Search results for: aero-heating prediction
1362 Slip Limit Prediction of High-Strength Bolt Joints Based on Local Approach
Authors: Chang He, Hiroshi Tamura, Hiroshi Katsuchi, Jiaqi Wang
Abstract:
In this study, the aim is to infer the slip limit (static friction limit) of contact interfaces in bolt friction joints by analyzing other bolt friction joints with the same contact surface but in a different shape. By using the Weibull distribution to deal with microelements on the contact surface statistically, the slip limit of a certain type of bolt joint was predicted from other types of bolt joint with the same contact surface. As a result, this research succeeded in predicting the slip limit of bolt joins with different numbers of contact surfaces and with different numbers of bolt rows.Keywords: bolt joints, slip coefficient, finite element method, Weibull distribution
Procedia PDF Downloads 1701361 A Research on Tourism Market Forecast and Its Evaluation
Authors: Min Wei
Abstract:
The traditional prediction methods of the forecast for tourism market are paid more attention to the accuracy of the forecasts, ignoring the results of the feasibility of forecasting and predicting operability, which had made it difficult to predict the results of scientific testing. With the application of Linear Regression Model, this paper attempts to construct a scientific evaluation system for predictive value, both to ensure the accuracy, stability of the predicted value, and to ensure the feasibility of forecasting and predicting the results of operation. The findings show is that a scientific evaluation system can implement the scientific concept of development, the harmonious development of man and nature co-ordinate.Keywords: linear regression model, tourism market, forecast, tourism economics
Procedia PDF Downloads 3321360 Air Breakdown Voltage Prediction in Post-arcing Conditions for Compact Circuit Breakers
Authors: Jing Nan
Abstract:
The air breakdown voltage in compact circuit breakers is a critical factor in the design and reliability of electrical distribution systems. This voltage determines the threshold at which the air insulation between conductors will fail or 'break down,' leading to an arc. This phenomenon is highly sensitive to the conditions within the breaker, such as the temperature and the distance between electrodes. Typically, air breakdown voltage models have been reliable for predicting failure under standard operational temperatures. However, in conditions post-arcing, where temperatures can soar above 2000K, these models face challenges due to the complex physics of ionization and electron behaviour at such high-energy states. Building upon the foundational understanding that the breakdown mechanism is initiated by free electrons and propelled by electric fields, which lead to ionization and, potentially, to avalanche or streamer formation, we acknowledge the complexity introduced by high-temperature environments. Recognizing the limitations of existing experimental data, a notable research gap exists in the accurate prediction of breakdown voltage at elevated temperatures, typically observed post-arcing, where temperatures exceed 2000K.To bridge this knowledge gap, we present a method that integrates gap distance and high-temperature effects into air breakdown voltage assessment. The proposed model is grounded in the physics of ionization, accounting for the dynamic behaviour of free electrons which, under intense electric fields at elevated temperatures, lead to thermal ionization and potentially reach the threshold for streamer formation as Meek's criterion. Employing the Saha equation, our model calculates equilibrium electron densities, adapting to the atmospheric pressure and the hot temperature regions indicative of post-arc temperature conditions. Our model is rigorously validated against established experimental data, demonstrating substantial improvements in predicting air breakdown voltage in the high-temperature regime. This work significantly improves the predictive power for air breakdown voltage under conditions that closely mimic operational stressors in compact circuit breakers. Looking ahead, the proposed methods are poised for further exploration in alternative insulating media, like SF6, enhancing the model's utility for a broader range of insulation technologies and contributing to the future of high-temperature electrical insulation research.Keywords: air breakdown voltage, high-temperature insulation, compact circuit breakers, electrical discharge, saha equation
Procedia PDF Downloads 841359 Investigation of Zinc Corrosion in Tropical Soil Solution
