Search results for: Structural%20Reliability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4181

Search results for: Structural%20Reliability

3311 Enhanced Dielectric Properties of La Substituted CoFe2O4 Magnetic Nanoparticles

Authors: M. Vadivel, R. Ramesh Babu

Abstract:

Spinel ferrite magnetic nanomaterials have received a great deal of attention in recent years due to their wide range of potential applications in various fields such as magnetic data storage and microwave device applications. Among the family of spinel ferrites, cobalt ferrite (CoFe2O4) has been widely used in the field of high-frequency applications because of its remarkable material qualities such as moderate saturation magnetization, high coercivity, large permeability at higher frequency and high electrical resistivity. For aforementioned applications, the materials should have an improved electrical property, especially enhancement in the dielectric properties. It is well known that the substitution of rare earth metal cations in Fe3+ site of CoFe2O4 nanoparticles leads to structural distortion and thus significantly influences the structural and morphological properties whereas greatly modifies the electrical and magnetic properties of a material. In the present investigation, we report on the influence of lanthanum (La3+) ion substitution on the structural, morphological, dielectric and magnetic properties of CoFe2O4 magnetic nanoparticles prepared by co-precipitation method. Powder X-ray diffraction patterns reveal the formation of inverse cubic spinel structure with the signature of LaFeO3 phase at higher La3+ ion concentrations. Raman and Fourier transform infrared spectral analysis also confirms the formation of inverse cubic spinel structure and Fe-O symmetrical stretching vibrations of CoFe2O4 nanoparticles, respectively. Transmission electron microscopy study reveals that the size of the particles gradually increases with increasing La3+ ion concentrations whereas the agglomeration gets slightly reduced for La3+ ion substituted CoFe2O4 nanoparticles than that of undoped CoFe2O4 nanoparticles. Dielectric properties such as dielectric constant and dielectric loss were recorded as a function of frequency and temperature which reveals that the dielectric constant gradually increases with increasing temperatures as well as La3+ ion concentrations. The increased dielectric constant might be the reason that the formation of LaFeO3 secondary phase at higher La3+ ion concentrations. Magnetic measurement demonstrates that the saturation magnetization gradually decreases from 61.45 to 25.13 emu/g with increasing La3+ ion concentrations which is due to the nonmagnetic nature of La3+ ions substitution.

Keywords: cobalt ferrite, co-precipitation, dielectric properties, saturation magnetization

Procedia PDF Downloads 299
3310 Effectiveness of Damping Devices on Coupling Beams of 15-story Building Based on Nonlinear Analysis Procedures

Authors: Galih Permana, Yuskar Lase

Abstract:

In recent years, damping device has been experimentally studied to replace diagonally reinforced coupling beams, to mitigate rebar congestion problem. This study focuses on evaluating the effectiveness of various damping devices in a high-rise building. The type of damping devices evaluated is Viscoelastic Damper (VCD) and Rotational Friction Damper (RFD), with study case of a 15-story reinforced concrete apartment building with a dual system (column-beam and shear walls). The analysis used is a nonlinear time history analysis with 11 pairs of ground motions matched to the Indonesian response spectrum based on ASCE 41-17 and ASCE 7-16. In this analysis, each damper will be varied with a different position, namely the first model, the damper will be installed on the entire floor and in the second model, the damper will be installed on the 5th floor to the 9th floor, which is the floor with the largest drift. The results show that the model using both dampers increases the level of structural performance both globally and locally in the building, which will reduce the level of damage to the structural elements. But between the two dampers, the coupling beam that uses RFD is more effective than using VCD in improving building performance. The damper on the coupling beam has a good role in dissipating earthquakes and also in terms of ease of installation.

Keywords: building, coupling beam, damper, nonlinear time history analysis

Procedia PDF Downloads 152
3309 Seismic Behavior of Masonry Reinforced Concrete Composite Columns

Authors: Hassane Ousalem, Hideki Kimura, Akitoshi Hamada, Masuda Hiroyuki

Abstract:

To provide tall unreinforced brick masonry walls of a century-old existing building with sufficient resistance against earthquake loading actions, additional reinforced concrete columns were integrated into the building at some designated locations and jointed to the existing masonry walls through dowel shear steel bars, resulting in composite structural elements. As conditions at the interface between the existing masonry and newly added reinforced concrete parts were not well grasped and the behavior of such composite elements would be complex, the experimental investigation was carried out. Three relatively large specimens were tested to investigate the overall behavior of brick masonry-reinforced concrete composite elements under lateral cyclic loadings. Confining the brick walls on only one side or on two opposite sides, as well as providing different amounts of dowel shear steel bars at the interface were the main parameters of the investigation. Test results showed that such strengthening provide a good seismic performance even at very large lateral drifts and the investigated amount of shear dowel lead to a good performance level that would result in a considerable cost reduction of the strengthening.

Keywords: unreinforced masonry, reinforced concrete, composite column, seismic strengthening, structural testing

Procedia PDF Downloads 192
3308 Investigation of Structural and Optical Properties of Coal Fly Ash Thin Film Doped with T𝒊O₂ Nanoparticles

Authors: Rawan Aljabbari, Thamer Alomayri, Faisal G. Al-Maqate, Abeer Al Suwat

Abstract:

For environmentally friendly innovative technologies and a sustainable future, fly ash/TiO₂ thin film nanocomposites are essential. Fly ash will be doped with titanium dioxide in this work in order to better understand its optical characteristics and employ it in semiconductor electrical devices. This study focused on the structure, morphology, and optical properties of fly ash/TiO₂ thin films. The spin-coating technique was used to create thin coatings of fly ash/TiO₂. For the first time, the doping of TiO₂ in the fly ash host at ratios of 1, 2, and 3 wt% was investigated with the thickness of all samples fixed. When compared to undoped thin films, the surface morphology of the doped thin films was improved. The weakly crystalline structure of the doped fly ash films was verified by XRD. The optical bandgap energy of these films was successfully reduced by the TiO₂ doping, going from 3.9 to 3.5 eV. With increasing dopant concentration, the value of Urbach energy is increasing. The optical band gap is clearly in opposition to the disorder. While it considerably improved the optical conductivity to a value of 4.1 x 10^9 s^(-1), it also raised the refractive index and extinction coefficient. Depending on the TiO₂ doping ratio, the transmittance decreased, and the reflection increased. As the TiO₂ concentration rises, the absorption of photon energy rises, and the absorption coefficient of photon energy is reduced. results in their possible use as solar energy and semiconductor materials.

