Search results for: electrical state prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11152

Search results for: electrical state prediction

10282 Predicting the Human Impact of Natural Onset Disasters Using Pattern Recognition Techniques and Rule Based Clustering

Authors: Sara Hasani

Abstract:

This research focuses on natural sudden onset disasters characterised as ‘occurring with little or no warning and often cause excessive injuries far surpassing the national response capacities’. Based on the panel analysis of the historic record of 4,252 natural onset disasters between 1980 to 2015, a predictive method was developed to predict the human impact of the disaster (fatality, injured, homeless) with less than 3% of errors. The geographical dispersion of the disasters includes every country where the data were available and cross-examined from various humanitarian sources. The records were then filtered into 4252 records of the disasters where the five predictive variables (disaster type, HDI, DRI, population, and population density) were clearly stated. The procedure was designed based on a combination of pattern recognition techniques and rule-based clustering for prediction and discrimination analysis to validate the results further. The result indicates that there is a relationship between the disaster human impact and the five socio-economic characteristics of the affected country mentioned above. As a result, a framework was put forward, which could predict the disaster’s human impact based on their severity rank in the early hours of disaster strike. The predictions in this model were outlined in two worst and best-case scenarios, which respectively inform the lower range and higher range of the prediction. A necessity to develop the predictive framework can be highlighted by noticing that despite the existing research in literature, a framework for predicting the human impact and estimating the needs at the time of the disaster is yet to be developed. This can further be used to allocate the resources at the response phase of the disaster where the data is scarce.

Keywords: disaster management, natural disaster, pattern recognition, prediction

Procedia PDF Downloads 153
10281 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database

Authors: Matevž Breška, Iztok Peruš, Vlado Stankovski

Abstract:

Systematic overview of existing Ground Motion Prediction Equations (GMPEs) has been published by Douglas. The number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration (PGA) the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.

Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database, peak ground acceleration

Procedia PDF Downloads 462
10280 The Development of Fiscal Policy in Light of Economic Systems

Authors: Djehich Mohamed Yousri

Abstract:

This research tries to highlight the different stages and developments of financial policy which has evolved significantly in its means and mechanism, goals as well, according to the successful developments of the society, in addition to that, the role of the country has been developed from custody to intervening country, that evolution does not impact only on financial science but it was reflected on financial system concepts, that helped fr transport it from neutral financial policy to intervening policy, since each stage was characterized by a set of characteristics, financial policy considers like reflective mirror to the role of state in all times, when the state has been absent as an organized authority to society, the role of financial policy was weakened and has been limited under the impact of ideology which exists at all time, financial role has was limited until the state intervened in all aspects of life, the state role is also influential in economic, social, and political life, this study highlighting the most important developments of financial policy under successful economic systems.

Keywords: public expenditure, government spending, taxes, revenues public, economics

Procedia PDF Downloads 119
10279 The Role of Psychological Factors in Prediction Academic Performance of Students

Authors: Hadi Molaei, Yasavoli Davoud, Keshavarz, Mozhde Poordana

Abstract:

The present study aimed was to prediction the academic performance based on academic motivation, self-efficacy and Resiliency in the students. The present study was descriptive and correlational. Population of the study consisted of all students in Arak schools in year 1393-94. For this purpose, the number of 304 schools students in Arak was selected using multi-stage cluster sampling. They all questionnaires, self-efficacy, Resiliency and academic motivation Questionnaire completed. Data were analyzed using Pearson correlation and multiple regressions. Pearson correlation showed academic motivation, self-efficacy, and Resiliency with academic performance had a positive and significant relationship. In addition, multiple regression analysis showed that the academic motivation, self-efficacy and Resiliency were predicted academic performance. Based on the findings could be conclude that in order to increase the academic performance and further progress of students must provide the ground to strengthen academic motivation, self-efficacy and Resiliency act on them.