Authors: M. Lebrini, L. Salhi, C. Deyrat, C. Roos, O. Nait-Rabah
Abstract:
The paper presents a large experimental study on the corrosion of zinc in tropical soil and in the ground water at the various depths. Through this study, the corrosion rate prediction was done on the basis of two methods the electrochemical method and the gravimetric. The electrochemical results showed that the corrosion rate is more important at the depth levels 0 m to 0.5 m and 0.5 m to 1 m and beyond these depth levels, the corrosion rate is less important. The electrochemical results indicated also that a passive layer is formed on the zinc surface. The found SEM and EDX micrographs displayed that the surface is extremely attacked and confirmed that a zinc oxide layer is present on the surface whose thickness and relief increase as the contact with soil increases.Keywords: soil corrosion, galvanized steel, electrochemical technique, SEM and EDX
Procedia PDF Downloads 1281358 Optimizing Communications Overhead in Heterogeneous Distributed Data Streams
Authors: Rashi Bhalla, Russel Pears, M. Asif Naeem
Abstract:
In this 'Information Explosion Era' analyzing data 'a critical commodity' and mining knowledge from vertically distributed data stream incurs huge communication cost. However, an effort to decrease the communication in the distributed environment has an adverse influence on the classification accuracy; therefore, a research challenge lies in maintaining a balance between transmission cost and accuracy. This paper proposes a method based on Bayesian inference to reduce the communication volume in a heterogeneous distributed environment while retaining prediction accuracy. Our experimental evaluation reveals that a significant reduction in communication can be achieved across a diverse range of dataset types.Keywords: big data, bayesian inference, distributed data stream mining, heterogeneous-distributed data
Procedia PDF Downloads 1611357 Predicting Open Chromatin Regions in Cell-Free DNA Whole Genome Sequencing Data by Correlation Clustering
Authors: Fahimeh Palizban, Farshad Noravesh, Amir Hossein Saeidian, Mahya Mehrmohamadi
Abstract:
In the recent decade, the emergence of liquid biopsy has significantly improved cancer monitoring and detection. Dying cells, including those originating from tumors, shed their DNA into the blood and contribute to a pool of circulating fragments called cell-free DNA. Accordingly, identifying the tissue origin of these DNA fragments from the plasma can result in more accurate and fast disease diagnosis and precise treatment protocols. Open chromatin regions are important epigenetic features of DNA that reflect cell types of origin. Profiling these features by DNase-seq, ATAC-seq, and histone ChIP-seq provides insights into tissue-specific and disease-specific regulatory mechanisms. There have been several studies in the area of cancer liquid biopsy that integrate distinct genomic and epigenomic features for early cancer detection along with tissue of origin detection. However, multimodal analysis requires several types of experiments to cover the genomic and epigenomic aspects of a single sample, which will lead to a huge amount of cost and time. To overcome these limitations, the idea of predicting OCRs from WGS is of particular importance. In this regard, we proposed a computational approach to target the prediction of open chromatin regions as an important epigenetic feature from cell-free DNA whole genome sequence data. To fulfill this objective, local sequencing depth will be fed to our proposed algorithm and the prediction of the most probable open chromatin regions from whole genome sequencing data can be carried out. Our method integrates the signal processing method with sequencing depth data and includes count normalization, Discrete Fourie Transform conversion, graph construction, graph cut optimization by linear programming, and clustering. To validate the proposed method, we compared the output of the clustering (open chromatin region+, open chromatin region-) with previously validated open chromatin regions related to human blood samples of the ATAC-DB database. The percentage of overlap between predicted open chromatin regions and the experimentally validated regions obtained by ATAC-seq in ATAC-DB is greater than 67%, which indicates meaningful prediction. As it is evident, OCRs are mostly located in the transcription start sites (TSS) of the genes. In this regard, we compared the concordance between the predicted OCRs and the human genes TSS regions obtained from refTSS and it showed proper accordance around 52.04% and ~78% with all and the housekeeping genes, respectively. Accurately detecting