft practices in order to assess their pedagogical significance within the context of plant study in higher education in art and design. It examines existing scholarship on decoration and plants in Indian art and craft practices. The impulse to elaborate upon an existing form or surface is an intrinsic part of many Indian traditional art and craft traditions where a deeply ingrained love for decoration exists. Indian craftsmen use an array of motifs and embellishments to adorn surfaces across a range of practices, and decoration is widely seen in textiles, jewellery, temple sculptures, vehicular art, architecture, and various other art, craft, and design traditions. Ornamentation in Indian cultural traditions has been attributed to religious and spiritual influences in the lives of India’s art and craft practitioners. Through adornment, surfaces and objects were ritually transformed to function both spiritually and physically. Decorative formations facilitate spiritual development and attune our minds to concepts that support contemplation. Within practices of ornamentation and adornment, there is extensive use of botanical motifs as Indian art and craft practitioners have historically been drawn towards nature as a source of inspiration. This is due to the centrality of agriculture in the lives of Indian people as well as in religion, where plants play a key role in religious rituals and festivals. Plant representations thus abound in two-dimensional and three-dimensional surface designs and patterns where the motifs range from being realistic, highly stylized, and curvilinear forms to geometric and abstract symbols. Existing scholarship reveals that these botanical embellishments reference a wide range of plants that include native and non-indigenous plants, as well as imaginary and mythical plants. Structural components of plant anatomy, such as leaves, stems, branches and buds, and flowers, are part of the repertoire of design motifs used, as are plant forms indicating different stages of growth, such as flowering buds and flowers in full bloom. Symmetry is a characteristic feature, and within the decorative register of various practices, plants are part of border zones and bands, connecting corners and all-over patterns, used as singular motifs and floral sprays on panels, and as elements within ornamental scenes. The results of the research indicate that decoration as a mode of inquiry into plants can serve as a platform to learn about local and global biodiversity and plant anatomy and develop artistic modes of thinking symbolically, metaphorically, imaginatively, and relationally about the plant world. The conclusion is drawn that engaging with ornamental modes of plant representation in traditional Indian art and craft practices is pedagogically significant for two reasons. Decoration as a mode of engagement cultivates both botanical and artistic understandings of plants. It also links learners with the indigenous art and craft traditions of their own culture.

Keywords: art and design pedagogy, decoration, plant motifs, traditional art and craft

Procedia PDF Downloads 67
98 Different Stages for the Creation of Electric Arc Plasma through Slow Rate Current Injection to Single Exploding Wire, by Simulation and Experiment

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

This work simulates the voltage drop and resistance of the explosion of copper wires of diameters 25, 40, and 100 µm surrounded by 1 bar nitrogen exposed to a 150 A current and before plasma formation. The absorption of electrical energy in an exploding wire is greatly diminished when the plasma is formed. This study shows the importance of considering radiation and heat conductivity in the accuracy of the circuit simulations. The radiation of the dense plasma formed on the wire surface is modeled with the Net Emission Coefficient (NEC) and is mixed with heat conductivity through PLASIMO® software. A time-transient code for analyzing wire explosions driven by a slow current rise rate is developed. It solves a circuit equation coupled with one-dimensional (1D) equations for the copper electrical conductivity as a function of its physical state and Net Emission Coefficient (NEC) radiation. At first, an initial voltage drop over the copper wire, current, and temperature distribution at the time of expansion is derived. The experiments have demonstrated that wires remain rather uniform lengthwise during the explosion and can be simulated utilizing 1D simulations. Data from the first stage are then used as the initial conditions of the second stage, in which a simplified 1D model for high-Mach-number flows is adopted to describe the expansion of the core. The current was carried by the vaporized wire material before it was dispersed in nitrogen by the shock wave. In the third stage, using a three-dimensional model of the test bench, the streamer threshold is estimated. Electrical breakdown voltage is calculated without solving a full-blown plasma model by integrating Townsend growth coefficients (TdGC) along electric field lines. BOLSIG⁺ and LAPLACE databases are used to calculate the TdGC at different mixture ratios of nitrogen/copper vapor. The simulations show both radiation and heat conductivity should be considered for an adequate description of wire resistance, and gaseous discharges start at lower voltages than expected due to ultraviolet radiation and the exploding shocks, which may have ionized the nitrogen.

Keywords: exploding wire, Townsend breakdown mechanism, streamer, metal vapor, shock waves

Procedia PDF Downloads 71
97 Comparison of Finite Difference Schemes for Numerical Study of Ripa Model

Authors: Sidrah Ahmed

Abstract:

The river and lakes flows are modeled mathematically by shallow water equations that are depth-averaged Reynolds Averaged Navier-Stokes equations under Boussinesq approximation. The temperature stratification dynamics influence the water quality and mixing characteristics. It is mainly due to the atmospheric conditions including air temperature, wind velocity, and radiative forcing. The experimental observations are commonly taken along vertical scales and are not sufficient to estimate small turbulence effects of temperature variations induced characteristics of shallow flows. Wind shear stress over the water surface influence flow patterns, heat fluxes and thermodynamics of water bodies as well. Hence it is crucial to couple temperature gradients with shallow water model to estimate the atmospheric effects on flow patterns. The Ripa system has been introduced to study ocean currents as a variant of shallow water equations with addition of temperature variations within the flow. Ripa model is a hyperbolic system of partial differential equations because all the eigenvalues of the system’s Jacobian matrix are real and distinct. The time steps of a numerical scheme are estimated with the eigenvalues of the system. The solution to Riemann problem of the Ripa model is composed of shocks, contact and rarefaction waves. Solving Ripa model with Riemann initial data with the central schemes is difficult due to the eigen structure of the system.This works presents the comparison of four different finite difference schemes for the numerical solution of Riemann problem for Ripa model. These schemes include Lax-Friedrichs, Lax-Wendroff, MacCormack scheme and a higher order finite difference scheme with WENO method. The numerical flux functions in both dimensions are approximated according to these methods. The temporal accuracy is achieved by employing TVD Runge Kutta method. The numerical tests are presented to examine the accuracy and robustness of the applied methods. It is revealed that Lax-Freidrichs scheme produces results with oscillations while Lax-Wendroff and higher order difference scheme produce quite better results.

Keywords: finite difference schemes, Riemann problem, shallow water equations, temperature gradients

Procedia PDF Downloads 189
96 Quantum Cum Synaptic-Neuronal Paradigm and Schema for Human Speech Output and Autism

Authors: Gobinathan Devathasan, Kezia Devathasan

Abstract:

Objective: To improve the current modified Broca-Wernicke-Lichtheim-Kussmaul speech schema and provide insight into autism. Methods: We reviewed the pertinent literature. Current findings, involving Brodmann areas 22, 46, 9,44,45,6,4 are based on neuropathology and functional MRI studies. However, in primary autism, there is no lucid explanation and changes described, whether neuropathology or functional MRI, appear consequential. Findings: We forward an enhanced model which may explain the enigma related to autism. Vowel output is subcortical and does need cortical representation whereas consonant speech is cortical in origin. Left lateralization is needed to commence the circuitry spin as our life have evolved with L-amino acids and left spin of electrons. A fundamental species difference is we are capable of three syllable-consonants and bi-syllable expression whereas cetaceans and songbirds are confined to single or dual consonants. The 4 key sites for speech are superior auditory cortex, Broca’s two areas, and the supplementary motor cortex. Using the Argand’s diagram and Reimann’s projection, we theorize that the Euclidean three dimensional synaptic neuronal circuits of speech are quantized to coherent waves, and then decoherence takes place at area 6 (spherical representation). In this quantum state complex, 3-consonant languages are instantaneously integrated and multiple languages can be learned, verbalized and differentiated. Conclusion: We postulate that evolutionary human speech is elevated to quantum interaction unlike cetaceans and birds to achieve the three consonants/bi-syllable speech. In classical primary autism, the sudden speech switches off and on noted in several cases could now be explained not by any anatomical lesion but failure of coherence. Area 6 projects directly into prefrontal saccadic area (8); and this further explains the second primary feature in autism: lack of eye contact. The third feature which is repetitive finger gestures, located adjacent to the speech/motor areas, are actual attempts to communicate with the autistic child akin to sign language for the deaf.

