Search results for: Physics informed machine learning
9013 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time
Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani
Abstract:
This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management
Procedia PDF Downloads 909012 Adjustment and Compensation Techniques for the Rotary Axes of Five-axis CNC Machine Tools
Authors: Tung-Hui Hsu, Wen-Yuh Jywe
Abstract:
Five-axis computer numerical control (CNC) machine tools (three linear and two rotary axes) are ideally suited to the fabrication of complex work pieces, such as dies, turbo blades, and cams. The locations of the axis average line and centerline of the rotary axes strongly influence the performance of these machines; however, techniques to compensate for eccentric error in the rotary axes remain weak. This paper proposes optical (Non-Bar) techniques capable of calibrating five-axis CNC machine tools and compensating for eccentric error in the rotary axes. This approach employs the measurement path in ISO/CD 10791-6 to determine the eccentric error in two rotary axes, for which compensatory measures can be implemented. Experimental results demonstrate that the proposed techniques can improve the performance of various five-axis CNC machine tools by more than 90%. Finally, a result of the cutting test using a B-type five-axis CNC machine tool confirmed to the usefulness of this proposed compensation technique.Keywords: calibration, compensation, rotary axis, five-axis computer numerical control (CNC) machine tools, eccentric error, optical calibration system, ISO/CD 10791-6
Procedia PDF Downloads 3889011 Laban Movement Analysis Using Kinect
Authors: Bernstein Ran, Shafir Tal, Tsachor Rachelle, Studd Karen, Schuster Assaf
Abstract:
Laban Movement Analysis (LMA), developed in the dance community over the past seventy years, is an effective method for observing, describing, notating, and interpreting human movement to enhance communication and expression in everyday and professional life. Many applications that use motion capture data might be significantly leveraged if the Laban qualities will be recognized automatically. This paper presents an automated recognition method of Laban qualities from motion capture skeletal recordings and it is demonstrated on the output of Microsoft’s Kinect V2 sensor.Keywords: Laban movement analysis, multitask learning, Kinect sensor, machine learning
Procedia PDF Downloads 3459010 Assessing the Informed Consent Practices during Normal Vaginal Delivery Process and Immediate Postpartum Care in Tertiary Level Hospitals of Bangladesh
Authors: Md. Abdul Karim, Syed Imran Ahmed, Pandora T. Hardtman
Abstract:
Informed consent is one of the basic human and ethical rights for childbearing women. It plays a central role in promoting informed decision making between patients and service providers during the labor process. It gives mothers rights to accept or reject any examination and/or procedure, increases the respect and dignity of the mother during pregnancy, delivery and postpartum care. To assess the practices of this right during normal vaginal delivery and immediate postpartum care in tertiary level hospital setting in Bangladesh, a quantitative study with cross-sectional design was conducted in Dhaka Medical College & Hospital (DMCH) and Sir Salimullah Medical College & Mitford Hospital (SSMCH) in Dhaka in November 2015. A prevalence-based sample size of 190 was calculated where prevalence, confidence interval and level of significance were at 9.7%, 98% and 5% respectively. The respondents were the mothers who gave normal vaginal childbirth within past 24 hours and received postpartum care there. They were selected through systematic random sampling technique and their face-to-face interview of 190 mothers was done using a structured questionnaire. Data were entered into the spreadsheet (MS Excel 2013 version) and descriptive analysis of findings was done. The result shows the complete absence of informed consent practices and mostly absence of consented care such as right to information, respect for choices of preferences for examination and/or procedure of childbearing women. Although 95% of the mothers were informed that they were being proceeded with normal vaginal delivery, their choice of preference was absent during the process. Only consent (not informed consent) was taken from 50%-72% mothers for examination (except breast examination ‘0%’) and 8%-83% for any procedures during postpartum care. Only one-ninth (11%) of the mothers could ask service providers regarding the services they received. No consent was taken from 3% of the mothers- neither in the labor process nor in postpartum care. This current practice doesn’t comply with the Respectful Maternity Care (RMC) Charter 2011. The issue is not even clarified in the current Standard Clinical Management Protocols of the country. So, improvement of the existing protocol and increased awareness are essential to address this right of child-bearing women and to practice it during normal vaginal delivery and postpartum care.Keywords: informed consent, normal vaginal delivery, respectful maternity care, tertiary level hospital