open chromatin regions from plasma cell-free DNA-seq data is a very challenging computational problem due to the existence of several confounding factors, such as technical and biological variations. Although this approach is in its infancy, there has already been an attempt to apply it, which leads to a tool named OCRDetector with some restrictions like the need for highly depth cfDNA WGS data, prior information about OCRs distribution, and considering multiple features. However, we implemented a graph signal clustering based on a single depth feature in an unsupervised learning manner that resulted in faster performance and decent accuracy. Overall, we tried to investigate the epigenomic pattern of a cell-free DNA sample from a new computational perspective that can be used along with other tools to investigate genetic and epigenetic aspects of a single whole genome sequencing data for efficient liquid biopsy-related analysis.Keywords: open chromatin regions, cancer, cell-free DNA, epigenomics, graph signal processing, correlation clustering
Procedia PDF Downloads 1501356 Scientific Forecasting in International Relations
Authors: Djehich Mohamed Yousri
Abstract:
In this research paper, the future of international relations is believed to have an important place on the theoretical and applied levels because policy makers in the world are in dire need of such analyzes that are useful in drawing up the foreign policies of their countries, and protecting their national security from potential future threats, and in this context, The topic raised a lot of scientific controversy and intellectual debate, especially in terms of the extent of the effectiveness, accuracy, and ability of foresight methods to identify potential futures, and this is what attributed the controversy to the scientific foundations for foreseeing international relations. An arena for intellectual discussion between different thinkers in international relations belonging to different theoretical schools, which confirms to us the conceptual and implied development of prediction in order to reach the scientific level.Keywords: foresight, forecasting, international relations, international relations theory, concept of international relations
Procedia PDF Downloads 2141355 Effect of Inclusions in the Ultrasonic Fatigue Endurance of Maraging 300 Steel
Authors: G. M. Dominguez Almaraz, J. A. Ruiz Vilchez, M. A. Sanchez Miranda
Abstract:
Ultrasonic fatigue tests have been carried out in the maraging 300 steel. Experimental results show that fatigue endurance under this modality of testing is closely related to the nature and geometrical properties of inclusions present in this alloy. A model was proposed to correlate the ultrasonic fatigue endurance with the nature and geometrical properties of the crack initiation inclusion. Scanning Electron Microscopy analyses were obtained on the fracture surfaces, in order to assess the crack initiation inclusion and to introduce these parameters in the proposed model, with good agreement for the fatigue life prediction.Keywords: inclusions, ultrasonic fatigue, maraging 300 steel, crack initiation
Procedia PDF Downloads 2141354 Development of a Reduced Multicomponent Jet Fuel Surrogate for Computational Fluid Dynamics Application
Authors: Muhammad Zaman Shakir, Mingfa Yao, Zohaib Iqbal
Abstract:
This study proposed four Jet fuel surrogate (S1, S2 S3, and 4) with careful selection of seven large hydrocarbon fuel components, ranging from C₉-C₁₆ of higher molecular weight and higher boiling point, adapting the standard molecular distribution size of the actual jet fuel. The surrogate was composed of seven components, including n-propyl cyclohexane (C₉H₁₈), n- propylbenzene (C₉H₁₂), n-undecane (C₁₁H₂₄), n- dodecane (C₁₂H₂₆), n-tetradecane (C₁₄H₃₀), n-hexadecane (C₁₆H₃₄) and iso-cetane (iC₁₆H₃₄). The skeletal jet fuel surrogate reaction mechanism was developed by two approaches, firstly based on a decoupling methodology by describing the C₄ -C₁₆ skeletal mechanism for the oxidation of heavy hydrocarbons and a detailed H₂ /CO/C₁ mechanism for prediction of oxidation of small hydrocarbons. The combined skeletal jet fuel surrogate mechanism was compressed into 128 species, and 355 reactions and thereby can be used in computational fluid dynamics (CFD) simulation. The extensive validation was performed for individual single-component including ignition delay time, species concentrations profile and laminar flame speed based on various fundamental experiments under wide operating conditions, and for their blended mixture, among all the surrogate, S1 has been extensively validated against the experimental data in a