Keywords: fly ash, structural analysis, optical properties, morphology

Procedia PDF Downloads 58
3307 Model Order Reduction of Complex Airframes Using Component Mode Synthesis for Dynamic Aeroelasticity Load Analysis

Authors: Paul V. Thomas, Mostafa S. A. Elsayed, Denis Walch

Abstract:

Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive analysis procedure which involves simulating the aircraft at thousands of load cases as defined in the certification requirements. It is computationally prohibitive to use a Global Finite Element Model (GFEM) for the load analysis, hence reduced order structural models are required which closely represent the dynamic characteristics of the GFEM. This paper presents the implementation of Component Mode Synthesis (CMS) method for the generation of high fidelity Reduced Order Model (ROM) of complex airframes. Here, sub-structuring technique is used to divide the complex higher order airframe dynamical system into a set of subsystems. Each subsystem is reduced to fewer degrees of freedom using matrix projection onto a carefully chosen reduced order basis subspace. The reduced structural matrices are assembled for all the subsystems through interface coupling and the dynamic response of the total system is solved. The CMS method is employed to develop the ROM of a Bombardier Aerospace business jet which is coupled with an aerodynamic model for dynamic aeroelasticity loads analysis under gust turbulence. Another set of dynamic aeroelastic loads is also generated employing a stick model of the same aircraft. Stick model is the reduced order modelling methodology commonly used in the aerospace industry based on stiffness generation by unitary loading application. The extracted aeroelastic loads from both models are compared against those generated employing the GFEM. Critical loads Modal participation factors and modal characteristics of the different ROMs are investigated and compared against those of the GFEM. Results obtained show that the ROM generated using Craig Bampton CMS reduction process has a superior dynamic characteristics compared to the stick model.

Keywords: component mode synthesis, craig bampton reduction method, dynamic aeroelasticity analysis, model order reduction

Procedia PDF Downloads 187
3306 A Prediction of Electrical Cost for High-Rise Building Construction

Authors: Picha Sriprachan

Abstract:

The increase in electricity prices affects the cost of high-rise building construction. The objectives of this research are to study the electrical cost, trend of electrical cost and to forecast electrical cost of high-rise building construction. The methods of this research are: 1) to study electrical payment formats, cost data collection methods, and the factors affecting electrical cost of high-rise building construction, 2) to study the quantity and trend of cumulative percentage of the electrical cost, and 3) to forecast the electrical cost for different types of high-rise buildings. The results of this research show that the average proportion between electrical cost and the value of the construction project is 0.87 percent. The proportion of electrical cost for residential, office and commercial, and hotel buildings are closely proportional. If construction project value increases, the proportion of electrical cost and the value of the construction project will decrease. However, there is a relationship between the amount of electrical cost and the value of the construction project. During the structural construction phase, the amount of electrical cost will increase and during structural and architectural construction phase, electrical cost will be maximum. The cumulative percentage of the electrical cost is related to the cumulative percentage of the high-rise building construction cost in the same direction. The amount of service space of the building, number of floors and the duration of the construction affect the electrical cost of construction. The electrical cost of construction forecasted by using linear regression equation is close to the electrical cost forecasted by using the proportion of electrical cost and value of the project.

Keywords: high-rise building construction, electrical cost, construction phase, architectural phase

Procedia PDF Downloads 368
3305 Studying the Structural Behaviour of RC Beams with Circular Openings of Different Sizes and Locations Using FE Method

Authors: Ali Shubbar, Hasanain Alwan, Ee Yu Phur, John McLoughlin, Ameer Al-khaykan

Abstract:

This paper aims to investigate the structural behaviour of RC beams with circular openings of different sizes and locations modelled using ABAQUS FEM software. Seven RC beams with the dimensions of 1200 mm×150 mm×150 mm were tested under three-point loading. Group A consists of three RC beams incorporating circular openings with diameters of 40 mm, 55 mm and 65 mm in the shear zone. However, Group B consists of three RC beams incorporating circular openings with diameters of 40 mm, 55 mm and 65 mm in the flexural zone. The final RC beam did not have any openings, to provide a control beam for comparison. The results show that increasing the diameter of the openings increases the maximum deflection and the ultimate failure load decreases relative to the control beam. In the shear zone, the presence of the openings caused an increase in the maximum deflection ranging between 4% and 22% and a decrease in the ultimate failure load of between 26% and 36% compared to the control beam. However, the presence of the openings in the flexural zone caused an increase in the maximum deflection of between 1.5% and 19.7% and a decrease in the ultimate failure load of between 6% and 13% relative to the control beam. In this study, the optimum location for placing circular openings was found to be in the flexural zone of the beam with a diameter of less than 30% of the depth of the beam.

Keywords: ultimate failure load, maximum deflection, shear zone and flexural zone

Procedia PDF Downloads 253
3304 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.

Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames

Procedia PDF Downloads 74
3303 Long-Term Structural Behavior of Resilient Materials for Reduction of Floor Impact Sound

Authors: Jung-Yoon Lee, Jongmun Kim, Hyo-Jun Chang, Jung-Min Kim

Abstract:

People’s tendency towards living in apartment houses is increasing in a densely populated country. However, some residents living in apartment houses are bothered by noise coming from the houses above. In order to reduce noise pollution, the communities are increasingly imposing a bylaw, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused on the specific long-time deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program consisted of testing nine floor sound insulation specimens subjected to sustained load for 45 days. Two main parameters were considered in the experimental investigation: three types of resilient materials and magnitudes of loads. The test results indicated that the structural behavior of the floor sound insulation systems under long-time load was quite different from that the systems under short-time load. The loading period increased the deflection of floor sound insulation systems and the increasing rate of the long-time deflection of the systems with ethylene vinyl acetate was smaller than that of the systems with low density ethylene polystyrene.