Keywords: academic motivation, self-efficacy, resiliency, academic performance

Procedia PDF Downloads 497
10278 Synthesis and Electrochemical Characterization of a Copolymer (PANI/PEDOT:PSS) for Application in Supercapacitors

Authors: Naima Boudieb, Mohamed Loucif Seaid, Imad Rati, Imane Benammane

Abstract:

The aim of this study is to synthesis of a copolymer PANI/PEDOT:PSS by electrochemical means to apply in supercapacitors. Polyaniline (PANI) is a conductive polymer; it was synthesized by electrochemical polymerization. It exhibits very stable properties in different environments, whereas PEDOT:PSS is a conductive polymer based on poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(styrene sulfonate)(PSS). It is commonly used with polyaniline to improve its electrical conductivity. Several physicochemical and electrochemical techniques were used for the characterization of PANI/PEDOT:PSS: cyclic voltammetry (VC), electrochemical impedance spectroscopy (EIS), open circuit potential, SEM, X-ray diffraction, etc. The results showed that the PANI/PEDOT:PSS composite is a promising material for supercapacitors due to its high electrical conductivity and high porosity. Electrochemical and physicochemical characterization tests have shown that the composite has high electrical and structural performances, making it a material of choice for high-performance energy storage applications.

Keywords: energy storage, supercapacitors, SIE, VC, PANI, poly(3, 4-ethylenedioxythiophene, PEDOT, polystyrene sulfonate

Procedia PDF Downloads 63
10277 Solving Crimes through DNA Methylation Analysis

Authors: Ajay Kumar Rana

Abstract:

Predicting human behaviour, discerning monozygotic twins or left over remnant tissues/fluids of a single human source remains a big challenge in forensic science. Recent advances in the field of DNA methylations which are broadly chemical hallmarks in response to environmental factors can certainly help to identify and discriminate various single-source DNA samples collected from the crime scenes. In this review, cytosine methylation of DNA has been methodologically discussed with its broad applications in many challenging forensic issues like body fluid identification, race/ethnicity identification, monozygotic twins dilemma, addiction or behavioural prediction, age prediction, or even authenticity of the human DNA. With the advent of next-generation sequencing techniques, blooming of DNA methylation datasets and together with standard molecular protocols, the prospect of investigating and solving the above issues and extracting the exact nature of the truth for reconstructing the crime scene events would be undoubtedly helpful in defending and solving the critical crime cases.

Keywords: DNA methylation, differentially methylated regions, human identification, forensics

Procedia PDF Downloads 321
10276 The Economic Impact of State Paid Family Leave and Medical Acts on Working Families with Old and Disabled Adults

Authors: Ngoc Dao

Abstract:

State Paid Leave Programs (PFL) complement the Federal Family and Medical Leave Act (FMLA) by offering workers time off to take care of their newborns or sick family members with supplemental income, and further job protection. Up to date, four states (California, New Jersey, Rhode Island, and New York) implemented paid leave policies. This study adds further understanding of how state PFL policies help working families with elder parents improve their work balance by examining the paid leave policies on labor outcomes. Early findings suggest State Paid Leave Policies reduced the likelihood to exit the labor market by 1.6 percentage points, with larger effects among paid leave policies with job protection feature. In addition, the results imply job protection in paid leave policies matters in helping employed caregivers attach to the labor market.

Keywords: family paid leave, working caregivers, employment, social welfare

Procedia PDF Downloads 131
10275 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence

Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej

Abstract:

In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.

Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction

Procedia PDF Downloads 105
10274 Calpoly Autonomous Transportation Experience: Software for Driverless Vehicle Operating on Campus

Authors: F. Tang, S. Boskovich, A. Raheja, Z. Aliyazicioglu, S. Bhandari, N. Tsuchiya

Abstract:

Calpoly Autonomous Transportation Experience (CATE) is a driverless vehicle that we are developing to provide safe, accessible, and efficient transportation of passengers throughout the Cal Poly Pomona campus for events such as orientation tours. Unlike the other self-driving vehicles that are usually developed to operate with other vehicles and reside only on the road networks, CATE will operate exclusively on walk-paths of the campus (potentially narrow passages) with pedestrians traveling from multiple locations. Safety becomes paramount as CATE operates within the same environment as pedestrians. As driverless vehicles assume greater roles in today’s transportation, this project will contribute to autonomous driving with pedestrian traffic in a highly dynamic environment. The CATE project requires significant interdisciplinary work. Researchers from mechanical engineering, electrical engineering and computer science are working together to attack the problem from different perspectives (hardware, software and system). In this abstract, we describe the software aspects of the project, with a focus on the requirements and the major components. CATE shall provide a GUI interface for the average user to interact with the car and access its available functionalities, such as selecting a destination from any origin on campus. We have developed an interface that provides an aerial view of the campus map, the current car location, routes, and the goal location. Users can interact with CATE through audio or manual inputs. CATE shall plan routes from the origin to the selected destination for the vehicle to travel. We will use an existing aerial map for the campus and convert it to a spatial graph configuration where the vertices represent the landmarks and edges represent paths that the car should follow with some designated behaviors (such as stay on the right side of the lane or follow an edge). Graph search algorithms such as A* will be implemented as the default path planning algorithm. D* Lite will be explored to efficiently recompute the path when there are any changes to the map. CATE shall avoid any static obstacles and walking pedestrians within some safe distance. Unlike traveling along traditional roadways, CATE’s route directly coexists with pedestrians. To ensure the safety of the pedestrians, we will use sensor fusion techniques that combine data from both lidar and stereo vision for obstacle avoidance while also allowing CATE to operate along its intended route. We will also build prediction models for pedestrian traffic patterns. CATE shall improve its location and work under a GPS-denied situation. CATE relies on its GPS to give its current location, which has a precision of a few meters. We have implemented an Unscented Kalman Filter (UKF) that allows the fusion of data from multiple sensors (such as GPS, IMU, odometry) in order to increase the confidence of localization. We also noticed that GPS signals can easily get degraded or blocked on campus due to high-rise buildings or trees. UKF can also help here to generate a better state estimate. In summary, CATE will provide on-campus transportation experience that coexists with dynamic pedestrian traffic. In future work, we will extend it to multi-vehicle scenarios.

Keywords: driverless vehicle, path planning, sensor fusion, state estimate

Procedia PDF Downloads 144
10273 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures

Authors: Milad Abbasi

Abstract:

Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.

Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network

Procedia PDF Downloads 153
10272 Enhancing Signal Reception in a Mobile Radio Network Using Adaptive Beamforming Antenna Arrays Technology

Authors: Ugwu O. C., Mamah R. O., Awudu W. S.

Abstract:

This work is aimed at enhancing signal reception on a mobile radio network and minimizing outage probability in a mobile radio network using adaptive beamforming antenna arrays. In this research work, an empirical real-time drive measurement was done in a cellular network of Globalcom Nigeria Limited located at Ikeja, the headquarters of Lagos State, Nigeria, with reference base station number KJA 004. The empirical measurement includes Received Signal Strength and Bit Error Rate which were recorded for exact prediction of the signal strength of the network as at the time of carrying out this research work. The Received Signal Strength and Bit Error Rate were measured with a spectrum monitoring Van with the help of a Ray Tracer at an interval of 100 meters up to 700 meters from the transmitting base station. The distance and angular location measurements from the reference network were done with the help Global Positioning System (GPS). The other equipment used were transmitting equipment measurements software (Temsoftware), Laptops and log files, which showed received signal strength with distance from the base station. Results obtained were about 11% from the real-time experiment, which showed that mobile radio networks are prone to signal failure and can be minimized using an Adaptive Beamforming Antenna Array in terms of a significant reduction in Bit Error Rate, which implies improved performance of the mobile radio network. In addition, this work did not only include experiments done through empirical measurement but also enhanced mathematical models that were developed and implemented as a reference model for accurate prediction. The proposed signal models were based on the analysis of continuous time and discrete space, and some other assumptions. These developed (proposed) enhanced models were validated using MATLAB (version 7.6.3.35) program and compared with the conventional antenna for accuracy. These outage models were used to manage the blocked call experience in the mobile radio network. 20% improvement was obtained when the adaptive beamforming antenna arrays were implemented on the wireless mobile radio network.