Keywords: quantum neuronal paradigm, cetaceans and human speech, autism and rapid magnetic stimulation, coherence and decoherence of speech

Procedia PDF Downloads 174
95 Influence of Long-Term Variability in Atmospheric Parameters on Ocean State over the Head Bay of Bengal

Authors: Anindita Patra, Prasad K. Bhaskaran

Abstract:

The atmosphere-ocean is a dynamically linked system that influences the exchange of energy, mass, and gas at the air-sea interface. The exchange of energy takes place in the form of sensible heat, latent heat, and momentum commonly referred to as fluxes along the atmosphere-ocean boundary. The large scale features such as El Nino and Southern Oscillation (ENSO) is a classic example on the interaction mechanism that occurs along the air-sea interface that deals with the inter-annual variability of the Earth’s Climate System. Most importantly the ocean and atmosphere as a coupled system acts in tandem thereby maintaining the energy balance of the climate system, a manifestation of the coupled air-sea interaction process. The present work is an attempt to understand the long-term variability in atmospheric parameters (from surface to upper levels) and investigate their role in influencing the surface ocean variables. More specifically the influence of atmospheric circulation and its variability influencing the mean Sea Level Pressure (SLP) has been explored. The study reports on a critical examination of both ocean-atmosphere parameters during a monsoon season over the head Bay of Bengal region. A trend analysis has been carried out for several atmospheric parameters such as the air temperature, geo-potential height, and omega (vertical velocity) for different vertical levels in the atmosphere (from surface to the troposphere) covering a period from 1992 to 2012. The Reanalysis 2 dataset from the National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) was used in this study. The study signifies that the variability in air temperature and omega corroborates with the variation noticed in geo-potential height. Further, the study advocates that for the lower atmosphere the geo-potential heights depict a typical east-west contrast exhibiting a zonal dipole behavior over the study domain. In addition, the study clearly brings to light that the variations over different levels in the atmosphere plays a pivotal role in supporting the observed dipole pattern as clearly evidenced from the trends in SLP, associated surface wind speed and significant wave height over the study domain.

Keywords: air temperature, geopotential height, head Bay of Bengal, long-term variability, NCEP reanalysis 2, omega, wind-waves

Procedia PDF Downloads 213
94 An Unusual Manifestation of Spirituality: Kamppi Chapel of Helsinki

Authors: Emine Umran Topcu

Abstract:

In both urban design and architecture, the primary goal is considered to be looking for ways in which people feel and think about space and place. Humans, in general, see a place as security and space as freedom and feel attached to place and long for space. Contemporary urban design manifests itself by addressing basic physical and psychological human needs. Not much attention is paid to transcendence. There seems to be a gap in the hierarchy of human needs. Usually, social aspects of public space are addressed through urban design. More personal and intimately scaled needs of an individual are neglected. How does built form contribute to an individual’s growth, contemplation, and exploration? In other words, a greater meaning in the immediate environment. Architects love to talk about meaning, poetics, attachment and other ethereal aspects of space that are not visible attributes of places. This paper aims at describing spirituality through built form with a personal experience of Kamppi Chapel of Helsinki. Experience covers various modes through which a person unfolds or constructs reality. Perception, sensation, emotion, and thought can be counted as for these modes. To experience is to get to know. What can be known is a construct of experience. Feelings and thoughts about space and place are very complex in human beings. They grow out of life experiences. The author had the chance of visiting Kamppi Chapel in April 2017, out of which the experience grew. The Kamppi Chapel is located on the South side of the busy Narinnka Square in central Helsinki. It offers a place to quiet down and compose oneself in a most lively urban space. With its curved wooden facade, the small building looks more like a museum than a chapel. It can be called a museum for contemplation. With its gently shaped interior, it embraces visitors and shields them from the hustle bustle of the city outside. Places of worship in all faiths signify sacred power. The author, having origins in a part of the world where domes and minarets dominate the cityscape, was impressed by the size and the architectural visibility of the Chapel. Anyone born and trained in such a tradition shares the inherent values and psychological mechanisms of spirituality, sacredness and the modest realities of their environment. Spirituality in all cultural traditions has not been analyzed and reinterpreted in new conceptual frameworks. Fundamentalists may reject this positivist attitude, but Kamppi Chapel as it stands does not look like it has a say like “I’m a model to be followed”. It just faces the task of representing a religious facility in an urban setting largely shaped by modern urban planning, which seems to the author as looking for a new definition of individual status. The quest between the established and the new is the demand for modern efficiency versus dogmatic rigidity. The architecture here has played a very promising and rewarding role for spirituality. The designers have been the translators for human desire for better life and aesthetic environment for an optimal satisfaction of local citizens and the visitors alike.

Keywords: architecture, Kamppi Chapel, spirituality, urban

Procedia PDF Downloads 169
93 Sediment Wave and Cyclic Steps as Mechanism for Sediment Transport in Submarine Canyons Thalweg

Authors: Taiwo Olusoji Lawrence, Peace Mawo Aaron

Abstract:

Seismic analysis of bedforms has proven to be one of the best ways to study deepwater sedimentary features. Canyons are known to be sediment transportation conduit. Sediment wave are large-scale depositional bedforms in various parts of the world's oceans formed predominantly by suspended load transport. These undulating objects usually have tens of meters to a few kilometers in wavelength and a height of several meters. Cyclic steps have long long-wave upstream-migrating bedforms confined by internal hydraulic jumps. They usually occur in regions with high gradients and slope breaks. Cyclic steps and migrating sediment waves are the most common bedform on the seafloor. Cyclic steps and related sediment wave bedforms are significant to the morpho-dynamic evolution of deep-water depositional systems architectural elements, especially those located along tectonically active margins with high gradients and slope breaks that can promote internal hydraulic jumps in turbidity currents. This report examined sedimentary activities and sediment transportation in submarine canyons and provided distinctive insight into factors that created a complex seabed canyon system in the Ceara Fortaleza basin Brazilian Equatorial Margin (BEM). The growing importance of cyclic steps made it imperative to understand the parameters leading to their formation, migration, and architecture as well as their controls on sediment transport in canyon thalweg. We extracted the parameters of the observed bedforms and evaluated the aspect ratio and asymmetricity. We developed a relationship between the hydraulic jump magnitude, depth of the hydraulic fall and the length of the cyclic step therein. It was understood that an increase in the height of the cyclic step increases the magnitude of the hydraulic jump and thereby increases the rate of deposition on the preceding stoss side. An increase in the length of the cyclic steps reduces the magnitude of the hydraulic jump and reduces the rate of deposition at the stoss side. Therefore, flat stoss side was noticed at most preceding cyclic step and sediment wave.