Keywords: resilient materials, floor sound insulation systems, long-time deflection, sustained load, noise pollution

Procedia PDF Downloads 252
3302 Analyzing How Working From Home Can Lead to Higher Job Satisfaction for Employees Who Have Care Responsibilities Using Structural Equation Modeling

Authors: Christian Louis Kühner, Florian Pfeffel, Valentin Nickolai

Abstract:

Taking care of children, dependents, or pets can be a difficult and time-consuming task. Especially for part- and full-time employees, it can feel exhausting and overwhelming to meet these obligations besides working a job. Thus, working mostly at home and not having to drive to the company can save valuable time and stress. This study aims to show the influence that the working model has on the job satisfaction of employees with care responsibilities in comparison to employees who do not have such obligations. Using structural equation modeling (SEM), the three work models, “work from home”, “working remotely”, and a hybrid model, have been analyzed based on 13 influencing constructs on job satisfaction. These 13 factors have been further summarized into three groups “classic influencing factors”, “influencing factors changed by remote working”, and “new remote working influencing factors”. Based on the influencing factors on job satisfaction, an online survey was conducted with n = 684 employees from the service sector. Here, Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. In addition, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). The SEM-analysis has shown that the most significant influencing factor on job satisfaction is “identification with the work” with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis shows that the identification with the work is the most significant factor in all three work models and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that among the employees with care responsibilities, the higher the proportion of working from home in comparison to working from the office, the more satisfied the employees are with their job. Since the work models that meet the requirements of comprehensive care led to higher job satisfaction amongst employees with such obligations, adapting as a company to such private obligations by employees can be crucial to sustained success. Conversely, the satisfaction level of the working model where employees work at the office is higher for workers without caregiving responsibilities.

Keywords: care responsibilities, home office, job satisfaction, structural equation modeling

Procedia PDF Downloads 63
3301 Investigation of Physical Properties of W-Doped CeO₂ and Mo-Doped CeO₂: A Density Functional Theory Study

Authors: Aicha Bouhlala, Sabah Chettibi

Abstract:

A systematic investigation on structural, electronic, and magnetic properties of Ce₀.₇₅A₀.₂₅O₂ (A = W, Mo) is performed using first-principles calculations within the framework Full-Potential Linear Augmented Plane Wave (FP-LAPW) method based on the Density Functional Theory (DFT). The exchange-correlation potential has been treated using the generalized gradient approximation (WC-GGA) developed by Wu-Cohen. The host compound CeO2 was doped with transition metal atoms W and Mo in the doping concentration of 25% to replace the Ce atom. In structural properties, the equilibrium lattice constant is observed for the W-doped CeO₂ compound which exists within the value of 5.314 A° and the value of 5.317 A° for Mo-doped CeO2. The present results show that Ce₀.₇₅A₀.₂₅O₂ (A=W, Mo) systems exhibit semiconducting behavior in both spin channels. Although undoped CeO₂ is a non-magnetic semiconductor. The band structure of these doped compounds was plotted and they exhibit direct band gap at the Fermi level (EF) in the majority and minority spin channels. In the magnetic properties, the doped atoms W and Mo play a vital role in increasing the magnetic moments of the supercell and the values of the total magnetic moment are found to be 1.998 μB for Ce₀.₇₅W₀.₂₅O₂ and to be 2.002 μB for Ce₀.₇₅Mo₀.₂₅O₂ compounds. Calculated results indicate that the magneto-electronic properties of the Ce₁₋ₓAₓO₂(A= W, Mo) oxides supply a new way to the experimentalist for the potential applications in spintronics devices.

Keywords: FP-LAPW, DFT, CeO₂, properties

Procedia PDF Downloads 195
3300 Sensitivity Analysis of Pile-Founded Fixed Steel Jacket Platforms

Authors: Mohamed Noureldin, Jinkoo Kim

Abstract:

The sensitivity of the seismic response parameters to the uncertain modeling variables of pile-founded fixed steel jacket platforms are investigated using tornado diagram, first-order second-moment, and static pushover analysis techniques. The effects of both aleatory and epistemic uncertainty on seismic response parameters have been investigated for an existing offshore platform. The sources of uncertainty considered in the present study are categorized into three different categories: the uncertainties associated with the soil-pile modeling parameters in clay soil, the platform jacket structure modeling parameters, and the uncertainties related to ground motion excitations. It has been found that the variability in parameters such as yield strength or pile bearing capacity has almost no effect on the seismic response parameters considered, whereas the global structural response is highly affected by the ground motion uncertainty. Also, some uncertainty in soil-pile property such as soil-pile friction capacity has a significant impact on the response parameters and should be carefully modeled. Based on the results, it is highlighted that which uncertain parameters should be considered carefully and which can be assumed with reasonable engineering judgment during the early structural design stage of fixed steel jacket platforms.

Keywords: fixed jacket offshore platform, pile-soil structure interaction, sensitivity analysis

Procedia PDF Downloads 351
3299 Expectation-Confirmation Model of Information System Continuance: A Meta-Analysis

Authors: Hui-Min Lai, Chin-Pin Chen, Yung-Fu Chang

Abstract:

The expectation-confirmation model (ECM) is one of the most widely used models for evaluating information system continuance, and this model has been extended to other study backgrounds, or expanded with other theoretical perspectives. However, combining ECM with other theories or investigating the background problem may produce some disparities, thus generating inaccurate conclusions. Habit is considered to be an important factor that influences the user’s continuance behavior. This paper thus critically examines seven pairs of relationships from the original ECM and the habit variable. A meta-analysis was used to tackle the development of ECM research over the last 10 years from a range of journals and conference papers published in 2005–2014. Forty-six journal articles and 19 conference papers were selected for analysis. The results confirm our prediction that a high effect size for the seven pairs of relationships was obtained (ranging from r=0.386 to r=0.588). Furthermore, a meta-analytic structural equation modeling was performed to simultaneously test all relationships. The results show that habit had a significant positive effect on continuance intention at p<=0.05 and that the six other pairs of relationships were significant at p<0.10. Based on the findings, we refined our original research model and an alternative model was proposed for understanding and predicting information system continuance. Some theoretical implications are also discussed.