Keywords: beamforming algorithm, adaptive beamforming, simulink, reception

Procedia PDF Downloads 41
10271 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 134
10270 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks

Authors: Emad A. Mohammed

Abstract:

The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.

Keywords: permeability, hydraulic flow units, artificial intelligence, correlation

Procedia PDF Downloads 136
10269 Responsibility to Protect and State Sovereignty: The Case of Syria

Authors: Renu Kumari

Abstract:

State sovereignty refers to the ability and power of a state to be independent and not to have any interference of external actors in its internal affairs. This phenomenon has been accepted by International Law, which gives rights to the state to maintain its autonomy and territorial integrity without the interference of other actors. In of 1980’s and 1990’s the world has witnessed the worst case of human rights violence for instance, Rwanda genocide, the conflict in former Yugoslavia, Kosovo, Burundi, and Chad so and so forth. Though human rights violence is not a new phenomenon, it has been present all over the world in different time and space. But in 1990’s after the devastation of these conflicts and violence the world community came up with the notion of humanitarian intervention in which some states took the responsibility of protecting human rights violations and on the in order to protect they can intervene in the internal matters of a state specifically during civil war where state is unable to protect its people. Later on these so-called world community realized that intervention itself is a negative term that was criticized also therefore they came up with a different notion that sounded positive which known as responsibility to protect. In 2005 onwards, the notion of responsibility to protect accepted and recognized by the United Nations and states at a larger level. In the case of Syria on the name of responsibility to protect foreign interventions took place and due to the internal war Syrian people were already facing many problems, the government was not able to protect them. External invasion caused many devastating outcomes to the country. This paper is an attempt to analyze various dimensions of invasion of external affairs of a particular state and the status of sovereignty. Firstly, it lays out the notion of humanitarian intervention and then the responsibility to protect. Secondly, it looks in the case of Syria since 2011, the conflict of Syria. Thirdly it focuses on various efforts made by international organizations and other actors. Lastly, it looks why and how other actors intervene in the internal matter of Syria.

Keywords: state sovereignty, external actors, intervention, responsibility to protect

Procedia PDF Downloads 169
10268 Design and Implementation of an Effective Machine Learning Approach to Crime Prediction and Prevention

Authors: Ashish Kumar, Kaptan Singh, Amit Saxena

Abstract:

Today, it is believed that crimes have the greatest impact on a person's ability to progress financially and personally. Identifying places where individuals shouldn't go is crucial for preventing crimes and is one of the key considerations. As society and technologies have advanced significantly, so have crimes and the harm they wreak. When there is a concentration of people in one place and changes happen quickly, it is even harder to prevent. Because of this, many crime prevention strategies have been embraced as a component of the development of smart cities in numerous cities. However, crimes can occur anywhere; all that is required is to identify the pattern of their occurrences, which will help to lower the crime rate. In this paper, an analysis related to crime has been done; information related to crimes is collected from all over India that can be accessed from anywhere. The purpose of this paper is to investigate the relationship between several factors and India's crime rate. The review has covered information related to every state of India and their associated regions of the period going in between 2001- 2014. However various classes of violations have a marginally unique scope over the years.

Keywords: K-nearest neighbor, random forest, decision tree, pre-processing

Procedia PDF Downloads 93
10267 Consumer Experience of 3D Body Scanning Technology and Acceptance of Related E-Commerce Market Applications in Saudi Arabia

Authors: Moudi Almousa

Abstract:

This research paper explores Saudi Arabian female consumers’ experiences using 3D body scanning technology and their level of acceptance of possible market applications of this technology to adopt for apparel online shopping. Data was collected for 82 women after being scanned then viewed a short video explaining three possible scenarios of 3D body scanning applications, which include size prediction, customization, and virtual try-on, before completing the survey questionnaire. Although respondents have strong positive responses towards the scanning experience, the majority were concerned about their privacy during the scanning process. The results indicated that size prediction and virtual try on had greater market application potential and a higher chance of crossing the gap based on consumer interest. The results of the study also indicated a strong positive correlation between respondents’ concern with inability to try on apparel products in online environments and their willingness to use the 3D possible market applications.