Keywords: Ceara Fortaleza, submarine canyons, cyclic steps, sediment wave

Procedia PDF Downloads 99
92 Resonant Fluorescence in a Two-Level Atom and the Terahertz Gap

Authors: Nikolai N. Bogolubov, Andrey V. Soldatov

Abstract:

Terahertz radiation occupies a range of frequencies somewhere from 100 GHz to approximately 10 THz, just between microwaves and infrared waves. This range of frequencies holds promise for many useful applications in experimental applied physics and technology. At the same time, reliable, simple techniques for generation, amplification, and modulation of electromagnetic radiation in this range are far from been developed enough to meet the requirements of its practical usage, especially in comparison to the level of technological abilities already achieved for other domains of the electromagnetic spectrum. This situation of relative underdevelopment of this potentially very important range of electromagnetic spectrum is known under the name of the 'terahertz gap.' Among other things, technological progress in the terahertz area has been impeded by the lack of compact, low energy consumption, easily controlled and continuously radiating terahertz radiation sources. Therefore, development of new techniques serving this purpose as well as various devices based on them is of obvious necessity. No doubt, it would be highly advantageous to employ the simplest of suitable physical systems as major critical components in these techniques and devices. The purpose of the present research was to show by means of conventional methods of non-equilibrium statistical mechanics and the theory of open quantum systems, that a thoroughly studied two-level quantum system, also known as an one-electron two-level 'atom', being driven by external classical monochromatic high-frequency (e.g. laser) field, can radiate continuously at much lower (e.g. terahertz) frequency in the fluorescent regime if the transition dipole moment operator of this 'atom' possesses permanent non-equal diagonal matrix elements. This assumption contradicts conventional assumption routinely made in quantum optics that only the non-diagonal matrix elements persist. The conventional assumption is pertinent to natural atoms and molecules and stems from the property of spatial inversion symmetry of their eigenstates. At the same time, such an assumption is justified no more in regard to artificially manufactured quantum systems of reduced dimensionality, such as, for example, quantum dots, which are often nicknamed 'artificial atoms' due to striking similarity of their optical properties to those ones of the real atoms. Possible ways to experimental observation and practical implementation of the predicted effect are discussed too.

Keywords: terahertz gap, two-level atom, resonant fluorescence, quantum dot, resonant fluorescence, two-level atom

Procedia PDF Downloads 251
91 Investigation of the EEG Signal Parameters during Epileptic Seizure Phases in Consequence to the Application of External Healing Therapy on Subjects

Authors: Karan Sharma, Ajay Kumar

Abstract:

Epileptic seizure is a type of disease due to which electrical charge in the brain flows abruptly resulting in abnormal activity by the subject. One percent of total world population gets epileptic seizure attacks.Due to abrupt flow of charge, EEG (Electroencephalogram) waveforms change. On the display appear a lot of spikes and sharp waves in the EEG signals. Detection of epileptic seizure by using conventional methods is time-consuming. Many methods have been evolved that detect it automatically. The initial part of this paper provides the review of techniques used to detect epileptic seizure automatically. The automatic detection is based on the feature extraction and classification patterns. For better accuracy decomposition of the signal is required before feature extraction. A number of parameters are calculated by the researchers using different techniques e.g. approximate entropy, sample entropy, Fuzzy approximate entropy, intrinsic mode function, cross-correlation etc. to discriminate between a normal signal & an epileptic seizure signal.The main objective of this review paper is to present the variations in the EEG signals at both stages (i) Interictal (recording between the epileptic seizure attacks). (ii) Ictal (recording during the epileptic seizure), using most appropriate methods of analysis to provide better healthcare diagnosis. This research paper then investigates the effects of a noninvasive healing therapy on the subjects by studying the EEG signals using latest signal processing techniques. The study has been conducted with Reiki as a healing technique, beneficial for restoring balance in cases of body mind alterations associated with an epileptic seizure. Reiki is practiced around the world and is recommended for different health services as a treatment approach. Reiki is an energy medicine, specifically a biofield therapy developed in Japan in the early 20th century. It is a system involving the laying on of hands, to stimulate the body’s natural energetic system. Earlier studies have shown an apparent connection between Reiki and the autonomous nervous system. The Reiki sessions are applied by an experienced therapist. EEG signals are measured at baseline, during session and post intervention to bring about effective epileptic seizure control or its elimination altogether.

Keywords: EEG signal, Reiki, time consuming, epileptic seizure

Procedia PDF Downloads 387
90 Preventative Programs for At-Risk Families of Child Maltreatment: Using Home Visiting and Intergenerational Relationships

Authors: Kristina Gordon

Abstract:

One in three children in the United States is a victim of a maltreatment investigation, and about one in nine children has a substantiated investigation. Home visiting is one of several preventative strategies rooted in an early childhood approach that fosters maternal, infant, and early childhood health, protection, and growth. In the United States, 88% of states report administering home visiting programs or state-designed models. The purpose of this study was to conduct a systematic review on home visiting programs in the United States focused on the prevention of child abuse and neglect. This systematic review included 17 articles which found that most of the studies reported optimistic results. Common across studies was program content related to (1) typical child development, (2) parenting education, and (3) child physical health. Although several factors common to home visiting and parenting interventions have been identified, no research has examined the common components of manualized home visiting programs to prevent child maltreatment. Child maltreatment can be addressed with home visiting programs with evidence-based components and cultural adaptations that increase prevention by assisting families in tackling the risk factors they face. An innovative approach to child maltreatment prevention is bringing together at-risk families with the aging community. This innovative approach was prompted due to existing home visitation programs only focusing on improving skillsets and providing temporary relationships. This innovative approach can provide the opportunity for families to build a relationship with an aging individual who can share their wisdom, skills, compassion, love, and guidance, to support families in their well-being and decrease child maltreatment occurrence. Families would be identified if they experience any of the risk factors, including parental substance abuse, parental mental illness, domestic violence, and poverty. Families would also be identified as at risk if they lack supportive relationships such as grandparents or relatives. Families would be referred by local agencies such as medical clinics, hospitals, schools, etc., that have interactions with families regularly. The aging community would be recruited at local housing communities and community centers. An aging individual would be identified by the elderly community when there is a need or interest in a relationship by or for the individual. Cultural considerations would be made when assessing for compatibility between the families and aging individuals. The pilot program will consist of a small group of participants to allow manageable results to evaluate the efficacy of the program. The pilot will include pre-and post-surveys to evaluate the impact of the program. From the results, data would be created to determine the efficacy as well as the sufficiency of the details of the pilot. The pilot would also be evaluated on whether families were referred to Child Protective Services during the pilot as it relates to the goal of decreasing child maltreatment. The ideal findings will display a decrease in child maltreatment and an increase in family well-being for participants.

Keywords: child maltreatment, home visiting, neglect, preventative, abuse

Procedia PDF Downloads 97
89 Reading against the Grain: Transcodifying Stimulus Meaning

Authors: Aba-Carina Pârlog

Abstract:

On translating, reading against the grain results in a wrong effect in the TL. Quine’s ocular irradiation plays an important part in the process of understanding and translating a text. The various types of textual radiation must be rendered by the translator by paying close attention to the types of field that produce it. The literary work must be seen as an indirect cause of an expressive effect in the TL that is supposed to be similar to the effect it has in the SL. If the adaptive transformative codes are so flexible that they encourage the translator to repeatedly leave out parts of the original work, then a subversive pattern emerges which changes the entire book. In this case, the translator is a writer per se who decides what goes in and out of the book, how the style is to be ciphered and what elements of ideology are to be highlighted. Figurative language must not be flattened for the sake of clarity or naturalness. The missing figurative elements make the translated text less interesting, less challenging and less vivid which reflects poorly on the writer. There is a close connection between style and the writer’s person. If the writer’s style is very much changed in a translation, the translation is useless as the original writer and his / her imaginative world can no longer be discovered. Then, a different writer appears and his / her creation surfaces. Changing meaning considered as a “negative shift” in translation defines one of the faulty transformative codes used by some translators. It is a dangerous tool which leads to adaptations that sometimes reflect the original less than the reader would wish to. It contradicts the very essence of the process of translation which is that of making a work available in a foreign language. Employing speculative aesthetics at the level of a text indicates the wish to create manipulative or subversive effects in the translated work. This is generally achieved by adding new words or connotations, creating new figures of speech or using explicitations. The irradiation patterns of the original work are neglected and the translator creates new meanings, implications, emphases and contexts. Again s/he turns into a new author who enjoys the freedom of expressing his / her ideas without the constraints of the original text. The stimulus meaning of a text is very important for a translator which is why reading against the grain is unadvisable during the process of translation. By paying attention to the waves of the SL input, a faithful literary work is produced which does not contradict general knowledge about foreign cultures and civilizations. Following personal common sense is essential in the field of translation as well as everywhere else.