Keywords: Expectation-confirmation theory, Expectation-confirmation model, Meta-analysis, meta-analytic structural equation modeling.

Procedia PDF Downloads 248
3298 Computational, Human, and Material Modalities: An Augmented Reality Workflow for Building form Found Textile Structures

Authors: James Forren

Abstract:

This research paper details a recent demonstrator project in which digital form found textile structures were built by human craftspersons wearing augmented reality (AR) head-worn displays (HWDs). The project utilized a wet-state natural fiber / cementitious matrix composite to generate minimal bending shapes in tension which, when cured and rotated, performed as minimal-bending compression members. The significance of the project is that it synthesizes computational structural simulations with visually guided handcraft production. Computational and physical form-finding methods with textiles are well characterized in the development of architectural form. One difficulty, however, is physically building computer simulations: often requiring complicated digital fabrication workflows. However, AR HWDs have been used to build a complex digital form from bricks, wood, plastic, and steel without digital fabrication devices. These projects utilize, instead, the tacit knowledge motor schema of the human craftsperson. Computational simulations offer unprecedented speed and performance in solving complex structural problems. Human craftspersons possess highly efficient complex spatial reasoning motor schemas. And textiles offer efficient form-generating possibilities for individual structural members and overall structural forms. This project proposes that the synthesis of these three modalities of structural problem-solving – computational, human, and material - may not only develop efficient structural form but offer further creative potentialities when the respective intelligence of each modality is productively leveraged. The project methodology pertains to its three modalities of production: 1) computational, 2) human, and 3) material. A proprietary three-dimensional graphic statics simulator generated a three-legged arch as a wireframe model. This wireframe was discretized into nine modules, three modules per leg. Each module was modeled as a woven matrix of one-inch diameter chords. And each woven matrix was transmitted to a holographic engine running on HWDs. Craftspersons wearing the HWDs then wove wet cementitious chords within a simple falsework frame to match the minimal bending form displayed in front of them. Once the woven components cured, they were demounted from the frame. The components were then assembled into a full structure using the holographically displayed computational model as a guide. The assembled structure was approximately eighteen feet in diameter and ten feet in height and matched the holographic model to under an inch of tolerance. The construction validated the computational simulation of the minimal bending form as it was dimensionally stable for a ten-day period, after which it was disassembled. The demonstrator illustrated the facility with which computationally derived, a structurally stable form could be achieved by the holographically guided, complex three-dimensional motor schema of the human craftsperson. However, the workflow traveled unidirectionally from computer to human to material: failing to fully leverage the intelligence of each modality. Subsequent research – a workshop testing human interaction with a physics engine simulation of string networks; and research on the use of HWDs to capture hand gestures in weaving seeks to develop further interactivity with rope and chord towards a bi-directional workflow within full-scale building environments.

Keywords: augmented reality, cementitious composites, computational form finding, textile structures

Procedia PDF Downloads 158
3297 Chemical, Structural and Mechanical Optimization of Zr-Based Bulk Metallic Glass for Biomedical Applications

Authors: Eliott Guérin, Remi Daudin, Georges Kalepsi, Alexis Lenain, Sebastien Gravier, Benoit Ter-Ovanessian, Damien Fabregue, Jean-Jacques Blandin

Abstract:

Due to interesting compromise between mechanical and corrosion properties, Zr-based BMGs are attractive for biomedical applications. However, the enhancement of their glass forming ability (GFA) is often achieved by addition of toxic elements like Ni or Be, which is of course a problem for such applications. Consequently, the development of Ni-free Be-free Zr-based BMGs is of great interest. We have developed a Zr-based (Ni and Be-free) amorphous metallic alloy with an elastic limit twice the one of Ti-6Al-4V. The Zr56Co28Al16 composition exhibits a yield strength close to 2 GPa and low Young’s modulus (close to 90 GPa) [1-2]. In this work, we investigated Niobium (Nb) addition through substitution of Zr up to 8 at%. Cobalt substitution has already been reported [3], but we chose Zr substitution to preserve the glass forming ability. In this case, we show that the glass forming ability for 5 mm diameters rods is maintained up to 3 at% of Nb substitution using suction casting in cooper moulds. Concerning the thermal stability, we measure a strong compositional dependence on the glass transition (Tg). Using DSC analysis (heating rate 20 K/min), we show that the Tg rises from 752 K for 0 at% of Nb to 759 K for 3 at% of Nb. Yet, the thermal range between Tg and the crystallisation temperature (Tx) remains almost unchanged from 33 K to 35 K. Uniaxial compression tests on 2 mm diameter pillars and 3 points bending (3PB) tests on 1 mm thick plates are performed to study the Nb addition on the mechanical properties and the plastic behaviour. With these tests, an optimal Nb concentration is found, improving both plasticity and fatigue resistance. Through interpretations of DSC measurements, an attempt is made to correlate the modifications of the mechanical properties with the structural changes. The optimized chemical, structural and mechanical properties through Nb addition are encouraging to develop the potential of this BMG alloy for biomedical applications. For this purpose, we performed polarisation, immersion and cytotoxicity tests. The figure illustrates the polarisation response of Zr56Co28Al16, Zr54Co28Al16Nb2 and TA6V as a reference after 2h of open circuit potential. The results show that the substitution of Zr by a small amount of Nb significantly improves the corrosion resistance of the alloy.

