Search results for: central processing unit
7577 In Search of CO₂: Gravity and Magnetic Data for Eor Prospect Generation in Central Libya
Authors: Ahmed Saheel, Milad Ahmed Elmaradi, Tim Archer, Muammer Ahmed Aboaesha, Abdulkhaliq Abdulmajid Altoubashi
Abstract:
Enhanced oil recovery using carbon dioxide (CO₂-EOR) is a method that can increase oil production beyond what is typically achievable using conventional recovery methods by injecting and hence storing, carbon dioxide (CO₂) in the oil reservoir. In Libya, plans are underway to source a proportion of this CO₂ from subsurface geology that is known from previous drilling to contain high volumes of CO₂. But first, these subsurface volumes need to be more clearly defined and understood. Focusing on the Al-Harouj region of central Libya, ground gravity and airborne magnetic data from the LPI database and the African Magnetic Mapping Project respectively have been prepared and processed by Libyan Petroleum Institute (LPI) and Reid Geophysics Limited (RGL) to produce a range of grids and related products suitable for interpreting geological structure and to make recommendations for subsequent work that will assist CO₂ exploration for purposes of enhanced oil recovery (EOR).Keywords: gravity anomaly, magnetic anomaly, DEDUCED lineaments, Total horizontal derivative, upward-continuation
Procedia PDF Downloads 1287576 Public and Private Domains: Contradictions and Covenants in Evolution of Game Policy
Authors: Mingzhu Lyu, Runlei Ren, Xinyu Dai, Jiaxuan Pi, Kanghua Li
Abstract:
The study of video game policy in China has been divided into two branches: "pedagogy" and "game industry". The binary perspective of policy reveals the "contradictory" side of policy performance. Based on this suspicion, this paper constructs a three-dimensional sequence of time, content and institutions of game policy, and establishes the "contradictory" aspects of policy performance between 1949 and 2019. A central-level database of game policies, clarifying that our game policies follow a shift from reactive response to proactive guidance, stigmatization and de-stigmatization, the evolutionary logic. The study found that the central government has always maintained a strict requirement and prudent guidance for game policy, and the deep contradictions in game policy stem from the essential conflict between the natural amusement of games and the seriousness of the educational system, and the Chinese government's use of the understanding of the public and private domains and the Managing of the conflict.Keywords: game industry, gaming policy, public domain, private domain
Procedia PDF Downloads 1497575 Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing
Authors: W. H. El Garaihy, A. Nassef, S. Samy
Abstract:
Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250 °C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate.Keywords: Al-Mg-Si alloy, equal channel angular pressing, grain refinement, severe plastic deformation
Procedia PDF Downloads 4357574 Impact of a Structured Antimicrobial Stewardship Program in a North-East Italian Hospital
Authors: Antonio Marco Miotti, Antonella Ruffatto, Giampaola Basso, Antonio Madia, Giulia Zavatta, Emanuela Salvatico, Emanuela Zilli
Abstract:
A National Action Plan to fight antimicrobial resistance was launched in Italy in 2017. In order to reduce inappropriate exposure to antibiotics and infections from multi-drug resistant bacteria, it is essential to set up a structured system of surveillance and monitoring of the implementation of National Action Plan standards, including antimicrobial consumption, with a special focus on quinolones, third generation cephalosporins and carbapenems. A quantitative estimate of antibiotic consumption (defined daily dose - DDD - consumption per 100 days of hospitalization) has been provided by the Pharmaceutical Service to the Hospital of Cittadella, ULSS 6 Euganea – Health Trust (District of Padua) for the years 2019 (before the pandemic), 2020 and 2021 for all classes of antibiotics. Multidisciplinary meetings have been organized monthly by the local Antimicrobial Stewardship Group. Between 2019 and 2021, an increase in the consumption of carbapenems in the Intensive Care Unit (from 12.2 to 18.2 DDD, + 49.2%) and a decrease in Medical wards (from 5.3 to 2.6 DDD, - 50.9%) was reported; a decrease in the consumption of quinolones in Intensive Care Unit (from 17.2 to 10.8 DDD, - 37.2%), Medical wards (from 10.5 to 6.6 DDD, - 37.1%) and Surgical wards (from 10.2 to 9.3 DDD, - 8.8%) was highlighted; an increase in the consumption of third generation cephalosporins in Medical wards (from 18.1 to 22.6 DDD, + 24,1%) was reported. Finally, after an increase in the consumption of macrolides between 2020 and 2019, in 2021, a decrease was reported in the Intensive Care Unit (DDD: 8.0 in 2019, 18.0 in 2020, 6.4 in 2021) and Medical wards (DDD: 9.0 in 2019, 13.7 in 2020, 10.9 in 2021). Constant monitoring of antimicrobial consumption and timely identifying of warning situations that may need a specific intervention are the cornerstone of Antimicrobial Stewardship programs, together with analysing data on bacterial resistance rates and infections from multi-drug resistant bacteria.Keywords: carbapenems, quinolones, antimicrobial, stewardship
Procedia PDF Downloads 1607573 Patrimonial Politics in 21ˢᵗ Century Central Africa, Evolution and Progress
Authors: Collins Nkapnwo Formella
Abstract:
The democratic wave of the 1980s and 1990s brought a lot of hopes to the politics of African states as many nation-states adopted ‘democracy.’ The end of the Cold War ushered in, with a lot of rush, pro-democracy movements, which led to multi-party politics, following constitutional reviews. For the very first time since independence, Africans revolted against personalized dictatorship and adopted the idea of limited office terms for the presidents. This paper dives deep into the history of Africa post-independence with the aim of allowing the readers to understand the nature of the differences in the political setups that currently govern the continent and the central region in particular. Time has proven the euphoria that characterized post-Cold War African politics at least for many countries short-lived, as their leaders were unable to re-design the institutions of governance from the compromise and interest-oriented structures handed down after independence. The result has been that politics in many of the countries have been tailored down along the lines of winner takes all approach, with the accumulation of state power being the sole objective of the leaders. The paper contends that 21ˢᵗ Century African politics is exactly the politics of inclusion/exclusion based on ethnic and interest groups, leading to the flourishing of patrimonial authoritarian regimes. It also puts to the test, whether authoritarian responses to delivering growth (economic, political, social) and peace as has been the model adopted by many leaders is superior compared to democracy. This paper then concludes by adding that the practice of democracy in the Central African region in its current form is inherently flawed from its foundations, thus incapable of rooting out the crises faced in the region.Keywords: authoritarianism, democracy, development, power, institutions
Procedia PDF Downloads 1937572 Dairy Value Chain: Assessing the Inter Linkage of Dairy Farm and Small-Scale Dairy Processing in Tigray: Case Study of Mekelle City
Authors: Weldeabrha Kiros Kidanemaryam, DepaTesfay Kelali Gidey, Yikaalo Welu Kidanemariam
Abstract:
Dairy services are considered as sources of income, employment, nutrition and health for smallholder rural and urban farmers. The main objective of this study is to assess the interlinkage of dairy farms and small-scale dairy processing in Mekelle, Tigray. To achieve the stated objective, a descriptive research approach was employed where data was collected from 45 dairy farmers and 40 small-scale processors and analyzed by calculating the mean values and percentages. Findings show that the dairy business in the study area is characterized by a shortage of feed and water for the farm. The dairy farm is dominated by breeds of hybrid type, followed by the so called ‘begait’. Though the farms have access to medication and vaccination for the cattle, they fell short of hygiene practices, reliable shade for the cattle and separate space for the claves. The value chain at the milk production stage is characterized by a low production rate, selling raw milk without adding value and a very meager traditional processing practice. Furthermore, small-scale milk processors are characterized by collecting milk from farmers and producing cheese, butter, ghee and sour milk. They do not engage in modern milk processing like pasteurized milk, yogurt and table butter. Most small-scale milk processors are engaged in traditional production systems. Additionally, the milk consumption and marketing part of the chain is dominated by the informal market (channel), where market problems, lack of skill and technology, shortage of loans and weak policy support are being faced as the main challenges. Based on the findings, recommendations and future research areas are forwarded.Keywords: value-chain, dairy, milk production, milk processing
Procedia PDF Downloads 377571 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack
Authors: Varun Agarwal
Abstract:
Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images
Procedia PDF Downloads 1317570 Factors Affecting the Climate Change Adaptation in Agriculture in Central and Western Nepal
Authors: Maharjan Shree Kumar
Abstract:
Climate change impacts are observed in all livelihood sectors primarily in agriculture and forestry. Multiple factors have influenced the climate vulnerabilities and adaptations in agricultural at the household level. This study focused on the factors affecting adaptation in agriculture in Madi and Deukhuri valleys of Central and Western Nepal. The systematic random sampling technique was applied to select 154 households in Madi and 150 households in Deukhuri. The main purpose of the study was to analyze the socio-economic factors that either influence or restrain the farmers’ adaptation to climate change at the household level by applying the linear probability model. Based on the analysis, it is revealed that crop diversity, education, training and total land holding (acre) were positively significant for adaptation choices the study sites. Rest of the variables were not significant though indicated positive as expected except age, occupation, ethnicity, family size, and access to credit.Keywords: adaptation, agriculture, climate, factors, Nepal
Procedia PDF Downloads 1537569 Correlation Analysis between Sensory Processing Sensitivity (SPS), Meares-Irlen Syndrome (MIS) and Dyslexia
Authors: Kaaryn M. Cater
Abstract:
Students with sensory processing sensitivity (SPS), Meares-Irlen Syndrome (MIS) and dyslexia can become overwhelmed and struggle to thrive in traditional tertiary learning environments. An estimated 50% of tertiary students who disclose learning related issues are dyslexic. This study explores the relationship between SPS, MIS and dyslexia. Baseline measures will be analysed to establish any correlation between these three minority methods of information processing. SPS is an innate sensitivity trait found in 15-20% of the population and has been identified in over 100 species of animals. Humans with SPS are referred to as Highly Sensitive People (HSP) and the measure of HSP is a 27 point self-test known as the Highly Sensitive Person Scale (HSPS). A 2016 study conducted by the author established base-line data for HSP students in a tertiary institution in New Zealand. The results of the study showed that all participating HSP students believed the knowledge of SPS to be life-changing and useful in managing life and study, in addition, they believed that all tutors and in-coming students should be given information on SPS. MIS is a visual processing and perception disorder that is found in approximately 10% of the population and has a variety of symptoms including visual fatigue, headaches and nausea. One way to ease some of these symptoms is through the use of colored lenses or overlays. Dyslexia is a complex phonological based information processing variation present in approximately 10% of the population. An estimated 50% of dyslexics are thought to have MIS. The study exploring possible correlations between these minority forms of information processing is due to begin in February 2017. An invitation will be extended to all first year students enrolled in degree programmes across all faculties and schools within the institution. An estimated 900 students will be eligible to participate in the study. Participants will be asked to complete a battery of on-line questionnaires including the Highly Sensitive Person Scale, the International Dyslexia Association adult self-assessment and the adapted Irlen indicator. All three scales have been used extensively in literature and have been validated among many populations. All participants whose score on any (or some) of the three questionnaires suggest a minority method of information processing will receive an invitation to meet with a learning advisor, and given access to counselling services if they choose. Meeting with a learning advisor is not mandatory, and some participants may choose not to receive help. Data will be collected using the Question Pro platform and base-line data will be analysed using correlation and regression analysis to identify relationships and predictors between SPS, MIS and dyslexia. This study forms part of a larger three year longitudinal study and participants will be required to complete questionnaires at annual intervals in subsequent years of the study until completion of (or withdrawal from) their degree. At these data collection points, participants will be questioned on any additional support received relating to their minority method(s) of information processing. Data from this study will be available by April 2017.Keywords: dyslexia, highly sensitive person (HSP), Meares-Irlen Syndrome (MIS), minority forms of information processing, sensory processing sensitivity (SPS)
Procedia PDF Downloads 2487568 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece
Authors: N. Samarinas, C. Evangelides, C. Vrekos
Abstract:
The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.Keywords: classification, fuzzy logic, tolerance relations, rainfall data
Procedia PDF Downloads 3157567 The Political Economy of Fiscal and Monetary Interactions in Brazil
Authors: Marcos Centurion-Vicencio
Abstract:
This study discusses the idea of ‘dominance’ in economic policy and its practical influence over monetary decisions. The discretionary use of repurchase agreements in Brazil over the period 2006-2016 and its effects on the overall price level are the specific issues we will be focusing on. The set of in-depth interviews carried out with public servants at the Brazilian central bank and national treasury, alongside data collected from the National Institution of Statistics (IBGE), suggest that monetary and fiscal dominance do not differ in nature once the assumption of depoliticized central bankers is relaxed. In both regimes, the pursuit of private gains via public institutions affects price stability. While short-sighted politicians in the latter are at the origin of poor monetary decisions, the action of short-sighted financial interest groups is likely to generate a similar outcome in the former. This study then contributes to rethinking monetary policy theory as well as the nature of public borrowing.Keywords: fiscal and monetary interactions, interest groups, monetary capture, public borrowing
Procedia PDF Downloads 1367566 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 687565 Systematic Literature Review of Therapeutic Use of Autonomous Sensory Meridian Response (ASMR) and Short-Term ASMR Auditory Training Trial
Authors: Christine H. Cubelo
Abstract:
This study consists of 2-parts: a systematic review of current publications on the therapeutic use of autonomous sensory meridian response (ASMR) and a within-subjects auditory training trial using ASMR videos. The main intent is to explore ASMR as potentially therapeutically beneficial for those with atypical sensory processing. Many hearing-related disorders and mood or anxiety symptoms overlap with symptoms of sensory processing issues. For this reason, inclusion and exclusion criteria of the systematic review were generated in an effort to produce optimal search outcomes and avoid overly confined criteria that would limit yielded results. Criteria for inclusion in the review for Part 1 are (1) adult participants diagnosed with hearing loss or atypical sensory processing, (2) inclusion of measures related to ASMR as a treatment method, and (3) published between 2000 and 2022. A total of 1,088 publications were found in the preliminary search, and a total of 13 articles met the inclusion criteria. A total of 14 participants completed the trial and post-trial questionnaire. Of all responses, 64.29% agreed that the duration of auditory training sessions was reasonable. In addition, 71.43% agreed that the training improved their perception of music. Lastly, 64.29% agreed that the training improved their perception of a primary talker when there are other talkers or background noises present.Keywords: autonomous sensory meridian response, auditory training, atypical sensory processing, hearing loss, hearing aids
Procedia PDF Downloads 567564 Assessment of Pakistan-China Economic Corridor: An Emerging Dynamic of 21st Century
Authors: Naad-E-Ali Sulehria
Abstract:
Pakistan and china have stepped in a new phase of strengthening fraternity as the dream of economic corridor once discerned by both countries is going to take a pragmatic shape. Pak-China economic corridor an under construction program is termed to be an emerging dynamic of 21st century that anticipates a nexus between Asian continent and Indian Ocean by extending its functions to adjoining East, South, Central and Western Asian regions. The $45.6 billion worth heavily invested megaprojects by China are meant to revive energy sector and building economic infrastructure in Pakistan. Evidently, these projects are a part of ‘southern extension’ of Silk Road economic belt which is going to draw out prominent incentives for both countries particularly bolstering China to acquire influential dominance over the regional trade and beyond. In pursuit to adhere, by these progressive plans both countries have began working on their respective assignments. This article discusses the economical development programs under China’s peripheral diplomacy regarding its region-specific-approach to accumulate trade of Persian Gulf and access the landlocked Central Asian states through Pakistan in a sublimate context to break US encirclement of Asia. Pakistan’s utmost preference to utilize its strategic channel as a trade hub to become an emerging economy and surpass its arch-rival India for strategic concerns is contemplated accordingly. The needs and feasibility of the economic gateway and the dividends it can provide in the contemporary scenario are examined carefully and analysis is drawn upon the future prospects of the Pakistan-China Economic corridor once completed.Keywords: pak-china economic corridor (PCEC), central asian republic states (CARs), new silk road economic belt, gawadar
Procedia PDF Downloads 3697563 Pore Pressure and In-situ Stress Magnitudes with Image Log Processing and Geological Interpretation in the Haoud Berkaoui Hydrocarbon Field, Northeastern Algerian Sahara
Authors: Rafik Baouche, Rabah Chaouchi
Abstract:
This work reports the first comprehensive stress field interpretation from the eleven recently drilled wells in the Berkaoui Basin, Algerian Sahara. A cumulative length of 7000+m acoustic image logs from 06 vertical wells were investigated, and a mean NW-SE (128°-145° N) maximum horizontal stress (SHMax) orientation is inferred from the B-D quality wellbore breakouts. The study integrates log-based approach with the downhole measurements to infer pore pressure, in-situ stress magnitudes. Vertical stress (Sv), interpreted from the bulk-density profiles, has an average gradient of 22.36 MPa/km. The Ordovician and Cambrian reservoirs have a pore pressure gradient of 13.47-13.77 MPa/km, which is more than the hydrostatic pressure regime. A 17.2-18.3 MPa/km gradient of minimum horizontal stress (Shmin) is inferred from the fracture closure pressure in the reservoirs. Breakout widths constrained the SHMax magnitude in the 23.8-26.5 MPa/km range. Subsurface stress distribution in the central Saharan Algeria indicates that the present-day stress field in the Berkaoui Basin is principally strike-slip faulting (SHMax > Sv > Shmin). Inferences are drawn on the regional stress pattern and drilling and reservoir development.Keywords: stress, imagery, breakouts, sahara
Procedia PDF Downloads 767562 Investigation of the Level of Physical and Mental Health of Patients Undergoing in Chronic or Transient Hemodialysis at Artificial Kidney Unit
Authors: Styliani Kotrotsiou, Evagelia Kotrotsiou, Fani Mokia, Theodosis Paralikas, Konstantinos Tsaras
Abstract:
Objective: The objective of this study was the investigation of the mental health of patients undergoing chronic or transient hemodialysis at Artificial Kidney Unit, as well as its relationship to the demographic characteristic of patients. Material and Method: The study took place in Larisa during the month of December in 2016 and the sample was composed of 60 patients undergoing in chronic or transient hemodialysis at Artificial Kidney Unit of the University General Hospital of Larisa. For the investigation of the physical and mental health of patients who participated in the study, the tool measurement << General Health Questionnaire- 28 >> (GHQ-28) was used. The questionnaires were administered with the interview method during the hemodialysis. This survey is designed for the existence or not of a mental disorder. It examines four factors (physical symptoms, anxiety, social dysfunction and depression). Results: The hemodialysis patients gave the following scores: -to the physical symptoms, women showed a higher average value than men (1,16 ± 1,26 against 0,49 ± 0,93), -at the anxiety scale, it seems that women are superior to men (1,68 ± 1,20 against 0,90 ± 1,22), -at the social dysfunction scale, the elderly patients ( > 65 years old) were presented a with higher average (2,59), and -at the depression scale, patients with a higher average value were those who lived in non-urban areas. The appearance of mental disorder, in relation to patient characteristics, did not show significant statistical correlation. The sex, the age and the place of residence affect more the assessment of mental health, while education did not seem to have any significant effect on the other. Conclusions: The hemodialysis process can significantly affect the patient’s Quality of Life and it can bring adverse changes in lifestyle, affecting the physical, social and psychological state of the individual. For that reason, hemodialysis should be aimed not only at extending life but in upgrading the Quality of Life.Keywords: hemodialysis, chronic kidney disease, depression, social dysfunction, physical condition
Procedia PDF Downloads 1647561 Robustness of MIMO-OFDM Schemes for Future Digital TV to Carrier Frequency Offset
Authors: D. Sankara Reddy, T. Kranthi Kumar, K. Sreevani
Abstract:
This paper investigates the impact of carrier frequency offset (CFO) on the performance of different MIMO-OFDM schemes with high spectral efficiency for next generation of terrestrial digital TV. We show that all studied MIMO-OFDM schemes are sensitive to CFO when it is greater than 1% of intercarrier spacing. We show also that the Alamouti scheme is the most sensitive MIMO scheme to CFO.Keywords: modulation and multiplexing (MIMO-OFDM), signal processing for transmission carrier frequency offset, future digital TV, imaging and signal processing
Procedia PDF Downloads 4877560 Design of Regular Communication Area for Infrared Electronic-Toll-Collection Systems
Authors: Wern-Yarng Shieh, Chao Qian, Bingnan Pei
Abstract:
A design of communication area for infrared electronic-toll-collection systems to provide an extended communication interval in the vehicle traveling direction and regular boundary between contiguous traffic lanes is proposed. By utilizing two typical low-cost commercial infrared LEDs with different half-intensity angles Φ1/2 = 22° and 10°, the radiation pattern of the emitter is designed to properly adjust the spatial distribution of the signal power. The aforementioned purpose can be achieved with an LED array in a three-piece structure with appropriate mounting angles. With this emitter, the influence of the mounting parameters, including the mounting height and mounting angles of the on-board unit and road-side unit, on the system performance in terms of the received signal strength and communication area are investigated. The results reveal that, for our emitter proposed in this paper, the ideal "long-and-narrow" characteristic of the communication area is very little affected by these mounting parameters. An optimum mounting configuration is also suggested.Keywords: dedicated short-range communication (DSRC), electronic toll collection (ETC), infrared communication, intelligent transportation system (ITS), multilane free flow
Procedia PDF Downloads 3377559 Dynamic Analysis of Transmission Line Towers
Authors: L. Srikanth, D. Neelima Satyam
Abstract:
The transmission line towers are one of the important life line structures in the distribution of power from the source to the various places for several purposes. The predominant external loads which act on these towers are wind and earthquake loads. In this present study tower is analyzed using Indian Standards IS: 875:1987 (Wind Load), IS: 802:1995 (Structural Steel), IS:1893:2002 (Earthquake) and dynamic analysis of tower has been performed considering ground motion of 2001 Bhuj Earthquake (India). The dynamic analysis was performed considering a tower system consisting two towers spaced 800m apart and 35m height each. This analysis has been performed using numerical time stepping finite difference method which is central difference method were employed by a developed MATLAB program to get the normalized ground motion parameters includes acceleration, frequency, velocity which are important in designing the tower. The tower is analyzed using response spectrum analysis.Keywords: response spectra, dynamic analysis, central difference method, transmission tower
Procedia PDF Downloads 3997558 Iris Cancer Detection System Using Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera
Procedia PDF Downloads 5047557 Exploring the Potential of Replika: An AI Chatbot for Mental Health Support
Authors: Nashwah Alnajjar
Abstract:
This research paper provides an overview of Replika, an AI chatbot application that uses natural language processing technology to engage in conversations with users. The app was developed to provide users with a virtual AI friend who can converse with them on various topics, including mental health. This study explores the experiences of Replika users using quantitative research methodology. A survey was conducted with 12 participants to collect data on their demographics, usage patterns, and experiences with the Replika app. The results showed that Replika has the potential to play a role in mental health support and well-being.Keywords: Replika, chatbot, mental health, artificial intelligence, natural language processing