Keywords: stimulus meaning, substance of expression, transformative code, translation

Procedia PDF Downloads 434
88 Assessment of Marine Diversity on Rocky Shores of Triporti, Vlore, Albania

Authors: Ina Nasto, Denada Sota, Kerol Sacaj, Brunilda Veshaj, Hajdar Kicaj

Abstract:

Rocky shores are often used as models to describe the dynamics of biodiversity around the world, making them one of the most studied marine habitats and their communities. The variability in the number of species and the abundance of hard-bottom benthic animal communities on the coast of Triporti, north of the Bay of Vlora, Albania is described in relation to environmental variables using multivariate analysis. The purpose of this study is to monitor the species composition, quantitative characteristics, and seasonal variations of the benthic macroinvertebrate populations of the shallow rocky shores of the Triportit-Vlora area, as well as the assessment of the ecological condition of these populations. The rocky coast of Triport, with a length of 7 km, was divided into three sampling stations, with three transects each of 50m. The monitoring of benthic macroinvertebrates in these areas was carried out in two seasons, spring and summer (June and August 2021). In each station and sampling season, estimates of the total and average density for each species, the presence constant, and the assessment of biodiversity were calculated using the Shannon–Wiener and the Simpson index. The species composition, the quantitative characteristics of the populations, and the indicators mentioned above were analyzed in a comparative way, both between the seasons within one station and between the three stations with each other. Statistical processing of the data was carried out to analyze the changes between the seasons and between the sampling stations for the species composition, population density, as well as correlation between them. A total of 105 benthic macroinvertebrate taxa were found, dominated by Molluscs, Annelids, and Arthropods. The small density of species and the low degree of stability of the macrozoobenthic community are indicators of the poor ecological condition and environmental impact in the studied areas. Algal cover, the diversity of coastal microhabitats, and the degree of coastal exposure to waves play an important role in the characteristics of macrozoobenthos populations in the studied areas. Also, the rocky shores are of special interest because, in the infralittoral of these areas, there are dense kelp forests with Gongolaria barbata, Ericaria crinita as well as fragmented areas with Posidonia oceanica that reach the coast, priority habitats of special conservation importance in the Mediterranean.

Keywords: Macrozoobenthic communities, Shannon–Wiener, Triporti, Vlore, rocky shore

Procedia PDF Downloads 80
87 Empirical Orthogonal Functions Analysis of Hydrophysical Characteristics in the Shira Lake in Southern Siberia

Authors: Olga S. Volodko, Lidiya A. Kompaniets, Ludmila V. Gavrilova

Abstract:

The method of empirical orthogonal functions is the method of data analysis with a complex spatial-temporal structure. This method allows us to decompose the data into a finite number of modes determined by empirically finding the eigenfunctions of data correlation matrix. The modes have different scales and can be associated with various physical processes. The empirical orthogonal function method has been widely used for the analysis of hydrophysical characteristics, for example, the analysis of sea surface temperatures in the Western North Atlantic, ocean surface currents in the North Carolina, the study of tropical wave disturbances etc. The method used in this study has been applied to the analysis of temperature and velocity measurements in saline Lake Shira (Southern Siberia, Russia). Shira is a shallow lake with the maximum depth of 25 m. The lake Shira can be considered as a closed water site because of it has one small river providing inflow and but it has no outflows. The main factor that causes the motion of fluid is variable wind flows. In summer the lake is strongly stratified by temperature and saline. Long-term measurements of the temperatures and currents were conducted at several points during summer 2014-2015. The temperature has been measured with an accuracy of 0.1 ºC. The data were analyzed using the empirical orthogonal function method in the real version. The first empirical eigenmode accounts for 70-80 % of the energy and can be interpreted as temperature distribution with a thermocline. A thermocline is a thermal layer where the temperature decreases rapidly from the mixed upper layer of the lake to much colder deep water. The higher order modes can be interpreted as oscillations induced by internal waves. The currents measurements were recorded using Acoustic Doppler Current Profilers 600 kHz and 1200 kHz. The data were analyzed using the empirical orthogonal function method in the complex version. The first empirical eigenmode accounts for about 40 % of the energy and corresponds to the Ekman spiral occurring in the case of a stationary homogeneous fluid. Other modes describe the effects associated with the stratification of fluids. The second and next empirical eigenmodes were associated with dynamical modes. These modes were obtained for a simplified model of inhomogeneous three-level fluid at a water site with a flat bottom.

Keywords: Ekman spiral, empirical orthogonal functions, data analysis, stratified fluid, thermocline

Procedia PDF Downloads 120
86 Ultra-Wideband Antennas for Ultra-Wideband Communication and Sensing Systems

Authors: Meng Miao, Jeongwoo Han, Cam Nguyen

Abstract:

Ultra-wideband (UWB) time-domain impulse communication and radar systems use ultra-short duration pulses in the sub-nanosecond regime, instead of continuous sinusoidal waves, to transmit information. The pulse directly generates a very wide-band instantaneous signal with various duty cycles depending on specific usages. In UWB systems, the total transmitted power is spread over an extremely wide range of frequencies; the power spectral density is extremely low. This effectively results in extremely small interference to other radio signals while maintains excellent immunity to interference from these signals. UWB devices can therefore work within frequencies already allocated for other radio services, thus helping to maximize this dwindling resource. Therefore, impulse UWB technique is attractive for realizing high-data-rate, short-range communications, ground penetrating radar (GPR), and military radar with relatively low emission power levels. UWB antennas are the key element dictating the transmitted and received pulse shape and amplitude in both time and frequency domain. They should have good impulse response with minimal distortion. To facilitate integration with transmitters and receivers employing microwave integrated circuits, UWB antennas enabling direct integration are preferred. We present the development of two UWB antennas operating from 3.1 to 10.6 GHz and 0.3-6 GHz for UWB systems that provide direct integration with microwave integrated circuits. The operation of these antennas is based on the principle of wave propagation on a non-uniform transmission line. Time-domain EM simulation is conducted to optimize the antenna structures to minimize reflections occurring at the open-end transition. Calculated and measured results of these UWB antennas are presented in both frequency and time domains. The antennas have good time-domain responses. They can transmit and receive pulses effectively with minimum distortion, little ringing, and small reflection, clearly demonstrating the signal fidelity of the antennas in reproducing the waveform of UWB signals which is critical for UWB sensors and communication systems. Good performance together with seamless microwave integrated-circuit integration makes these antennas good candidates not only for UWB applications but also for integration with printed-circuit UWB transmitters and receivers.