Keywords: metallic glasses, amorphous metal, medical, mechanical resistance, biocompatibility

Procedia PDF Downloads 132
3296 Study on High Performance Fiber Reinforced Concrete (HPFRC) Beams on Subjected to Cyclic Loading

Authors: A. Siva, K. Bala Subramanian, Kinson Prabu

Abstract:

Concrete is widely used construction materials all over the world. Now a day’s fibers are used in this construction due to its advantages like increase in stiffness, energy absorption, ductility and load carrying capacity. The fiber used in the concrete to increases the structural integrity of the member. It is one of the emerging techniques used in the construction industry. In this paper, the effective utilization of high-performance fiber reinforced concrete (HPFRC) beams has been experimental investigated. The experimental investigation has been conducted on different steel fibers (Hooked, Crimpled, and Hybrid) under cyclic loading. The behaviour of HPFRC beams is compared with the conventional beams. Totally four numbers of specimens were cast with different content of fiber concrete and compared conventional concrete. The fibers are added to the concrete by base volume replacement of concrete. The silica fume and superplasticizers were used to modify the properties of concrete. Single point loading was carried out for all the specimens, and the beam specimens were subjected to cyclic loading. The load-deflection behaviour of fibers is compared with the conventional concrete. The ultimate load carrying capacity, energy absorption and ductility of hybrid fiber reinforced concrete is higher than the conventional concrete by 5% to 10%.

Keywords: cyclic loading, ductility, high performance fiber reinforced concrete, structural integrity

Procedia PDF Downloads 251
3295 Gendered Mobility: Deep Distributions in Urban Transport Systems in Delhi

Authors: Nidhi Prabha

Abstract:

Transportation as a sector is one of the most significant infrastructural elements of the ‘urban.' The distinctness of an urban life in a city is marked by the dynamic movements that it enables within the city-space. Therefore it is important to study the public-transport systems that enable and foster mobility which characterizes the urban. It is also crucial to underscore the way one is examining the urban transport systems - either as an infrastructural unit in a strict physical-structural sense or as a structural unit which acts as a prism refracting multiple experiences depending on the location of the ‘commuter.' In the proposed paper, the attempt is to uncover and investigate the assumption of the neuter-commuter by looking at urban transportation in the secondary sense i.e. as a structural unit which is experienced differently by different kinds of commuters, thus making transportation deeply distributed with various social structures and locations like class or gender which map onto the transport systems. To this end, the public-transit systems operating in Urban Delhi i.e. the Delhi Metros and the Delhi Transport Corporation run public-buses are looked at as case studies. The study is premised on the knowledge and data gained from both primary and secondary sources. Primary sources include data and knowledge collected from fieldwork, the methodology for which has ranged from adopting ‘mixed-methods’ which is ‘Qualitative-then-Quantitative’ as well as borrowing ethnographic techniques. Apart from fieldwork, other primary sources looked at including Annual Reports and policy documents of the Delhi Metro Rail Corporation (DMRC) and the Delhi Transport Corporation (DTC), Union and Delhi budgets, Economic Survey of Delhi, press releases, etc. Secondary sources include the vast array of literature available on the critical nodes that inform the research like gender, transport geographies, urban-space, etc. The study indicates a deeply-distributed urban transport system wherein the various social-structural locations or different kinds of commuters map onto the way these different commuters experience mobility or movement within the city space. Mobility or movement, therefore, becomes gendered or has class-based ramifications. The neuter-commuter assumption is thus challenged. Such an understanding enables us to challenge the anonymity which the ‘urban’ otherwise claims it provides over the rural. The rural is opposed to the urban wherein urban ushers a modern way of life, breaking ties of traditional social identities. A careful study of the transport systems through the traveling patterns and choices of the commuters, however, indicate that this does not hold true as even the same ‘public-space’ of the transport systems allocates different places to different kinds of commuters. The central argument made though the research done is therefore that infrastructure like urban-transport-systems has to be studied and examined as seen beyond just a physical structure. The various experiences of daily mobility of different kinds of commuters have to be taken into account in order to design and plan more inclusive transport systems.

Keywords: gender, infrastructure, mobility, urban-transport-systems

Procedia PDF Downloads 195
3294 Evaluation of the Factors Affecting Violence Against Women (Case Study: Couples Referring to Family Counseling Centers in Tehran)

Authors: Hassan Manouchehri

Abstract:

The present study aimed to identify and evaluate the factors affecting violence against women. The statistical population included all couples referring to family counseling centers in Tehran due to domestic violence during the past year. A number of 305 people were selected as a statistical sample using simple random sampling and Cochran's formula in unlimited conditions. A researcher-made questionnaire including 110 items was used for data collection. The face validity and content validity of the questionnaire were confirmed by 30 experts and its reliability was obtained above 0.7 for all studied variables in a preliminary test with 30 subjects and it was acceptable. In order to analyze the data, descriptive statistical methods were used with SPSS software version 22 and inferential statistics were used for modeling structural equations in Smart PLS software version 2. Evaluating the theoretical framework and domestic and foreign studies indicated that, in general, four main factors, including cultural and social factors, economic factors, legal factors, as well as medical factors, underlie violence against women. In addition, structural equation modeling findings indicated that cultural and social factors, economic factors, legal factors, and medical factors affect violence against women.

Keywords: violence against women, cultural and social factors, economic factors, legal factors, medical factors

Procedia PDF Downloads 119
3293 A Causal Model for Environmental Design of Residential Community for Elderly Well-Being in Thailand

Authors: Porntip Ruengtam

Abstract:

This article is an extension of previous research presenting the relevant factors related to environmental perceptions, residential community, and the design of a healing environment, which have effects on the well-being and requirements of Thai elderly. Research methodology began with observations and interviews in three case studies in terms of the management processes and environment design of similar existing projects in Thailand. The interview results were taken to summarize with related theories and literature. A questionnaire survey was designed for data collection to confirm the factors of requirements in a residential community intended for the Thai elderly. A structural equation model (SEM) was formulated to explain the cause-effect factors for the requirements of a residential community for Thai elderly. The research revealed that the requirements of a residential community for Thai elderly were classified into three groups when utilizing a technique for exploratory factor analysis. The factors were comprised of (1) requirements for general facilities and activities, (2) requirements for facilities related to health and security, and (3) requirements for facilities related to physical exercise in the residential community. The results from the SEM showed the background of elderly people had a direct effect on their requirements for a residential community from various aspects. The results should lead to the formulation of policies for design and management of residential communities for the elderly in order to enhance quality of life as well as both the physical and mental health of the Thai elderly.