Keywords: 3D body scanning, market applications, online, apparel fit

Procedia PDF Downloads 145
10266 Human Security Providers in Fragile State under Asymmetric War Conditions

Authors: Luna Shamieh

Abstract:

Various players are part of the game in an asymmetric war, all making efforts to provide human security to their own adherents. Although a fragile state is not able to provide sufficient and comprehensive services, it still provides special services and security to the elite; the insurgents as well provide services and security to their associates. The humanitarian organisations, on the other hand, provide some fundamental elements of human security, but only in the regions, they are able to access when possible (if possible). The counterinsurgents (security forces of the state and intervention forces) operate within a narrow band defined by the vision of the responsibility to protect and the perspective of the resolution of the conflict through combat; hence, the possibility to provide human security is shaken at this end. This article examines how each player provides human security from the perspective of freedom from want in order to secure basic and strategic needs, freedom from fear through providing protection against all kinds of violence, and the freedom to live in dignity. It identifies a vicious cycle caused by the intervention of the different players causing a centrifugal force that may lead to disintegration of the nation under war.

Keywords: asymmetric war, counterinsurgency, fragile state, human security, insurgency

Procedia PDF Downloads 334
10265 Clinical Prediction Score for Ruptured Appendicitis In ED

Authors: Thidathit Prachanukool, Chaiyaporn Yuksen, Welawat Tienpratarn, Sorravit Savatmongkorngul, Panvilai Tangkulpanich, Chetsadakon Jenpanitpong, Yuranan Phootothum, Malivan Phontabtim, Promphet Nuanprom

Abstract:

Background: Ruptured appendicitis has a high morbidity and mortality and requires immediate surgery. The Alvarado Score is used as a tool to predict the risk of acute appendicitis, but there is no such score for predicting rupture. This study aimed to developed the prediction score to determine the likelihood of ruptured appendicitis in an Asian population. Methods: This study was diagnostic, retrospectively cross-sectional and exploratory model at the Emergency Medicine Department in Ramathibodi Hospital between March 2016 and March 2018. The inclusion criteria were age >15 years and an available pathology report after appendectomy. Clinical factors included gender, age>60 years, right lower quadrant pain, migratory pain, nausea and/or vomiting, diarrhea, anorexia, fever>37.3°C, rebound tenderness, guarding, white blood cell count, polymorphonuclear white blood cells (PMN)>75%, and the pain duration before presentation. The predictive model and prediction score for ruptured appendicitis was developed by multivariable logistic regression analysis. Result: During the study period, 480 patients met the inclusion criteria; of these, 77 (16%) had ruptured appendicitis. Five independent factors were predictive of rupture, age>60 years, fever>37.3°C, guarding, PMN>75%, and duration of pain>24 hours to presentation. A score > 6 increased the likelihood ratio of ruptured appendicitis by 3.88 times. Conclusion: Using the Ramathibodi Welawat Ruptured Appendicitis Score. (RAMA WeRA Score) developed in this study, a score of > 6 was associated with ruptured appendicitis.

Keywords: predictive model, risk score, ruptured appendicitis, emergency room

Procedia PDF Downloads 166
10264 Prediction of Finned Projectile Aerodynamics Using a Lattice-Boltzmann Method CFD Solution

Authors: Zaki Abiza, Miguel Chavez, David M. Holman, Ruddy Brionnaud

Abstract:

In this paper, the prediction of the aerodynamic behavior of the flow around a Finned Projectile will be validated using a Computational Fluid Dynamics (CFD) solution, XFlow, based on the Lattice-Boltzmann Method (LBM). XFlow is an innovative CFD software developed by Next Limit Dynamics. It is based on a state-of-the-art Lattice-Boltzmann Method which uses a proprietary particle-based kinetic solver and a LES turbulent model coupled with the generalized law of the wall (WMLES). The Lattice-Boltzmann method discretizes the continuous Boltzmann equation, a transport equation for the particle probability distribution function. From the Boltzmann transport equation, and by means of the Chapman-Enskog expansion, the compressible Navier-Stokes equations can be recovered. However to simulate compressible flows, this method has a Mach number limitation because of the lattice discretization. Thanks to this flexible particle-based approach the traditional meshing process is avoided, the discretization stage is strongly accelerated reducing engineering costs, and computations on complex geometries are affordable in a straightforward way. The projectile that will be used in this work is the Army-Navy Basic Finned Missile (ANF) with a caliber of 0.03 m. The analysis will consist in varying the Mach number from M=0.5 comparing the axial force coefficient, normal force slope coefficient and the pitch moment slope coefficient of the Finned Projectile obtained by XFlow with the experimental data. The slope coefficients will be obtained using finite difference techniques in the linear range of the polar curve. The aim of such an analysis is to find out the limiting Mach number value starting from which the effects of high fluid compressibility (related to transonic flow regime) lead the XFlow simulations to differ from the experimental results. This will allow identifying the critical Mach number which limits the validity of the isothermal formulation of XFlow and beyond which a fully compressible solver implementing a coupled momentum-energy equations would be required.

Keywords: CFD, computational fluid dynamics, drag, finned projectile, lattice-boltzmann method, LBM, lift, mach, pitch

Procedia PDF Downloads 421
10263 Effect of Co Substitution on Structural, Magnetocaloric, Magnetic, and Electrical Properties of Sm0.6Sr0.4CoxMn1-xO3 Synthesized by Sol-gel Method

Authors: A. A. Azab

Abstract:

In this work, Sm0.6Sr0.4CoxMn1-xO3 (x=0, 0.1, 0.2 and 0.3) was synthesized by sol-gel method for magnetocaloric effect (MCE) applications. XRD analysis confirmed formation of the required orthorhombic phase of perovskite, and there is crystallographic phase transition as a result of substitution. Maxwell-Wagner interfacial polarisation and Koops phenomenological theory were used to investigate and analyze the temperature and frequency dependency of the dielectric permittivity. The phase transition from the ferromagnetic to the paramagnetic state was demonstrated to be second order. Based on the isothermal magnetization curves obtained at various temperatures, the magnetic entropy change was calculated. A magnetocaloric effect (MCE) over a wide temperature range was studied by determining DSM and the relative cooling power (RCP).

Keywords: magnetocaloric effect, pperovskite, magnetic phase transition, dielectric permittivity

Procedia PDF Downloads 68
10262 Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite

Authors: Salam Alrekabi, A. B. Cundy, Mohammed Haloob Al-Majidi

Abstract:

Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy.

Keywords: multiscale hybrid reinforced cementitious composites, carbon nanotubes, carbon nanofibers, mechanical strength prediction

Procedia PDF Downloads 161
10261 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana

Authors: Ayesha Sanjana Kawser Parsha

Abstract:

S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.

Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score

Procedia PDF Downloads 77
10260 A Semi-Markov Chain-Based Model for the Prediction of Deterioration of Concrete Bridges in Quebec

Authors: Eslam Mohammed Abdelkader, Mohamed Marzouk, Tarek Zayed

Abstract:

Infrastructure systems are crucial to every aspect of life on Earth. Existing Infrastructure is subjected to degradation while the demands are growing for a better infrastructure system in response to the high standards of safety, health, population growth, and environmental protection. Bridges play a crucial role in urban transportation networks. Moreover, they are subjected to high level of deterioration because of the variable traffic loading, extreme weather conditions, cycles of freeze and thaw, etc. The development of Bridge Management Systems (BMSs) has become a fundamental imperative nowadays especially in the large transportation networks due to the huge variance between the need for maintenance actions, and the available funds to perform such actions. Deterioration models represent a very important aspect for the effective use of BMSs. This paper presents a probabilistic time-based model that is capable of predicting the condition ratings of the concrete bridge decks along its service life. The deterioration process of the concrete bridge decks is modeled using semi-Markov process. One of the main challenges of the Markov Chain Decision Process (MCDP) is the construction of the transition probability matrix. Yet, the proposed model overcomes this issue by modeling the sojourn times based on some probability density functions. The sojourn times of each condition state are fitted to probability density functions based on some goodness of fit tests such as Kolmogorov-Smirnov test, Anderson Darling, and chi-squared test. The parameters of the probability density functions are obtained using maximum likelihood estimation (MLE). The condition ratings obtained from the Ministry of Transportation in Quebec (MTQ) are utilized as a database to construct the deterioration model. Finally, a comparison is conducted between the Markov Chain and semi-Markov chain to select the most feasible prediction model.