shock tube, rapid compression machine, jet-stirred reactor, counterflow flame, and premixed laminar flame over wide ranges of temperature (700-1700 K), pressure (8-50 atm), and equivalence ratio (0.5-2.0) to capture the properties target fuel Jet-A, while the rest of three surrogate S2, S3 and S4 has been validated for Shock Tube ignition delay time only to capture the ignition characteristic of target fuel S-8 & GTL, IPK and RP-3 respectively. Based on the newly proposed HyChem model, another four surrogate with similar components and composition, was developed and parallel validations data was used as followed for previously developed surrogate but at high-temperature condition only. After testing the mechanism prediction performance of surrogates developed by the decoupling methodology, the comparison was done with the results of surrogates developed by the HyChem model. It was observed that all of four proposed surrogates in this study showed good agreement with the experimental measurements and the study comes to this conclusion that like the decoupling methodology HyChem model also has a great potential for the development of oxidation mechanism for heavy alkanes because of applicability, simplicity, and compactness.Keywords: computational fluid dynamics, decoupling methodology Hychem, jet fuel, surrogate, skeletal mechanism
Procedia PDF Downloads 1371353 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence
Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang
Abstract:
Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics
Procedia PDF Downloads 741352 Data Presentation of Lane-Changing Events Trajectories Using HighD Dataset
Authors: Basma Khelfa, Antoine Tordeux, Ibrahima Ba
Abstract:
We present a descriptive analysis data of lane-changing events in multi-lane roads. The data are provided from The Highway Drone Dataset (HighD), which are microscopic trajectories in highway. This paper describes and analyses the role of the different parameters and their significance. Thanks to HighD data, we aim to find the most frequent reasons that motivate drivers to change lanes. We used the programming language R for the processing of these data. We analyze the involvement and relationship of different variables of each parameter of the ego vehicle and the four vehicles surrounding it, i.e., distance, speed difference, time gap, and acceleration. This was studied according to the class of the vehicle (car or truck), and according to the maneuver it undertook (overtaking or falling back).Keywords: autonomous driving, physical traffic model, prediction model, statistical learning process
Procedia PDF Downloads 2611351 The Relationship between School Belonging, Self-Efficacy and Academic Achievement in Tabriz High School Students
Authors: F. Pari, E. Fathiazar, T. Hashemi, M. Pari
Abstract:
The present study aimed to examine the role of self-efficacy and school belonging in the academic achievement of Tabriz high school students in grade 11. Therefore, using a random cluster method, 377 subjects were selected from the whole students of Tabriz high schools. They filled in the School Belonging Questionnaire (SBQ) and General Self-Efficacy Scale. Data were analyzed using correlational as well as multiple regression methods. Findings demonstrate self-efficacy and school belonging have significant roles in the prediction of academic achievement. On the other hand, the results suggest that considering the gender variable there is no significant difference between self-efficacy and school belonging. On the whole, cognitive approaches could be effective in the explanation of academic achievement.Keywords: school belonging, self-efficacy, academic achievement, high school
Procedia PDF Downloads 2981350 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis
Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga
Abstract:
Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree
Procedia PDF Downloads 2551349 Vision-Based Hand Segmentation Techniques for Human-Computer Interaction
Abstract:
This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm such as an input to another system which attempt to bring the HCI performance nearby the human-human interaction, by modeling an intelligent sign language recognition system based on prediction in the context of dialogue between the system (avatar) and the interlocutor. For the purpose of hand segmentation, an overcoming occlusion approach has been proposed for superior results for detection of hand from an image.Keywords: HCI, sign language recognition, object tracking, hand segmentation
Procedia PDF Downloads 4121348 Data-Driven Surrogate Models for Damage Prediction of Steel Liquid Storage Tanks under Seismic Hazard