Keywords: antennas, ultra-wideband, UWB, UWB communication systems, UWB radar systems

Procedia PDF Downloads 222
85 Estimation of Delay Due to Loading–Unloading of Passengers by Buses and Reduction of Number of Lanes at Selected Intersections in Dhaka City

Authors: Sumit Roy, A. Uddin

Abstract:

One of the significant reasons that increase the delay time in the intersections at heterogeneous traffic condition is a sudden reduction of the capacity of the roads. In this study, the delay for this sudden capacity reduction is estimated. Two intersections at Dhaka city were brought in to thestudy, i.e., Kakrail intersection, and SAARC Foara intersection. At Kakrail intersection, the sudden reduction of capacity in the roads is seen at three downstream legs of the intersection, which are because of slowing down or stopping of buses for loading and unloading of passengers. At SAARC Foara intersection, sudden reduction of capacity was seen at two downstream legs. At one leg, it was due to loading and unloading of buses, and at another leg, it was for both loading and unloading of buses and reduction of the number of lanes. With these considerations, the delay due to intentional stoppage or slowing down of buses and reduction of the number of lanes for these two intersections are estimated. Here the delay was calculated by two approaches. The first approach came from the concept of shock waves in traffic streams. Here the delay was calculated by determining the flow, density, and speed before and after the sudden capacity reduction. The second approach came from the deterministic analysis of queues. Here the delay is calculated by determining the volume, capacity and reduced capacity of the road. After determining the delay from these two approaches, the results were compared. For this study, the video of each of the two intersections was recorded for one hour at the evening peak. Necessary geometric data were also taken to determine speed, flow, and density, etc. parameters. The delay was calculated for one hour with one-hour data at both intersections. In case of Kakrail intersection, the per hour delay for Kakrail circle leg was 5.79, and 7.15 minutes, for Shantinagar cross intersection leg they were 13.02 and 15.65 minutes, and for Paltan T intersection leg, they were 3 and 1.3 minutes for 1st and 2nd approaches respectively. In the case of SAARC Foara intersection, the delay at Shahbag leg was only due to intentional stopping or slowing down of busses, which were 3.2 and 3 minutes respectively for both approaches. For the Karwan Bazar leg, the delays for buses by both approaches were 5 and 7.5 minutes respectively, and for reduction of the number of lanes, the delays for both approaches were 2 and 1.78 minutes respectively. Measuring the delay per hour for the Kakrail leg at Kakrail circle, it is seen that, with consideration of the first approach of delay estimation, the intentional stoppage and lowering of speed by buses contribute to 26.24% of total delay at Kakrail circle. If the loading and unloading of buses at intersection is made forbidden near intersection, and any other measures for loading and unloading of passengers are established far enough from the intersections, then the delay at intersections can be reduced at significant scale, and the performance of the intersections can be enhanced.

Keywords: delay, deterministic queue analysis, shock wave, passenger loading-unloading

Procedia PDF Downloads 164
84 Investigation a New Approach "AGM" to Solve of Complicate Nonlinear Partial Differential Equations at All Engineering Field and Basic Science

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Davood Domiri Danji

Abstract:

In this conference, our aims are accuracy, capabilities and power at solving of the complicated non-linear partial differential. Our purpose is to enhance the ability to solve the mentioned nonlinear differential equations at basic science and engineering field and similar issues with a simple and innovative approach. As we know most of engineering system behavior in practical are nonlinear process (especially basic science and engineering field, etc.) and analytical solving (no numeric) these problems are difficult, complex, and sometimes impossible like (Fluids and Gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure an innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical method (Runge-Kutta 4th). Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear partial differential equations, with help of that there is no difficulty for solving all nonlinear differential equations. Advantages and ability of this method (AGM) as follow: (a) Non-linear Differential equations (ODE, PDE) are directly solvable by this method. (b) In this method (AGM), most of the time, without any dimensionless procedure, we can solve equation(s) by any boundary or initial condition number. (c) AGM method always is convergent in boundary or initial condition. (d) Parameters of exponential, Trigonometric and Logarithmic of the existent in the non-linear differential equation with AGM method no needs Taylor expand which are caused high solve precision. (e) AGM method is very flexible in the coding system, and can solve easily varieties of the non-linear differential equation at high acceptable accuracy. (f) One of the important advantages of this method is analytical solving with high accuracy such as partial differential equation in vibration in solids, waves in water and gas, with minimum initial and boundary condition capable to solve problem. (g) It is very important to present a general and simple approach for solving most problems of the differential equations with high non-linearity in engineering sciences especially at civil engineering, and compare output with numerical method (Runge-Kutta 4th) and Exact solutions.

Keywords: new approach, AGM, sets of coupled nonlinear differential equation, exact solutions, numerical

Procedia PDF Downloads 439
83 An Exploration of Special Education Teachers’ Practices in a Preschool Intellectual Disability Centre in Saudi Arabia

Authors: Faris Algahtani

Abstract:

Background: In Saudi Arabia, it is essential to know what practices are employed and considered effective by special education teachers working with preschool children with intellectual disabilities, as a prerequisite for identifying areas for improvement. Preschool provision for these children is expanding through a network of Intellectual Disability Centres while, in primary schools, a policy of inclusion is pursued and, in mainstream preschools, pilots have been aimed at enhancing learning in readiness for primary schooling. This potentially widens the attainment gap between preschool children with and without intellectual disabilities, and influences the scope for improvement. Goal: The aim of the study was to explore special education teachers’ practices and perceived perceptions of those practices for preschool children with intellectual disabilities in Saudi Arabia Method: A qualitative interpretive approach was adopted in order to gain a detailed understanding of how special education teachers in an IDC operate in the classroom. Fifteen semi-structured interviews were conducted with experienced and qualified teachers. Data were analysed using thematic analysis, based on themes identified from the literature review together with new themes emerging from the data. Findings: American methods strongly influenced teaching practices, in particular TEACCH (Treatment and Education of Autistic and Communication related handicapped Children), which emphasises structure, schedules and specific methods of teaching tasks and skills; and ABA (Applied Behaviour Analysis), which aims to improve behaviours and skills by concentrating on detailed breakdown and teaching of task components and rewarding desired behaviours with positive reinforcement. The Islamic concept of education strongly influenced which teaching techniques were used and considered effective, and how they were applied. Tensions were identified between the Islamic approach to disability, which accepts differences between human beings as created by Allah in order for people to learn to help and love each other, and the continuing stigmatisation of disability in many Arabic cultures, which means that parents who bring their children to an IDC often hope and expect that their children will be ‘cured’. Teaching methods were geared to reducing behavioural problems and social deficits rather than to developing the potential of the individual child, with some teachers recognizing the child’s need for greater freedom. Relationships with parents could in many instances be improved. Teachers considered both initial teacher education and professional development to be inadequate for their needs and the needs of the children they teach. This can be partly attributed to the separation of training and development of special education teachers from that of general teachers. Conclusion: Based on the findings, teachers’ practices could be improved by the inclusion of general teaching strategies, parent-teacher relationships and practical teaching experience in both initial teacher education and professional development. Coaching and mentoring support from carefully chosen special education teachers could assist the process, as could the presence of a second teacher or teaching assistant in the classroom.