Keywords: bridge management system, bridge decks, deterioration model, Semi-Markov chain, sojourn times, maximum likelihood estimation

Procedia PDF Downloads 212
10259 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments

Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz

Abstract:

Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.

Keywords: LSTMs, streamflow, hyperparameters, hydrology

Procedia PDF Downloads 70
10258 On the Design of Wearable Fractal Antenna

Authors: Amar Partap Singh Pharwaha, Shweta Rani

Abstract:

This paper is aimed at proposing a rhombus shaped wearable fractal antenna for wireless communication systems. The geometrical descriptors of the antenna have been obtained using bacterial foraging optimization (BFO) for wide band operation. The method of moment based IE3D software has been used to simulate the antenna and observed that miniaturization of 13.08% has been achieved without degrading the resonating properties of the proposed antenna. An analysis with different substrates has also been done in order to evaluate the effectiveness of electrical permittivity on the presented structure. The proposed antenna has low profile, light weight and has successfully demonstrated wideband and multiband characteristics for wearable electronic applications.

Keywords: BFO, bandwidth, electrical permittivity, fractals, wearable antenna

Procedia PDF Downloads 463
10257 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland

Authors: Alireza Ansariyar, Safieh Laaly

Abstract:

Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates CAVs’ fuel consumption and air pollutants (C.O., PM, and NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.

Keywords: connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models

Procedia PDF Downloads 445
10256 Calls for a Multi-Stakeholder Funding Strategy for Live Births Registration: A Case Study of Rivers State, Nigeria

Authors: Moses Obenade, Francis I. Okpiliya, Gordon T. Amangabara

Abstract:

According to the 2006 Census of Nigeria, there are 2,525,690 females out of the total population of 5,198,716 of Rivers State. Of that figure, about 90 percent are still within the reproductive age of (0-49). With an annual growth rate of 3.4 percent, the population of Rivers State is estimated to grow to 7,262,755 by 2016. This means an increase of 2,064,039 within a ten year period. From a projected population increase of 182,766 in 2007 only 30,394 live births were registered while an astronomical increase of 543,275 live births were registered in 2008 as against the anticipated increase of 188,980. Preliminary investigations revealed that this exceptional figure in 2008 was occasioned by manpower and logistics support provided by the Rivers State Government for the Port Harcourt office of the National Population Commission (NPC). The mop-up exercise of 2008 by NPC that was engineered from the support provided by the Rivers State Government indicates that the agency needs the co-operation and partnership of the three tiers of government and the communities in performing its statutory duties that is pertinent to national planning, growth and development. Because the incentives received from Rivers State Government did not continue in 2009, live births registration noise-dived to only 60,546 from the expected increase of 195,405. It was further observed that Port Harcourt City and Obio/Akpor Local Government Areas which constitute the state capital have the highest number of live births registration during the period of 2007 to 2014 covered by this paper. This trend of not adequately accounting for or registering all live births in the state has continued till date without being addressed by the authorities concerned. The current situation if left unchecked portend serious danger for the state and indeed Nigeria, as paucity of data could hamper sound economic planning as well as proper allocation of resources to targeted sectors. This paper therefore recommends an innovative multi-stakeholder funding strategy comprising the federal, state, local government and communities. Their participation in an integrated manner will aid the achievement of comprehensive live births registration in the state. It is hoped that investments in education, health and social sectors could help in addressing most of the problems bedeviling the nation as such as lowering of fertility and improving lives.