Procedia PDF Downloads 897556 Waste Derived from Refinery and Petrochemical Plants Activities: Processing of Oil Sludge through Thermal Desorption
Authors: Anna Bohers, Emília Hroncová, Juraj Ladomerský
Abstract:
Oil sludge with its main characteristic of high acidity is a waste product generated from the operation of refinery and petrochemical plants. Former refinery and petrochemical plant - Petrochema Dubová is present in Slovakia as well. Its activities was to process the crude oil through sulfonation and adsorption technology for production of lubricating and special oils, synthetic detergents and special white oils for cosmetic and medical purposes. Seventy years ago – period, when this historical acid sludge burden has been created – comparing to the environmental awareness the production was in preference. That is the reason why, as in many countries, also in Slovakia a historical environmental burden is present until now – 229 211 m3 of oil sludge in the middle of the National Park of Nízke Tatry mountain chain. Neither one of tried treatment methods – bio or non-biologic one - was proved as suitable for processing or for recovery in the reason of different factors admission: i.e. strong aggressivity, difficulty with handling because of its sludgy and liquid state et sim. As a potential solution, also incineration was tested, but it was not proven as a suitable method, as the concentration of SO2 in combustion gases was too high, and it was not possible to decrease it under the acceptable value of 2000 mg.mn-3. That is the reason why the operation of incineration plant has been terminated, and the acid sludge landfills are present until nowadays. The objective of this paper is to present a new possibility of processing and valorization of acid sludgy-waste. The processing of oil sludge was performed through the effective separation - thermal desorption technology, through which it is possible to split the sludgy material into the matrix (soil, sediments) and organic contaminants. In order to boost the efficiency in the processing of acid sludge through thermal desorption, the work will present the possibility of application of an original technology – Method of Blowing Decomposition for recovering of organic matter into technological lubricating oil.Keywords: hazardous waste, oil sludge, remediation, thermal desorption
Procedia PDF Downloads 2007555 Structural Health Monitoring of the 9-Story Torre Central Building Using Recorded Data and Wave Method
Authors: Tzong-Ying Hao, Mohammad T. Rahmani
Abstract:
The Torre Central building is a 9-story shear wall structure located in Santiago, Chile, and has been instrumented since 2009. Events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded, and thus the building can serve as a full-scale benchmark to evaluate the structural health monitoring method developed. The first part of this article presents an analysis of inter-story drifts, and of changes in the first system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) as baseline indicators of the occurrence of damage. During 2010 Chile earthquake the system frequencies were detected decreasing approximately 24% in the EW and 27% in NS motions. Near the end of shaking, an increase of about 17% in the EW motion was detected. The structural health monitoring (SHM) method based on changes in wave traveling time (wave method) within a layered shear beam model of structure is presented in the second part of this article. If structural damage occurs the velocity of wave propagated through the structure changes. The wave method measures the velocities of shear wave propagation from the impulse responses generated by recorded data at various locations inside the building. Our analysis and results show that the detected changes in wave velocities are consistent with the observed damages. On this basis, the wave method is proven for actual implementation in structural health monitoring systems.Keywords: Chile earthquake, damage detection, earthquake response, impulse response, layered shear beam, structural health monitoring, Torre Central building, wave method, wave travel time
Procedia PDF Downloads 3647554 Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data
Authors: Manish Pandey, Gurinderjit Kaur, Meenu Talwar, Sachin Chauhan, Jagbir Gill
Abstract:
Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model.Keywords: health-care management systems, fuzzy regression, data mining, forecasting, fuzzy membership function
Procedia PDF Downloads 2807553 Cladding Technology for Metal-Hybrid Composites with Network-Structure
Authors: Ha-Guk Jeong, Jong-Beom Lee
Abstract:
Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics
Procedia PDF Downloads 1817552 Application of Supervised Deep Learning-based Machine Learning to Manage Smart Homes
Authors: Ahmed Al-Adaileh
Abstract:
Renewable energy sources, domestic storage systems, controllable loads and machine learning technologies will be key components of future smart homes management systems. An energy management scheme that uses a Deep Learning (DL) approach to support the smart home management systems, which consist of a standalone photovoltaic system, storage unit, heating ventilation air-conditioning system and a set of conventional and smart appliances, is presented. The objective of the proposed scheme is to apply DL-based machine learning to predict various running parameters within a smart home's environment to achieve maximum comfort levels for occupants, reduced electricity bills, and less dependency on the public grid. The problem is using Reinforcement learning, where decisions are taken based on applying the Continuous-time Markov Decision Process. The main contribution of this research is the proposed framework that applies DL to enhance the system's supervised dataset to offer unlimited chances to effectively support smart home systems. A case study involving a set of conventional and smart appliances with dedicated processing units in an inhabited building can demonstrate the validity of the proposed framework. A visualization graph can show "before" and "after" results.Keywords: smart homes systems, machine learning, deep learning, Markov Decision Process
Procedia PDF Downloads 2057551 Graph-Oriented Summary for Optimized Resource Description Framework Graphs Streams Processing
Authors: Amadou Fall Dia, Maurras Ulbricht Togbe, Aliou Boly, Zakia Kazi Aoul, Elisabeth Metais
Abstract:
Existing RDF (Resource Description Framework) Stream Processing (RSP) systems allow continuous processing of RDF data issued from different application domains such as weather station measuring phenomena, geolocation, IoT applications, drinking water distribution management, and so on. However, processing window phase often expires before finishing the entire session and RSP systems immediately delete data streams after each processed window. Such mechanism does not allow optimized exploitation of the RDF data streams as the most relevant and pertinent information of the data is often not used in a due time and almost impossible to be exploited for further analyzes. It should be better to keep the most informative part of data within streams while minimizing the memory storage space. In this work, we propose an RDF graph summarization system based on an explicit and implicit expressed needs through three main approaches: (1) an approach for user queries (SPARQL) in order to extract their needs and group them into a more global query, (2) an extension of the closeness centrality measure issued from Social Network Analysis (SNA) to determine the most informative parts of the graph and (3) an RDF graph summarization technique combining extracted user query needs and the extended centrality measure. Experiments and evaluations show efficient results in terms of memory space storage and the most expected approximate query results on summarized graphs compared to the source ones.Keywords: centrality measures, RDF graphs summary, RDF graphs stream, SPARQL query
Procedia PDF Downloads 2037550 Exploring the Spatial Characteristics of Mortality Map: A Statistical Area Perspective
Authors: Jung-Hong Hong, Jing-Cen Yang, Cai-Yu Ou
Abstract:
The analysis of geographic inequality heavily relies on the use of location-enabled statistical data and quantitative measures to present the spatial patterns of the selected phenomena and analyze their differences. To protect the privacy of individual instance and link to administrative units, point-based datasets are spatially aggregated to area-based statistical datasets, where only the overall status for the selected levels of spatial units is used for decision making. The partition of the spatial units thus has dominant influence on the outcomes of the analyzed results, well known as the Modifiable Areal Unit Problem (MAUP). A new spatial reference framework, the Taiwan Geographical Statistical Classification (TGSC), was recently introduced in Taiwan based on the spatial partition principles of homogeneous consideration of the number of population and households. Comparing to the outcomes of the traditional township units, TGSC provides additional levels of spatial units with finer granularity for presenting spatial phenomena and enables domain experts to select appropriate dissemination level for publishing statistical data. This paper compares the results of respectively using TGSC and township unit on the mortality data and examines the spatial characteristics of their outcomes. For the mortality data between the period of January 1st, 2008 and December 31st, 2010 of the Taitung County, the all-cause age-standardized death rate (ASDR) ranges from 571 to 1757 per 100,000 persons, whereas the 2nd dissemination area (TGSC) shows greater variation, ranged from 0 to 2222 per 100,000. The finer granularity of spatial units of TGSC clearly provides better outcomes for identifying and evaluating the geographic inequality and can be further analyzed with the statistical measures from other perspectives (e.g., population, area, environment.). The management and analysis of the statistical data referring to the TGSC in this research is strongly supported by the use of Geographic Information System (GIS) technology. An integrated workflow that consists of the tasks of the processing of death certificates, the geocoding of street address, the quality assurance of geocoded results, the automatic calculation of statistic measures, the standardized encoding of measures and the geo-visualization of statistical outcomes is developed. This paper also introduces a set of auxiliary measures from a geographic distribution perspective to further examine the hidden spatial characteristics of mortality data and justify the analyzed results. With the common statistical area framework like TGSC, the preliminary results demonstrate promising potential for developing a web-based statistical service that can effectively access domain statistical data and present the analyzed outcomes in meaningful ways to avoid wrong decision making.Keywords: mortality map, spatial patterns, statistical area, variation