Authors: Laura Micheli, Majd Hijazi, Mahmoud Faytarouni
Abstract:
The damage reported by oil and gas industrial facilities revealed the utmost vulnerability of steel liquid storage tanks to seismic events. The failure of steel storage tanks may yield devastating and long-lasting consequences on built and natural environments, including the release of hazardous substances, uncontrolled fires, and soil contamination with hazardous materials. It is, therefore, fundamental to reliably predict the damage that steel liquid storage tanks will likely experience under future seismic hazard events. The seismic performance of steel liquid storage tanks is usually assessed using vulnerability curves obtained from the numerical simulation of a tank under different hazard scenarios. However, the computational demand of high-fidelity numerical simulation models, such as finite element models, makes the vulnerability assessment of liquid storage tanks time-consuming and often impractical. As a solution, this paper presents a surrogate model-based strategy for predicting seismic-induced damage in steel liquid storage tanks. In the proposed strategy, the surrogate model is leveraged to reduce the computational demand of time-consuming numerical simulations. To create the data set for training the surrogate model, field damage data from past earthquakes reconnaissance surveys and reports are collected. Features representative of steel liquid storage tank characteristics (e.g., diameter, height, liquid level, yielding stress) and seismic excitation parameters (e.g., peak ground acceleration, magnitude) are extracted from the field damage data. The collected data are then utilized to train a surrogate model that maps the relationship between tank characteristics, seismic hazard parameters, and seismic-induced damage via a data-driven surrogate model. Different types of surrogate algorithms, including naïve Bayes, k-nearest neighbors, decision tree, and random forest, are investigated, and results in terms of accuracy are reported. The model that yields the most accurate predictions is employed to predict future damage as a function of tank characteristics and seismic hazard intensity level. Results show that the proposed approach can be used to estimate the extent of damage in steel liquid storage tanks, where the use of data-driven surrogates represents a viable alternative to computationally expensive numerical simulation models.Keywords: damage prediction , data-driven model, seismic performance, steel liquid storage tanks, surrogate model
Procedia PDF Downloads 1431347 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models
Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar
Abstract:
This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model
Procedia PDF Downloads 3151346 Computational Fluid Dynamics (CFD) Modeling of Local with a Hot Temperature in Sahara
Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum
Abstract:
This paper reports concept was used into the computational fluid dynamics (CFD) code cfx through user-defined functions to assess ventilation efficiency inside (forced-ventilation local). CFX is a simulation tool which uses powerful computer and applied mathematics, to model fluid flow situations for the prediction of heat, mass and momentum transfer and optimal design in various heat transfer and fluid flow processes to evaluate thermal comfort in a room ventilated (highly-glazed). The quality of the solutions obtained from CFD simulations is an effective tool for predicting the behavior and performance indoor thermo-aéraulique comfort.Keywords: ventilation, thermal comfort, CFD, indoor environment, solar air heater
Procedia PDF Downloads 6341345 Semantic Analysis of the Change in Awareness of Korean College Admission Policy
Authors: Sujin Hwang, Hyerang Park, Hyunchul Kim
Abstract:
The purpose of this study is to find the effectiveness of the admission simplification policy. The number of online news articles about ‘high school record’ was collected and semantically analyzed to identify and analyze the social awareness during 2014 to 2015. The main results of the study are as follows: First, there was a difference in expectations that the burden of the examinees would decrease as announced by KCUE. Thus, there was still a strain on the university entrance exam after the enforcement of the policy. Second, private tutoring is expanding in different forms, rather than reducing the policy. It is different from the prediction that examinees can prepare for university admissions without the private tutoring. Thus, the college admission rules currently enforced needs to be improved. The reasonable college admission system changes are discussed.Keywords: education policy, private tutoring, shadow education, education admission policy