Keywords: elderly, environmental design, residential community, structural equation modeling

Procedia PDF Downloads 297
3292 Numerical Investigation of Beam-Columns Subjected to Non-Proportional Loadings under Ambient Temperature Conditions

Authors: George Adomako Kumi

Abstract:

The response of structural members, when subjected to various forms of non-proportional loading, plays a major role in the overall stability and integrity of a structure. This research seeks to present the outcome of a finite element investigation conducted by the use of finite element programming software ABAQUS to validate the experimental results of elastic and inelastic behavior and strength of beam-columns subjected to axial loading, biaxial bending, and torsion under ambient temperature conditions. The application of the rigorous and highly complicated ABAQUS finite element software will seek to account for material, non-linear geometry, deformations, and, more specifically, the contact behavior between the beam-columns and support surfaces. Comparisons of the three-dimensional model with the results of actual tests conducted and results from a solution algorithm developed through the use of the finite difference method will be established in order to authenticate the veracity of the developed model. The results of this research will seek to provide structural engineers with much-needed knowledge about the behavior of steel beam columns and their response to various non-proportional loading conditions under ambient temperature conditions.

Keywords: beam-columns, axial loading, biaxial bending, torsion, ABAQUS, finite difference method

Procedia PDF Downloads 157
3291 Structural Analysis of a Composite Wind Turbine Blade

Authors: C. Amer, M. Sahin

Abstract:

The design of an optimised horizontal axis 5-meter-long wind turbine rotor blade in according with IEC 61400-2 standard is a research and development project in order to fulfil the requirements of high efficiency of torque from wind production and to optimise the structural components to the lightest and strongest way possible. For this purpose, a research study is presented here by focusing on the structural characteristics of a composite wind turbine blade via finite element modelling and analysis tools. In this work, first, the required data regarding the general geometrical parts are gathered. Then, the airfoil geometries are created at various sections along the span of the blade by using CATIA software to obtain the two surfaces, namely; the suction and the pressure side of the blade in which there is a hat shaped fibre reinforced plastic spar beam, so-called chassis starting at 0.5m from the root of the blade and extends up to 4 m and filled with a foam core. The root part connecting the blade to the main rotor differential metallic hub having twelve hollow threaded studs is then modelled. The materials are assigned as two different types of glass fabrics, polymeric foam core material and the steel-balsa wood combination for the root connection parts. The glass fabrics are applied using hand wet lay-up lamination with epoxy resin as METYX L600E10C-0, is the unidirectional continuous fibres and METYX XL800E10F having a tri-axial architecture with fibres in the 0,+45,-45 degree orientations in a ratio of 2:1:1. Divinycell H45 is used as the polymeric foam. The finite element modelling of the blade is performed via MSC PATRAN software with various meshes created on each structural part considering shell type for all surface geometries, and lumped mass were added to simulate extra adhesive locations. For the static analysis, the boundary conditions are assigned as fixed at the root through aforementioned bolts, where for dynamic analysis both fixed-free and free-free boundary conditions are made. By also taking the mesh independency into account, MSC NASTRAN is used as a solver for both analyses. The static analysis aims the tip deflection of the blade under its own weight and the dynamic analysis comprises normal mode dynamic analysis performed in order to obtain the natural frequencies and corresponding mode shapes focusing the first five in and out-of-plane bending and the torsional modes of the blade. The analyses results of this study are then used as a benchmark prior to modal testing, where the experiments over the produced wind turbine rotor blade has approved the analytical calculations.

Keywords: dynamic analysis, fiber reinforced composites, horizontal axis wind turbine blade, hand-wet layup, modal testing

Procedia PDF Downloads 412
3290 Educating for Acceptance or Action: Bachelor of Social Work Education in Canada

Authors: Elizabeth Radian

Abstract:

In a challenging era of neoliberalism and managerialism in social services, the status of Canadian social work education at the Bachelor of Social Work level (BSW) was examined to determine how prepared students were to practice in a time of resource cutbacks and insecurity. Curricula in BSW programs was the focus as this generalist degree results in the greatest number of social work graduates in Canada, most of whom work at the front lines in service delivery. The study reviewed the practice frameworks that students in BSW programs were exposed to. Traditionally, schools of social work have embraced two major practice frameworks. The person in environment framework is a well-established practice framework taught in most schools. The framework offers some focus on smaller scale social change, tweaking existing arrangements and is more accepting of the status quo. An alternate practice framework taught in fewer schools has been described as a structural, progressive or anti oppressive framework. This latter framework challenges the status quo, is focused on social justice and social transformation, often incorporating social action strategies to ensure marginalized voices are heard. Using a content analysis methodology of keywords and phrases to delineate framework orientation, practice frameworks articulated in the curricula were determined by reviewing the mission/mandate of schools offering a BSW degree, their core course outlines and core course textbooks. Social action, as one strategy for initiating social change and transformation was considered. Initial research for 28 schools was completed in 2000, with follow up replications of the initial study in 2005 and 2014. These earlier studies displayed that the dominant practice framework taught in BSW programs was the person in environment framework. A lesser number of schools were categorized as primarily offering a structural, progressive or anti oppressive framework. The findings from the current study of 39 Canadian schools of social work are considered to determine how prominent structural, progressive and anti oppressive frameworks exist in current BSW curricula. This study can assist in contemplating the question – are we educating future practitioners for acceptance or action.

Keywords: social work education and pedagogy, social change, social justice, social services

Procedia PDF Downloads 175
3289 Clustering of Natural and Nature Derived Compounds for Cardiovascular Disease: Pharmacophore Modeling

Authors: S. Roy, R. Rekha, K. Sriram, G. Subhadra, R. Johana

Abstract:

Cardiovascular disease remains a leading cause of death in most industrialized countries. Many chemical drugs are available in the market which targets different receptor proteins related to cardiovascular diseases. Of late the traditional herbal drugs are safer when compared to chemical drugs because of its side effects. However, many herbal remedies used in treating cardiovascular diseases have not undergone scientific assessment to prove its pharmacological activities. There are many natural compounds, nature derived and Natural product mimic compounds are available which are in the market as approved drug. In the most of the cases drug activity at the molecular level are not known. Here we have categorized those compounds with our experimental compounds in different classes based on the structural similarity and physicochemical properties, using a tool, Chemmine and has attempted to understand the mechanism of the action of a experimental compound, which are clustered with Simvastatin, Lovastatin, Mevastatin and Pravastatin. Target protein molecule for Simvastatin, Lovastatin, Mevastatin and Pravastatin is HMG-CoA reductase, so we concluded that the experimental compound may be able to bind to the same target. Molecular docking and atomic interaction studies with simvastatin and our experimental compound were compared. A pharmacophore modeling was done based on the experimental compound and HMG-CoA reductase inhibitor.