Keywords: special education, intellectual disabilities, early intervention , early childhood

Procedia PDF Downloads 122
82 Bibliometric Analysis of Risk Assessment of Inland Maritime Accidents in Bangladesh

Authors: Armana Huq, Wahidur Rahman, Sanwar Kader

Abstract:

Inland waterways in Bangladesh play an important role in providing comfortable and low-cost transportation. However, a maritime accident takes away many lives and creates unwanted hazards every year. This article deals with a comprehensive review of inland waterway accidents in Bangladesh. Additionally, it includes a comparative study between international and local inland research studies based on maritime accidents. Articles from inland waterway areas are analyzed in-depth to make a comprehensive overview of the nature of the academic work, accident and risk management process and different statistical analyses. It is found that empirical analysis based on the available statistical data dominates the research domain. For this study, major maritime accident-related works in the last four decades in Bangladesh (1981-2020) are being analyzed for preparing a bibliometric analysis. A study of maritime accidents of passenger's vessels during (1995-2005) indicates that the predominant causes of accidents in the inland waterways of Bangladesh are collision and adverse weather (77%), out of which collision due to human error alone stands (56%) of all accidents. Another study refers that the major causes of waterway accidents are the collision (60.3%) during 2005-2015. About 92% of this collision occurs due to direct contact with another vessel during this period. Rest 8% of the collision occurs by contact with permanent obstruction on waterway roots. The overall analysis of another study from the last 25 years (1995-2019) shows that one of the main types of accidents is collisions, with about 50.3% of accidents being caused by collisions. The other accident types are cyclone or storm (17%), overload (11.3%), physical failure (10.3%), excessive waves (5.1%), and others (6%). Very few notable works are available in testing or comparing the methods, proposing new methods for risk management, modeling, uncertainty treatment. The purpose of this paper is to provide an overview of the evolution of marine accident-related research domain regarding inland waterway of Bangladesh and attempts to introduce new ideas and methods to abridge the gap between international and national inland maritime-related work domain which can be a catalyst for a safer and sustainable water transportation system in Bangladesh. Another fundamental objective of this paper is to navigate various national maritime authorities and international organizations to implement risk management processes for shipping accident prevention in waterway areas.

Keywords: inland waterways, safety, bibliometric analysis, risk management, accidents

Procedia PDF Downloads 172
81 The Gender Criteria of Film Criticism: Creating the ‘Big’, Avoiding the Important

Authors: Eleni Karasavvidou

Abstract:

Social and anthropological research, parallel to Gender Studies, highlighted the relationship between social structures and symbolic forms as an important field of interaction and recording of 'social trends.' Since the study of representations can contribute to the understanding of the social functions and power relations, they encompass. This ‘mirage,’ however, has not only to do with the representations themselves but also with the ways they are received and the film or critical narratives that are established as dominant or alternative. Cinema and the criticism of its cultural products are no exception. Even in the rapidly changing media landscape of the 21st century, movies remain an integral and widespread part of popular culture, making films an extremely powerful means of 'legitimizing' or 'delegitimizing' visions of domination and commonsensical gender stereotypes throughout society. And yet it is film criticism, the 'language per se,' that legitimizes, reinforces, rewards and reproduces (or at least ignores) the stereotypical depictions of female roles that remain common in the realm of film images. This creates the need for this issue to have emerged (also) in academic research questioning gender criteria in film reviews as part of the effort for an inclusive art and society. Qualitative content analysis is used to examine female roles in selected Oscar-nominated films against their reviews from leading websites and newspapers. This method was chosen because of the complex nature of the depictions in the films and the narratives they evoke. The films were divided into basic scenes depicting social functions, such as love and work relationships, positions of power and their function, which were analyzed by content analysis, with borrowings from structuralism (Gennette) and the local/universal images of intercultural philology (Wierlacher). In addition to the measurement of the general ‘representation-time’ by gender, other qualitative characteristics were also analyzed, such as: speaking time, sayings or key actions, overall quality of the character's action in relation to the development of the scenario and social representations in general, as well as quantitatively (insufficient number of female lead roles, fewer key supporting roles, relatively few female directors and people in the production chain and how they might affect screen representations. The quantitative analysis in this study was used to complement the qualitative content analysis. Then the focus shifted to the criteria of film criticism and to the rhetorical narratives that exclude or highlight in relation to gender identities and functions. In the criteria and language of film criticism, stereotypes are often reproduced or allegedly overturned within the framework of apolitical "identity politics," which mainly addresses the surface of a self-referential cultural-consumer product without connecting it more deeply with the material and cultural life. One of the prime examples of this failure is the Bechtel Test, which tracks whether female characters speak in a film regardless of whether women's stories are represented or not in the films analyzed. If perceived unbiased male filmmakers still fail to tell truly feminist stories, the same is the case with the criteria of criticism and the related interventions.

Keywords: representations, context analysis, reviews, sexist stereotypes

Procedia PDF Downloads 64
80 Performance Assessment of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser during ‘Hot Standby’ Operation

Authors: M. J. Baum, B. Gibbes, A. Grinham, S. Albert, D. Gale, P. Fisher

Abstract:

Alongside the rapid expansion of Seawater Reverse Osmosis technologies there is a concurrent increase in the production of hypersaline brine by-products. To minimize environmental impact, these by-products are commonly disposed into open-coastal environments via submerged diffuser systems as inclined dense jet outfalls. Despite the widespread implementation of this process, diffuser designs are typically based on small-scale laboratory experiments under idealistic quiescent conditions. Studies concerning diffuser performance in the field are limited. A set of experiments were conducted to assess the near field characteristics of brine disposal at the Gold Coast Desalination Plant offshore multiport diffuser. The aim of the field experiments was to determine the trajectory and dilution characteristics of the plume under various discharge configurations with production ranging 66 – 100% of plant operative capacity. The field monitoring system employed an unprecedented static array of temperature and electrical conductivity sensors in a three-dimensional grid surrounding a single diffuser port. Complimenting these measurements, Acoustic Doppler Current Profilers were also deployed to record current variability over the depth of the water column and wave characteristics. Recorded data suggested the open-coastal environment was highly active over the experimental duration with ambient velocities ranging 0.0 – 0.5 m∙s-1, with considerable variability over the depth of the water column observed. Variations in background electrical conductivity corresponding to salinity fluctuations of ± 1.7 g∙kg-1 were also observed. Increases in salinity were detected during plant operation and appeared to be most pronounced 10 – 30 m from the diffuser, consistent with trajectory predictions described by existing literature. Plume trajectories and respective dilutions extrapolated from salinity data are compared with empirical scaling arguments. Discharge properties were found to adequately correlate with modelling projections. Temporal and spatial variation of background processes and their subsequent influence upon discharge outcomes are discussed with a view to incorporating the influence of waves and ambient currents in the design of brine outfalls into the future.

Keywords: brine disposal, desalination, field study, negatively buoyant discharge

Procedia PDF Downloads 223
79 Media Representations of Gender-Intersectional Analysis of Impact/Influence on Collective Consciousness and Perceptions of Feminism, Gender, and Gender Equality: Evidence from Cultural/Media Sources in Nigeria

Authors: Olatawura O. Ladipo-Ajayi

Abstract:

The concept of gender equality is not new, nor are the efforts and movements toward achieving this concept. The idea of gender equality originates from the early feminist movements of the 1880s and its subsequent waves, all fighting to promote gender rights and equality focused on varying aspects and groups. Nonetheless, the progress and achievement of gender equality are not progressing at similar rates across the world and groups. This uneven progress is often due to varying social, cultural, political, and economic factors- some of which underpin intersectional identities and influence the perceptions of gender and associated gender roles that create gender inequality. In assessing perceptions of gender and assigned roles or expectations that cause inequalities, intersectionality provides a framework to interrogate how these perceptions are molded and reinforced to create marginalization. Intersectionality is increasingly becoming a lens and approach to understanding better inequalities and oppression, gender rights and equality, the challenges towards its achievement, and how best to move forward in the fight for gender rights, inclusion, and equality. In light of this, this paper looks at intersectional representations of gender in the media within cultural/social contexts -particularly entertainment media- and how this influences perceptions of gender and impacts progress toward achieving gender equality and advocacy. Furthermore, the paper explores how various identities and, to an extent, personal experiences play a role in the perceptions of and representations of gender, as well as influence the development of policies that promote gender equality in general. Finally, the paper applies qualitative and auto-ethnographic research methods building on intersectional and social construction frameworks to analyze gender representation in media using a literature review of scholarly works, news items, and cultural/social sources like Nigerian movies. It concludes that media influences ideas and perceptions of gender, gender equality, and rights; there isn’t enough being done in the media in the global south in general to challenge the hegemonic patriarchal and binary concepts of gender. As such, the growth of feminism and the attainment of gender equality is slow, and the concepts are often misunderstood. There is a need to leverage media outlets to influence perceptions and start informed conversations on gender equality and feminism; build collective consciousness locally to improve advocacy for equal gender rights. Changing the gender narrative in everyday media, including entertainment media, is one way to influence public perceptions of gender, promote the concept of gender equality, and advocate for policies that support equality.