Procedia PDF Downloads 2607549 An Elaboration Likelihood Model to Evaluate Consumer Behavior on Facebook Marketplace: Trust on Seller as a Moderator
Authors: Sharmistha Chowdhury, Shuva Chowdhury
Abstract:
Buying-selling new as well as second-hand goods like tools, furniture, household, electronics, clothing, baby stuff, vehicles, and hobbies through the Facebook marketplace has become a new paradigm for c2c sellers. This phenomenon encourages and empowers decentralised home-oriented sellers. This study adopts Elaboration Likelihood Model (ELM) to explain consumer behaviour on Facebook Marketplace (FM). ELM suggests that consumers process information through the central and peripheral routes, which eventually shape their attitudes towards posts. The central route focuses on information quality, and the peripheral route focuses on cues. Sellers’ FM posts usually include product features, prices, conditions, pictures, and pick-up location. This study uses information relevance and accuracy as central route factors. The post’s attractiveness represents cues and creates positive or negative associations with the product. A post with remarkable pictures increases the attractiveness of the post. So, post aesthetics is used as a peripheral route factor. People influenced via the central or peripheral route forms an attitude that includes multiple processes – response and purchase intention. People respond to FM posts through save, share and chat. Purchase intention reflects a positive image of the product and higher purchase intention. This study proposes trust on sellers as a moderator to test the strength of its influence on consumer attitudes and behaviour. Trust on sellers is assessed whether sellers have badges or not. A sample questionnaire will be developed and distributed among a group of random FM sellers who are selling vehicles on this platform to conduct the study. The chosen product of this study is the vehicle, a high-value purchase item. High-value purchase requires consumers to consider forming their attitude without any sign of impulsiveness seriously. Hence, vehicles are the perfect choice to test the strength of consumers attitudes and behaviour. The findings of the study add to the elaboration likelihood model and online second-hand marketplace literature.Keywords: consumer behaviour, elaboration likelihood model, facebook marketplace, c2c marketing
Procedia PDF Downloads 1397548 Purification of Bacillus Lipopeptides for Diverse Applications
Authors: Vivek Rangarajan, Kim G. Clarke
Abstract:
Bacillus lipopeptides are biosurfactants with wide ranging applications in the medical, food, agricultural, environmental and cosmetic industries. They are produced as a mix of three families, surfactin, iturin and fengycin, each comprising a large number of homologues of varying functionalities. Consequently, the method and degree of purification of the lipopeptide cocktail becomes particularly important if the functionality of the lipopeptide end-product is to be maximized for the specific application. However, downstream processing of Bacillus lipopeptides is particularly challenging due to the subtle variations observed in the different lipopeptide homologues and isoforms. To date, the most frequently used lipopeptide purification operations have been acid precipitation, solvent extraction, membrane ultrafiltration, adsorption and size exclusion. RP-HPLC (reverse phase high pressure liquid chromatography) also has potential for fractionation of the lipopeptide homologues. In the studies presented here, membrane ultrafiltration and RP-HPLC were evaluated for lipopeptide purification to different degrees of purities for maximum functionality. Batch membrane ultrafiltration using 50 kDa polyether sulphone (PES) membranes resulted in lipopeptide recovery of about 68% for surfactin and 82 % for fengycin. The recovery was further improved to 95% by using size-conditioned lipopeptide micelles. The conditioning of lipopeptides with Ca2+ ions resulted in uniformly sized micelles with average size of 96.4 nm and a polydispersity index of 0.18. The size conditioning also facilitated removal of impurities (molecular weight ranging between 2335-3500 Da) through operation of the system under dia-filtration mode, in a way similar to salt removal from protein by dialysis. The resultant purified lipopeptide was devoid of macromolecular impurities and could ideally suit applications in the cosmetic and food industries. Enhanced purification using RP-HPLC was carried out in an analytical C18 column, with the aim to fractionate lipopeptides into their constituent homologues. The column was eluted with mobile phase comprising acetonitrile and water over an acetonitrile gradient, 35% - 80%, over 70 minutes. The gradient elution program resulted in as many as 41 fractions of individual lipopeptide homologues. The efficacy test of these fractions against fungal phytopathogens showed that first 21 fractions, identified to be homologues of iturins and fengycins, displayed maximum antifungal activities, suitable for biocontrol in the agricultural industry. Thus, in the current study, the downstream processing of lipopeptides leading to tailor-made products for selective applications was demonstrated using two major downstream unit operations.Keywords: bacillus lipopeptides, membrane ultrafiltration, purification, RP-HPLC
Procedia PDF Downloads 205