Keywords: molecular docking, physicochemical properties, pharmacophore modeling structural similarity, pravastatin

Procedia PDF Downloads 302
3288 The Exploration of the Physical Properties of the Combinations of Selenium-Based Ternary Chalcogenides AScSe₂ (A=K, Cs) for Photovoltaic Applications

Authors: Ayesha Asma, Aqsa Arooj

Abstract:

It is an essential need in this era of Science and Technology to investigate some unique and appropriate materials for optoelectronic applications. Here, we deliberated, for the first time, the structural, optoelectronic, mechanical, vibrational, and thermo dynamical properties of hexagonal structure selenium-based ternary chalcogenides AScSe₂ (A= K, Cs) by using Perdew-Burke-Ernzerhof Generalized-Gradient-Approximation (PBE-GGA). The lattice angles for these materials are found as α=β=90o and γ=120o. KScSe₂ optimized with lattice parameters a=b=4.3 (Å), c=7.81 (Å) whereas CsScSe₂ got relaxed at a=b=4.43 (Å) and c=8.51 (Å). However, HSE06 functional has overestimated the lattice parameters to the extent that for KScSe₂ a=b=4.92 (Å), c=7.10 (Å), and CsScSe₂ a=b=5.15 (Å), c=7.09 (Å). The energy band gap of these materials calculated via PBE-GGA and HSE06 functionals confirms their semiconducting nature. Concerning Born’s criteria, these materials are mechanically stable ones. Moreover, the temperature dependence of thermodynamic potentials and specific heat at constant volume are also determined while using the harmonic approximation. The negative values of free energy ensure their thermodynamic stability. The vibrational modes are calculated by plotting the phonon dispersion and the vibrational density of states (VDOS), where infrared (IR) and Raman spectroscopy are used to characterize the vibrational modes. The various optical parameters are examined at a smearing value of 0.5eV. These parameters unveil that these materials are good absorbers of incident light in ultra-violet (UV) regions and may be utilized in photovoltaic applications.

Keywords: structural, optimized, vibrational, ultraviolet

Procedia PDF Downloads 15
3287 Sustainable Development of Medium Strength Concrete Using Polypropylene as Aggregate Replacement

Authors: Reza Keihani, Ali Bahadori-Jahromi, Timothy James Clacy

Abstract:

Plastic as an environmental burden is a well-rehearsed topic in the research area. This is due to its global demand and destructive impacts on the environment, which has been a significant concern to the governments. Typically, the use of plastic in the construction industry is seen across low-density, non-structural applications due to its diverse range of benefits including high strength-to-weight ratios, manipulability and durability. It can be said that with the level of plastic consumption experienced in the construction industry, an ongoing responsibility is shown for this sector to continually innovate alternatives for application of recycled plastic waste such as using plastic made replacement from polyethylene, polystyrene, polyvinyl and polypropylene in the concrete mix design. In this study, the impact of partially replaced fine aggregate with polypropylene in the concrete mix design was investigated to evaluate the concrete’s compressive strength by conducting an experimental work which comprises of six concrete mix batches with polypropylene replacements ranging from 0.5 to 3.0%. The results demonstrated a typical decline in the compressive strength with the addition of plastic aggregate, despite this reduction generally mitigated as the level of plastic in the concrete mix increased. Furthermore, two of the six plastic-containing concrete mixes tested in the current study exceeded the ST5 standardised prescribed concrete mix compressive strength requirement at 28-days containing 1.50% and 2.50% plastic aggregates, which demonstrated the potential for use of recycled polypropylene in structural applications, as a partial by mass, fine aggregate replacement in the concrete mix.

Keywords: compressive strength, concrete, polypropylene, sustainability

Procedia PDF Downloads 118
3286 Inappropriate Job Behaviour and Performance of Employees

Authors: Prakash Singh

Abstract:

The focus of this paper is on the impact of internal organizational factors on the inappropriate job performance and behaviour of employees. The Buffalo City Metropolitan Municipality (BCMM) in South Africa has been experiencing inappropriate job behaviour and performance of some of its workers. They include misappropriation of resources, maladministration, mismanagement, lack of service delivery, fraud, and corruption. Since many workers in this organization have various levels of formal education, such practices are not expected, because the structural-functionalist assumption is that formal education is a solution to societal challenges. Since inappropriate job behaviour and performance continue to be reported in spite of the formal education of BCMM workers, this study seeks to investigate how the two phenomena co-exist. It thus seeks to put into perspective the paradoxical co-existence of formal education with inappropriate job behaviour and performance, by focusing on the BCMM as a case-study. For data collection, this study used the mixed method approach; that is, a combination of qualitative and quantitative methods. The findings revealed structural, systemic and human impediments to labour productivity in the organization. By and large, the unquestioning acceptance of the assumption that the skills shortage is responsible for inappropriate workers’ job performance and behaviour is discredited by the evidence of skilled personnel who exercise their responsibilities in a manner that undermines their occupational requirements. Therefore, this exploratory study affirms that the narrow conception of skills, that privileges job-specific capabilities, is not enough for cultivating a workforce with appropriate job behaviour and performance practices.