Keywords: gender equality, gender roles/socialization, intersectionality, representation of gender in media

Procedia PDF Downloads 85
78 Turkish Airlines' 85th Anniversary Commercial: An Analysis of the Institutional Identity of a Brand in Terms of Glocalization

Authors: Samil Ozcan

Abstract:

Airlines companies target different customer segments in consideration of pricing, service quality, flight network, etc. and their brand positioning accords with the marketization strategies developed in the same direction. The object of this study, Turkish Airlines, has many peculiarities regarding its brand positioning as compared to its rivals in the sector. In the first place, it appeals to a global customer group because of its Star Alliance membership and its broad flight network with 315 destination points. The second group in its customer segmentation includes domestic customers. For this group, the company follows a marketing strategy that plays to local culture and accentuates the image of Turkishness as an emotional allurement. The advertisements and publicity projects designed in this regard put little emphasis on the service quality the company offers to its clients; it addresses the emotions of the consumers rather than individual benefits and relies on the historical memory of the nation and shared cultural values. This study examines the publicity work which aims at the second segment customer group focusing on Turkish Airlines’ 85th Anniversary Commercial through a symbolic meaning analysis approach. The commercial presents six stories with undertones of nationalism in its theme. Nationalism is not just the product of collective interests based on reason but a result of patriotism in the sense of loyalty to state and nation and love of ethnic belonging. While nationalism refers to concrete notions such as blood tie, common ancestor, shared history, it is not the actuality of these notions that it draws its real strength but the emotions invested in them. The myths of origin, the idea of common homeland, boundary definitions, and symbolic acculturation have instrumental importance in the development of these commonalities. The commercial offers concrete examples for an analysis of Connor’s definition of nationalism based on emotions. Turning points in the history of the Turkish Republic and the historical mission Turkish Airlines undertook in these moments are narrated in six stories in the commercial with a highly emotional theme. These emotions, in general, depend on collective memory generated by national consciousness. Collective memory is not simply remembering the past. It is constructed through the reconstruction and reinterpretation of the past in the present moment. This study inquires the motivations behind the nationalist emotions generated within the collective memory by engaging with the commercial released for the 85th anniversary of Turkish Airlines as the object of analysis. Symbols and myths can be read as key concepts that reveal the relation between 'identity and memory'. Because myths and symbols do not merely reflect on collective memory, they reconstruct it as well. In this sense, the theme of the commercial defines the image of Turkishness with virtues such as self-sacrifice, helpfulness, humanity, and courage through a process of meaning creation based on symbolic mythologizations like flag and homeland. These virtues go beyond describing the image of Turkishness and become an instrument that defines and gives meaning to Turkish identity.

Keywords: collective memory, emotions, identity, nationalism

Procedia PDF Downloads 140
77 Wave Powered Airlift PUMP for Primarily Artificial Upwelling

Authors: Bruno Cossu, Elio Carlo

Abstract:

The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.

Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter

Procedia PDF Downloads 131
76 Computational and Experimental Determination of Acoustic Impedance of Internal Combustion Engine Exhaust

Authors: A. O. Glazkov, A. S. Krylova, G. G. Nadareishvili, A. S. Terenchenko, S. I. Yudin

Abstract:

The topic of the presented materials concerns the design of the exhaust system for a certain internal combustion engine. The exhaust system can be divided into two parts. The first is the engine exhaust manifold, turbocharger, and catalytic converters, which are called “hot part.” The second part is the gas exhaust system, which contains elements exclusively for reducing exhaust noise (mufflers, resonators), the accepted designation of which is the "cold part." The design of the exhaust system from the point of view of acoustics, that is, reducing the exhaust noise to a predetermined level, consists of working on the second part. Modern computer technology and software make it possible to design "cold part" with high accuracy in a given frequency range but with the condition of accurately specifying the input parameters, namely, the amplitude spectrum of the input noise and the acoustic impedance of the noise source in the form of an engine with a "hot part". Getting this data is a difficult problem: high temperatures, high exhaust gas velocities (turbulent flows), and high sound pressure levels (non-linearity mode) do not allow the calculated results to be applied with sufficient accuracy. The aim of this work is to obtain the most reliable acoustic output parameters of an engine with a "hot part" based on a complex of computational and experimental studies. The presented methodology includes several parts. The first part is a finite element simulation of the "cold part" of the exhaust system (taking into account the acoustic impedance of radiation of outlet pipe into open space) with the result in the form of the input impedance of "cold part". The second part is a finite element simulation of the "hot part" of the exhaust system (taking into account acoustic characteristics of catalytic units and geometry of turbocharger) with the result in the form of the input impedance of the "hot part". The next third part of the technique consists of the mathematical processing of the results according to the proposed formula for the convergence of the mathematical series of summation of multiple reflections of the acoustic signal "cold part" - "hot part". This is followed by conducting a set of tests on an engine stand with two high-temperature pressure sensors measuring pulsations in the nozzle between "hot part" and "cold part" of the exhaust system and subsequent processing of test results according to a well-known technique in order to separate the "incident" and "reflected" waves. The final stage consists of the mathematical processing of all calculated and experimental data to obtain a result in the form of a spectrum of the amplitude of the engine noise and its acoustic impedance.

Keywords: acoustic impedance, engine exhaust system, FEM model, test stand

Procedia PDF Downloads 38
75 A Microwave and Millimeter-Wave Transmit/Receive Switch Subsystem for Communication Systems

Authors: Donghyun Lee, Cam Nguyen

Abstract:

Multi-band systems offer a great deal of benefit in modern communication and radar systems. In particular, multi-band antenna-array radar systems with their extended frequency diversity provide numerous advantages in detection, identification, locating and tracking a wide range of targets, including enhanced detection coverage, accurate target location, reduced survey time and cost, increased resolution, improved reliability and target information. An accurate calibration is a critical issue in antenna array systems. The amplitude and phase errors in multi-band and multi-polarization antenna array transceivers result in inaccurate target detection, deteriorated resolution and reduced reliability. Furthermore, the digital beam former without the RF domain phase-shifting is less immune to unfiltered interference signals, which can lead to receiver saturation in array systems. Therefore, implementing integrated front-end architecture, which can support calibration function with low insertion and filtering function from the farthest end of an array transceiver is of great interest. We report a dual K/Ka-band T/R/Calibration switch module with quasi-elliptic dual-bandpass filtering function implementing a Q-enhanced metamaterial transmission line. A unique dual-band frequency response is incorporated in the reception and calibration path of the proposed switch module utilizing the composite right/left-handed meta material transmission line coupled with a Colpitts-style negative generation circuit. The fabricated fully integrated T/R/Calibration switch module in 0.18-μm BiCMOS technology exhibits insertion loss of 4.9-12.3 dB and isolation of more than 45 dB in the reception, transmission and calibration mode of operation. In the reception and calibration mode, the dual-band frequency response centered at 24.5 and 35 GHz exhibits out-of-band rejection of more than 30 dB compared to the pass bands below 10.5 GHz and above 59.5 GHz. The rejection between the pass bands reaches more than 50 dB. In all modes of operation, the IP1-dB is between 4 and 11 dBm. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: microwaves, millimeter waves, T/R switch, wireless communications, wireless communications