Keywords: live births registration, population, rivers state, national population commission, Nigeria

Procedia PDF Downloads 297
10255 Time Series Analysis of Radon Concentration at Different Depths in an Underground Goldmine

Authors: Theophilus Adjirackor, Frederic Sam, Irene Opoku-Ntim, David Okoh Kpeglo, Prince K. Gyekye, Frank K. Quashie, Kofi Ofori

Abstract:

Indoor radon concentrations were collected monthly over a period of one year in 10 different levels in an underground goldmine, and the data was analyzed using a four-moving average time series to determine the relationship between the depths of the underground mine and the indoor radon concentration. The detectors were installed in batches within four quarters. The measurements were carried out using LR115 solid-state nuclear track detectors. Statistical models are applied in the prediction and analysis of the radon concentration at various depths. The time series model predicted a positive relationship between the depth of the underground mine and the indoor radon concentration. Thus, elevated radon concentrations are expected at deeper levels of the underground mine, but the relationship was insignificant at the 5% level of significance with a negative adjusted R2 (R2 = – 0.021) due to an appropriate engineering and adequate ventilation rate in the underground mine.

Keywords: LR115, radon concentration, rime series, underground goldmine

Procedia PDF Downloads 45
10254 Chemical and Biomolecular Detection at a Polarizable Electrical Interface

Authors: Nicholas Mavrogiannis, Francesca Crivellari, Zachary Gagnon

Abstract:

Development of low-cost, rapid, sensitive and portable biosensing systems are important for the detection and prevention of disease in developing countries, biowarfare/antiterrorism applications, environmental monitoring, point-of-care diagnostic testing and for basic biological research. Currently, the most established commercially available and widespread assays for portable point of care detection and disease testing are paper-based dipstick and lateral flow test strips. These paper-based devices are often small, cheap and simple to operate. The last three decades in particular have seen an emergence in these assays in diagnostic settings for detection of pregnancy, HIV/AIDS, blood glucose, Influenza, urinary protein, cardiovascular disease, respiratory infections and blood chemistries. Such assays are widely available largely because they are inexpensive, lightweight, and portable, are simple to operate, and a few platforms are capable of multiplexed detection for a small number of sample targets. However, there is a critical need for sensitive, quantitative and multiplexed detection capabilities for point-of-care diagnostics and for the detection and prevention of disease in the developing world that cannot be satisfied by current state-of-the-art paper-based assays. For example, applications including the detection of cardiac and cancer biomarkers and biothreat applications require sensitive multiplexed detection of analytes in the nM and pM range, and cannot currently be satisfied with current inexpensive portable platforms due to their lack of sensitivity, quantitative capabilities and often unreliable performance. In this talk, inexpensive label-free biomolecular detection at liquid interfaces using a newly discovered electrokinetic phenomenon known as fluidic dielectrophoresis (fDEP) is demonstrated. The electrokinetic approach involves exploiting the electrical mismatches between two aqueous liquid streams forced to flow side-by-side in a microfluidic T-channel. In this system, one fluid stream is engineered to have a higher conductivity relative to its neighbor which has a higher permittivity. When a “low” frequency (< 1 MHz) alternating current (AC) electrical field is applied normal to this fluidic electrical interface the fluid stream with high conductivity displaces into the low conductive stream. Conversely, when a “high” frequency (20MHz) AC electric field is applied, the high permittivity stream deflects across the microfluidic channel. There is, however, a critical frequency sensitive to the electrical differences between each fluid phase – the fDEP crossover frequency – between these two events where no fluid deflection is observed, and the interface remains fixed when exposed to an external field. To perform biomolecular detection, two streams flow side-by-side in a microfluidic T-channel: one fluid stream with an analyte of choice and an adjacent stream with a specific receptor to the chosen target. The two fluid streams merge and the fDEP crossover frequency is measured at different axial positions down the resulting liquid

Keywords: biodetection, fluidic dielectrophoresis, interfacial polarization, liquid interface

Procedia PDF Downloads 446
10253 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 41