Keywords: inappropriate job behaviour, labour productivity, mismanagement, skills shortage

Procedia PDF Downloads 348
3285 Diversity Indices as a Tool for Evaluating Quality of Water Ways

Authors: Khadra Ahmed, Khaled Kheireldin

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: planktons, diversity indices, water quality index, water ways

Procedia PDF Downloads 496
3284 Properties of Concrete with Wood Ashes in Construction Engineering

Authors: Piotr-Robert Lazik, Lena Teichmann, Harald Garrecht

Abstract:

Many concrete technologists are looking for a solution to replace fly ashes as a component that occurs as a major component of many types of concrete. The importance of such a component is clear -it saves cement and reduces the amount of CO₂ in the atmosphere that occurs during cement production. For example, the amount of cement in ultrahigh strength concrete (UHPC) is approximately 700-800 kg/m³ in normal concrete up to 350 kg/m³. For this reason, it is easy to follow that the use of components like fly ashes or wood ashes protect the environment. The newest investigations carried out at the University of Stuttgart have clearly shown that the use of wood ashes with appropriate pre-treatment in concrete has a positive effect. German-wide, there are hundreds of tons of wood ashes, which can be used in a wide range of construction materials. The strengths of the concrete with different types of cement and with wood ashes have given the same or, in some cases, better results than those with the use of fly ashes. There are many areas in building construction, where the clays of wood ashes can be used as a by-product. This does not only require a strength test but also, for example, an examination of structural-physical parameters. Especially the heat and moisture characteristics have an important role in times of energy-efficient construction. These are therefore determined and then compared with the characteristics of the concretes with fly ashes. The University of Stuttgart has decided to investigate the buildings' physical properties of different types of concrete with wood ashes to find their application in construction. After the examination of the buildings' physical properties in combination with strength tests, it is possible to determine in which field of civil engineering, this type of concrete can be used.

Keywords: fly ashes, wood ashes, structural-physical parameters, UHPC

Procedia PDF Downloads 124
3283 Using Two-Mode Network to Access the Connections of Film Festivals

Authors: Qiankun Zhong

Abstract:

In a global cultural context, film festival awards become authorities to define the aesthetic value of films. To study which genres and producing countries are valued by different film festivals and how those evaluations interact with each other, this research explored the interactions between the film festivals through their selection of movies and the factors that lead to the tendency of film festivals to nominate the same movies. To do this, the author employed a two-mode network on the movies that won the highest awards at five international film festivals with the highest attendance in the past ten years (the Venice Film Festival, the Cannes Film Festival, the Toronto International Film Festival, Sundance Film Festival, and the Berlin International Film Festival) and the film festivals that nominated those movies. The title, genre, producing country and language of 50 movies, and the range (regional, national or international) and organizing country or area of 129 film festivals were collected. These created networks connected by nominating the same films and awarding the same movies. The author then assessed the density and centrality of these networks to answer the question: What are the film festivals that tend to have more shared values with other festivals? Based on the Eigenvector centrality of the two-mode network, Palm Springs, Robert Festival, Toronto, Chicago, and San Sebastian are the festivals that tend to nominate commonly appreciated movies. In contrast, Black Movie Film Festival has the unique value of generally not sharing nominations with other film festivals. A homophily test was applied to access the clustering effects of film and film festivals. The result showed that movie genres (E-I index=0.55) and geographic location (E-I index=0.35) are possible indicators of film festival clustering. A blockmodel was also created to examine the structural roles of the film festivals and their meaning in real-world context. By analyzing the same blocks with film festival attributes, it was identified that film festivals either organized in the same area, with the same history, or with the same attitude on independent films would occupy the same structural roles in the network. Through the interpretation of the blocks, language was identified as an indicator that contributes to the role position of a film festival. Comparing the result of blockmodeling in the different periods, it is seen that international film festivals contrast with the Hollywood industry’s dominant value. The structural role dynamics provide evidence for a multi-value film festival network.

Keywords: film festivals, film studies, media industry studies, network analysis

Procedia PDF Downloads 295
3282 Music Reading Expertise Facilitates Implicit Statistical Learning of Sentence Structures in a Novel Language: Evidence from Eye Movement Behavior

Authors: Sara T. K. Li, Belinda H. J. Chung, Jeffery C. N. Yip, Janet H. Hsiao

Abstract:

Music notation and text reading both involve statistical learning of music or linguistic structures. However, it remains unclear how music reading expertise influences text reading behavior. The present study examined this issue through an eye-tracking study. Chinese-English bilingual musicians and non-musicians read English sentences, Chinese sentences, musical phrases, and sentences in Tibetan, a language novel to the participants, with their eye movement recorded. Each set of stimuli consisted of two conditions in terms of structural regularity: syntactically correct and syntactically incorrect musical phrases/sentences. They then completed a sentence comprehension (for syntactically correct sentences) or a musical segment/word recognition task afterwards to test their comprehension/recognition abilities. The results showed that in reading musical phrases, as compared with non-musicians, musicians had a higher accuracy in the recognition task, and had shorter reading time, fewer fixations, and shorter fixation duration when reading syntactically correct (i.e., in diatonic key) than incorrect (i.e., in non-diatonic key/atonal) musical phrases. This result reflects their expertise in music reading. Interestingly, in reading Tibetan sentences, which was novel to both participant groups, while non-musicians did not show any behavior differences between reading syntactically correct or incorrect Tibetan sentences, musicians showed a shorter reading time and had marginally fewer fixations when reading syntactically correct sentences than syntactically incorrect ones. However, none of the musicians reported discovering any structural regularities in the Tibetan stimuli after the experiment when being asked explicitly, suggesting that they may have implicitly acquired the structural regularities in Tibetan sentences. This group difference was not observed when they read English or Chinese sentences. This result suggests that music reading expertise facilities reading texts in a novel language (i.e., Tibetan), but not in languages that the readers are already familiar with (i.e., English and Chinese). This phenomenon may be due to the similarities between reading music notations and reading texts in a novel language, as in both cases the stimuli follow particular statistical structures but do not involve semantic or lexical processing. Thus, musicians may transfer their statistical learning skills stemmed from music notation reading experience to implicitly discover structures of sentences in a novel language. This speculation is consistent with a recent finding showing that music reading expertise modulates the processing of English nonwords (i.e., words that do not follow morphological or orthographic rules) but not pseudo- or real words. These results suggest that the modulation of music reading expertise on language processing depends on the similarities in the cognitive processes involved. It also has important implications for the benefits of music education on language and cognitive development.

Keywords: eye movement behavior, eye-tracking, music reading expertise, sentence reading, structural regularity, visual processing

Procedia PDF Downloads 360