Procedia PDF Downloads 148
74 Frequency Interpretation of a Wave Function, and a Vertical Waveform Treated as A 'Quantum Leap'

Authors: Anthony Coogan

Abstract:

Born’s probability interpretation of wave functions would have led to nearly identical results had he chosen a frequency interpretation instead. Logically, Born may have assumed that only one electron was under consideration, making it nonsensical to propose a frequency wave. Author’s suggestion: the actual experimental results were not of a single electron; rather, they were groups of reflected x-ray photons. The vertical waveform used by Scrhödinger in his Particle in the Box Theory makes sense if it was intended to represent a quantum leap. The author extended the single vertical panel to form a bar chart: separate panels would represent different energy levels. The proposed bar chart would be populated by reflected photons. Expansion of basic ideas: Part of Scrhödinger’s ‘Particle in the Box’ theory may be valid despite negative criticism. The waveform used in the diagram is vertical, which may seem absurd because real waves decay at a measurable rate, rather than instantaneously. However, there may be one notable exception. Supposedly, following from the theory, the Uncertainty Principle was derived – may a Quantum Leap not be represented as an instantaneous waveform? The great Scrhödinger must have had some reason to suggest a vertical waveform if the prevalent belief was that they did not exist. Complex wave forms representing a particle are usually assumed to be continuous. The actual observations made were x-ray photons, some of which had struck an electron, been reflected, and then moved toward a detector. From Born’s perspective, doing similar work the years in question 1926-7, he would also have considered a single electron – leading him to choose a probability distribution. Probability Distributions appear very similar to Frequency Distributions, but the former are considered to represent the likelihood of future events. Born’s interpretation of the results of quantum experiments led (or perhaps misled) many researchers into claiming that humans can influence events just by looking at them, e.g. collapsing complex wave functions by 'looking at the electron to see which slit it emerged from', while in reality light reflected from the electron moved in the observer’s direction after the electron had moved away. Astronomers may say that they 'look out into the universe' but are actually using logic opposed to the views of Newton and Hooke and many observers such as Romer, in that light carries information from a source or reflector to an observer, rather the reverse. Conclusion: Due to the controversial nature of these ideas, especially its implications about the nature of complex numbers used in applications in science and engineering, some time may pass before any consensus is reached.

Keywords: complex wave functions not necessary, frequency distributions instead of wave functions, information carried by light, sketch graph of uncertainty principle

Procedia PDF Downloads 186
73 Psychophysiological Adaptive Automation Based on Fuzzy Controller

Authors: Liliana Villavicencio, Yohn Garcia, Pallavi Singh, Luis Fernando Cruz, Wilfrido Moreno

Abstract:

Psychophysiological adaptive automation is a concept that combines human physiological data and computer algorithms to create personalized interfaces and experiences for users. This approach aims to enhance human learning by adapting to individual needs and preferences and optimizing the interaction between humans and machines. According to neurosciences, the working memory demand during the student learning process is modified when the student is learning a new subject or topic, managing and/or fulfilling a specific task goal. A sudden increase in working memory demand modifies the level of students’ attention, engagement, and cognitive load. The proposed psychophysiological adaptive automation system will adapt the task requirements to optimize cognitive load, the process output variable, by monitoring the student's brain activity. Cognitive load changes according to the student’s previous knowledge, the type of task, the difficulty level of the task, and the overall psychophysiological state of the student. Scaling the measured cognitive load as low, medium, or high; the system will assign a task difficulty level to the next task according to the ratio between the previous-task difficulty level and student stress. For instance, if a student becomes stressed or overwhelmed during a particular task, the system detects this through signal measurements such as brain waves, heart rate variability, or any other psychophysiological variables analyzed to adjust the task difficulty level. The control of engagement and stress are considered internal variables for the hypermedia system which selects between three different types of instructional material. This work assesses the feasibility of a fuzzy controller to track a student's physiological responses and adjust the learning content and pace accordingly. Using an industrial automation approach, the proposed fuzzy logic controller is based on linguistic rules that complement the instrumentation of the system to monitor and control the delivery of instructional material to the students. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the delivery of academic content based on the working memory demand without compromising students’ health. This work has a potential application in the instructional design of virtual reality environments for training and education.

Keywords: fuzzy logic controller, hypermedia control system, personalized education, psychophysiological adaptive automation

Procedia PDF Downloads 61
72 Comparisons of Depressive Symptoms and Cognitive Appraisals in Different Age Groups under Abusive Leadership

Authors: Shao-Ying Wang, Shin-I Shih, Chi-Cheng Wu

Abstract:

Background: By following to the maturity theory about age, the manifestation of depression in different age groups under occupational stressors still remains unclear. Therefore, the aim of this study was to examine the depression within four main symptoms clusters: cognition, affect, physical complaints and interpersonal difficulty among the different age groups. Additionally, this study also used the stress appraisal theory, through the examination of challenge and hindrance appraisals, the effects of cognitive factors were expected to give therapeutic indication for the future treatment of depression under abusive leadership. Methods (Participants and Procedure): The data were collected in two waves from employees of local companies in Taiwan. The participants (58 males and 167 females) were native Chinese speakers, ranging in age from 20 to 59 years (M= 36.51). Up to 80% educational level of participants were above senior high. The married population was approximately at 43%. Measures; 1. Abusive Leadership: To measure abusive leadership, we used 15-item scale of abusive supervision which anchored on a 7-point Likert-type scale. (α= .96) 2. Depression: We used Taiwanese Depression Scale to measure the 4 clusters (cognition, affect, physical complaints and interpersonal difficulty) of symptoms. Participants responded for depression anchored on a 7-point Likert-type scale (α= .96). 3. Stress Appraisal Scale: To measure challenge and hindrance types of appraisal, participants responded to 33-item measure anchored on a 7-point Likert-type scale. (Challenge appraisal; α= .90; hindrance appraisal α= .87). Results: The results of correlation showed that there was a significant and negative correlation between abusive leadership and age (r = - .21, p < .01). Abusive leadership was positive correlated significantly with hindrance appraisal (r = .52, p < .01) and depression (r = .20, p < .01). The results also showed that hindrance appraisal was correlated to depression positively (r = .36, p < .01). A one-way ANOVA was conducted to compare the effect of lower/middle/order age groups on each cluster of depressive symptoms. The results showed that the effect of age groups on cognition was significant F (2, 157) =3.66, P < .05. Older age group (M=13.43 SD=6.84) reported less cognitive symptoms of depression than the middle (M=16.77 SD=7.49) and lower age (M=16.91 SD=6.97) groups. Besides, the effect of age groups on affect was also significant F (2,157)= 4.09 P < .05. Older age group (M=18.68 SD=8.98) reported less affective symptoms of depression than the middle (M=22.01 SD=7.96) and lower age (M=23.56 SD=7.67) groups. Moreover, the main effect of hindrance appraisal was found F (2, 157) =3.81, P < .05. Older age group (M=9.44 SD=2.89) reported fewer score on hindrance appraisals than the middle (M=11.06 SD=4.02) and lower age (M=9.62 SD=3.17) groups. To conclude, the severity of depression symptoms varies across different age groups. Maturity seems to be the protective factor to depression, accompanying with lower hindrance appraisals.

Keywords: abusive leadership, affective commitment, depression symptoms, psychological well-being

Procedia PDF Downloads 186