Procedia PDF Downloads 2271344 The Microstructural Evolution of X45CrNiW189 Valve Steel during Hot Deformation
Authors: A. H. Meysami
Abstract:
In this paper, the hot compression tests were carried on X45CrNiW189 valve steel (X45) in the temperature range of 1000–1200°C and the strain rate range of 0.004–0.5 s^(-1) in order to study the high temperature softening behavior of the steel. For the exact prediction of flow stress, the effective stress - effective strain curves were obtained from experiments under various conditions. On the basis of experimental results, the dynamic recrystallization fraction (DRX), AGS, hot deformation and activation energy behavior were investigated. It was found that the calculated results were in a good agreement with the experimental flow stress and microstructure of the steel for different conditions of hot deformation.Keywords: X45CrNiW189, valve steel, hot compression test, dynamic recrystallization, hot deformation
Procedia PDF Downloads 2771343 We Wonder If They Mind: An Empirical Inquiry into the Narratological Function of Mind Wandering in Readers of Literary Texts
Authors: Tina Ternes, Florian Kleinau
Abstract:
The study investigates the content and triggers of mind wandering (MW) in readers of fictional texts. It asks whether readers’ MW is productive (text-related) or unproductive (text-unrelated). Methodologically, it bridges the gap between narratological and data-driven approaches by utilizing a sentence-by-sentence self-paced reading paradigm combined with thought probes in the reading of an excerpt of A. L. Kennedy’s “Baby Blue”. Results show that the contents of MW can be linked to text properties. We validated the role of self-reference in MW and found prediction errors to be triggers of MW. Results also indicate that the content of MW often travels along the lines of the text at hand and can thus be viewed as productive and integral to interpretation.Keywords: narratology, mind wandering, reading fiction, meta cognition
Procedia PDF Downloads 821342 Virtual Assessment of Measurement Error in the Fractional Flow Reserve
Authors: Keltoum Chahour, Mickael Binois
Abstract:
Due to a lack of standardization during the invasive fractional flow reserve (FFR) procedure, the index is subject to many sources of uncertainties. In this paper, we investigate -through simulation- the effect of the (FFR) device position and configuration on the obtained value of the (FFR) fraction. For this purpose, we use computational fluid dynamics (CFD) in a 3D domain corresponding to a diseased arterial portion. The (FFR) pressure captor is introduced inside it with a given length and coefficient of bending to capture the (FFR) value. To get over the computational limitations, basically, the time of the simulation is about 2h 15min for one (FFR) value; we generate a Gaussian Process (GP) model for (FFR) prediction. The (GP) model indicates good accuracy and demonstrates the effective error in the measurement created by the random configuration of the pressure captor.Keywords: fractional flow reserve, Gaussian processes, computational fluid dynamics, drift
Procedia PDF Downloads 1341341 Features Dimensionality Reduction and Multi-Dimensional Voice-Processing Program to Parkinson Disease Discrimination
Authors: Djamila Meghraoui, Bachir Boudraa, Thouraya Meksen, M.Boudraa
Abstract:
Parkinson's disease is a pathology that involves characteristic perturbations in patients’ voices. This paper describes a proposed method that aims to diagnose persons with Parkinson (PWP) by analyzing on line their voices signals. First, Thresholds signals alterations are determined by the Multi-Dimensional Voice Program (MDVP). Principal Analysis (PCA) is exploited to select the main voice principal componentsthat are significantly affected in a patient. The decision phase is realized by a Mul-tinomial Bayes (MNB) Classifier that categorizes an analyzed voice in one of the two resulting classes: healthy or PWP. The prediction accuracy achieved reaching 98.8% is very promising.Keywords: Parkinson’s disease recognition, PCA, MDVP, multinomial Naive Bayes
Procedia PDF Downloads 2781340 Contribution in Fatigue Life Prediction of Composite Material
Authors: Mostefa Bendouba, Djebli Abdelkader, Abdelkrim Aid, Mohamed Benguediab
Abstract:
The damage evolution mechanism is one of the important focuses of fatigue behaviour investigation of composite materials and also is the foundation to predict fatigue life of composite structures for engineering application. This paper is dedicated to a damage investigation under two block loading cycle fatigue conditions submitted to composite material. The loading sequence effect and the influence of the cycle ratio of the first stage on the cumulative fatigue life were studied herein. Two loading sequences, i.e., high-to-low and low-to-high cases are considered in this paper. The proposed damage indicator is connected cycle by cycle to the S-N curve and the experimental results are in agreement with model expectations. Some experimental researches are used to validate this proposition.Keywords: fatigue, damage acumulation, composite, evolution
Procedia PDF Downloads 5011339 Physico-Chemical Properties of Silurian Hot Shale in Ahnet Basin, Algeria: Case Study Well ASS-1
Authors: Mohamed Mehdi Kadri
Abstract:
The prediction of hot shale interval in Silurian formation in a well drilled vertically in Ahnet basin Is by logging Data (Resistivity, Gamma Ray, Sonic) with the calculation of total organic carbon (TOC) using ∆ log R Method. The aim of this paper is to present Physico-chemical Properties of Hot Shale using IR spectroscopy and gas chromatography-mass spectrometry analysis; this mixture of measurements, evaluation and characterization show that the hot shale interval located in the lower of Silurian, the molecules adsorbed at the surface of shale sheet are significantly different from petroleum hydrocarbons this result are also supported with gas-liquid chromatography showed that the study extract is a hydroxypropyl.Keywords: physic-chemical analysis, reservoirs characterization, sweet window evaluation, Silurian shale, Ahnet basin
Procedia PDF Downloads 991338 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling
Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas
Abstract:
Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.Keywords: flood forecasting, machine learning, multilayer perceptron network, regression
Procedia PDF Downloads 1721337 E-Resource Management: Digital Environment for a Library System
Authors: Vikram Munjal, Harpreet Munjal
Abstract:
A few years ago we could hardly think of Libraries' strategic plan that includes the bold and amazing prediction of a mostly digital environment for a library system. However, sheer hard work by the engineers, academicians, and librarians made it feasible. However, it requires huge expenditure and now a day‘s spending for electronic resources (e-resources) have been growing much more rapidly than have the materials budgets of which such resources are usually a part. And many libraries are spending a huge amount on e-resources. Libraries today are in the midst of a profound shift toward reliance on e-resources, and this reliance seems to have deepened in recent years as libraries have shed paper journal subscriptions to help pay for online access. This has been exercised only to cater user behavior and attitudes that seem to be changing even more quickly in this dynamic scenario.Keywords: radio frequency identification, management, scanning, barcodes, checkout and tags
Procedia PDF Downloads 4041336 Modeling of the Biodegradation Performance of a Membrane Bioreactor to Enhance Water Reuse in Agri-food Industry - Poultry Slaughterhouse as an Example
Authors: masmoudi Jabri Khaoula, Zitouni Hana, Bousselmi Latifa, Akrout Hanen
Abstract:
Mathematical modeling has become an essential tool for sustainable wastewater management, particularly for the simulation and the optimization of complex processes involved in activated sludge systems. In this context, the activated sludge model (ASM3h) was used for the simulation of a Biological Membrane Reactor (MBR) as it includes the integration of biological wastewater treatment and physical separation by membrane filtration. In this study, the MBR with a useful volume of 12.5 L was fed continuously with poultry slaughterhouse wastewater (PSWW) for 50 days at a feed rate of 2 L/h and for a hydraulic retention time (HRT) of 6.25h. Throughout its operation, High removal efficiency was observed for the removal of organic pollutants in terms of COD with 84% of efficiency. Moreover, the MBR has generated a treated effluent which fits with the limits of discharge into the public sewer according to the Tunisian standards which were set in March 2018. In fact, for the nitrogenous compounds, average concentrations of nitrate and nitrite in the permeat reached 0.26±0.3 mg. L-1 and 2.2±2.53 mg. L-1, respectively. The simulation of the MBR process was performed using SIMBA software v 5.0. The state variables employed in the steady state calibration of the ASM3h were determined using physical and respirometric methods. The model calibration was performed using experimental data obtained during the first 20 days of the MBR operation. Afterwards, kinetic parameters of the model were adjusted and the simulated values of COD, N-NH4+and N- NOx were compared with those reported from the experiment. A good prediction was observed for the COD, N-NH4+and N- NOx concentrations with 467 g COD/m³, 110.2 g N/m³, 3.2 g N/m³ compared to the experimental data which were 436.4 g COD/m³, 114.7 g N/m³ and 3 g N/m³, respectively. For the validation of the model under dynamic simulation, the results of the experiments obtained during the second treatment phase of 30 days were used. It was demonstrated that the model simulated the conditions accurately by yielding a similar pattern on the variation of the COD concentration. On the other hand, an underestimation of the N-NH4+ concentration was observed during the simulation compared to the experimental results and the measured N-NO3 concentrations were lower than the predicted ones, this difference could be explained by the fact that the ASM models were mainly designed for the simulation of biological processes in the activated sludge systems. In addition, more treatment time could be required by the autotrophic bacteria to achieve a complete and stable nitrification. Overall, this study demonstrated the effectiveness of mathematical modeling in the prediction of the performance of the MBR systems with respect to organic pollution, the model can be further improved for the simulation of nutrients removal for a longer treatment period.Keywords: activated sludge model (ASM3h), membrane bioreactor (MBR), poultry slaughter wastewater (PSWW), reuse
Procedia PDF Downloads 581335 Application of Neuro-Fuzzy Technique for Optimizing the PVC Membrane Sensor
Authors: Majid Rezayi, Sh. Shahaboddin, HNM E. Mahmud, A. Yadollah, A. Saeid, A. Yatimah
Abstract:
In this study, the adaptive neuro-fuzzy inference system (ANFIS) was applied to obtain the membrane composition model affecting the potential response of our reported polymeric PVC sensor for determining the titanium (III) ions. The performance statistics of the artificial neural network (ANN) and linear regression models for potential slope prediction of membrane composition of titanium (III) ion selective electrode were compared with ANFIS technique. The results show that the ANFIS model can be used as a practical tool for obtaining the Nerntian slope of the proposed sensor in this study.Keywords: adaptive neuro fuzzy inference, PVC sensor, titanium (III) ions, Nerntian slope
Procedia PDF Downloads 2871334 Methodology for Obtaining Static Alignment Model
Authors: Lely A. Luengas, Pedro R. Vizcaya, Giovanni Sánchez
Abstract:
In this paper, a methodology is presented to obtain the Static Alignment Model for any transtibial amputee person. The proposed methodology starts from experimental data collected on the Hospital Militar Central, Bogotá, Colombia. The effects of transtibial prosthesis malalignment on amputees were measured in terms of joint angles, center of pressure (COP) and weight distribution. Some statistical tools are used to obtain the model parameters. Mathematical predictive models of prosthetic alignment were created. The proposed models are validated in amputees and finding promising results for the prosthesis Static Alignment. Static alignment process is unique to each subject; nevertheless the proposed methodology can be used in each transtibial amputee.Keywords: information theory, prediction model, prosthetic alignment, transtibial prosthesis
Procedia PDF Downloads 2571333 An Online Priority-Configuration Algorithm for Obstacle Avoidance of the Unmanned Air Vehicles Swarm
Authors: Lihua Zhu, Jianfeng Du, Yu Wang, Zhiqiang Wu
Abstract:
Collision avoidance problems of a swarm of unmanned air vehicles (UAVs) flying in an obstacle-laden environment are investigated in this paper. Given that the UAV swarm needs to adapt to the obstacle distribution in dynamic operation, a priority configuration is designed to guide the UAVs to pass through the obstacles in turn. Based on the collision cone approach and the prediction of the collision time, a collision evaluation model is established to judge the urgency of the imminent collision of each UAV, and the evaluation result is used to assign the priority of each UAV to further instruct them going through the obstacles in descending order. At last, the simulation results provide the promising validation in terms of the efficiency and scalability of the proposed approach.Keywords: UAV swarm, collision avoidance, complex environment, online priority design
Procedia PDF Downloads 214