Procedia PDF Downloads 1619009 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection
Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay
Abstract:
With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.Keywords: Credit Card Fraud Detection, User Authentication, Behavioral Biometrics, Machine Learning, Literature Survey
Procedia PDF Downloads 1269008 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence
Authors: Hoora Beheshti Haradasht, Abooali Golzary
Abstract:
Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability
Procedia PDF Downloads 869007 Introducing Thermodynamic Variables through Scientific Inquiry for Engineering Students
Authors: Paola Utreras, Yazmina Olmos, Loreto Sanhueza
Abstract:
This work shows how the learning of physics is enriched with scientific inquiry practices, achieving learning that results in the use of higher-level cognitive skills. The activities, which were carried out with students of the 3rd semester of the courses of the Faculty of Sciences of the Engineering of the Austral University of Chile, focused on the understanding of the nature of the thermodynamic variables and how they relate to each other. This, through the analysis of atmospheric data obtained in the meteorological station Miraflores, located on the campus. The proposed activities consisted of the elaboration of time series, linear analysis of variables, as well as the analysis of frequencies and periods. From their results, the students reached conclusions associated with the nature of the thermodynamic variables studied and the relationships between them, to finally make public their results in a report using scientific writing standards. It is observed that introducing topics that are close to them, interesting and which affect their daily lives allows a better understanding of the subjects, which is reflected in higher levels of approval and motivation for the subject.Keywords: basic sciences, inquiry-based learning, scientific inquiry, thermodynamics
Procedia PDF Downloads 2599006 Attitude Towards E-Learning: A Case of University Teachers and Students
Authors: Muhamamd Shahid Farooq, Maazan Zafar, Rizawana Akhtar
Abstract:
E-learning technologies are the blessings of advancements in science and technology. These facilitate the learners to get information at any place and any time by improving their self-confidence, self-efficacy and effectiveness in teaching learning process. E-learning provides an individualized learning experience for learners and remove barriers faced by students during new and creative ways of gaining information. It provides a wide range of facilities to enable the teachers and students for effective and purposeful learning. This study was conducted to explore the attitudes of university students and teachers towards e-learning working in a metropolitan university of Pakistan. The personal, institutional and technological characteristics of the teachers and students of higher education institution effect the adoption of e-learning. For this descriptive study 449 students and 35 university teachers were surveyed by using a Likert scale type questionnaire consisting of 52 statements relating to six factors "perceived usefulness, intention to adopt e-learning, ease of e-learning use, availability resources, e-learning stressors, and pressure to use e-learning". Data were analyzed by making comparisons on the basis of different demographic factors. The findings of the study show that both type of respondents have positive attitude towards e-learning. However, the male and female respondents differ in their opinion for e-learning implementation.Keywords: e-learning, ICT, e-sources of learning, questionnaire
Procedia PDF Downloads 5309005 Examination of Public Hospital Unions Technical Efficiencies Using Data Envelopment Analysis and Machine Learning Techniques
Authors: Songul Cinaroglu
Abstract:
Regional planning in health has gained speed for developing countries in recent years. In Turkey, 89 different Public Hospital Unions (PHUs) were conducted based on provincial levels. In this study technical efficiencies of 89 PHUs were examined by using Data Envelopment Analysis (DEA) and machine learning techniques by dividing them into two clusters in terms of similarities of input and output indicators. Number of beds, physicians and nurses determined as input variables and number of outpatients, inpatients and surgical operations determined as output indicators. Before performing DEA, PHUs were grouped into two clusters. It is seen that the first cluster represents PHUs which have higher population, demand and service density than the others. The difference between clusters was statistically significant in terms of all study variables (p ˂ 0.001). After clustering, DEA was performed for general and for two clusters separately. It was found that 11% of PHUs were efficient in general, additionally 21% and 17% of them were efficient for the first and second clusters respectively. It is seen that PHUs, which are representing urban parts of the country and have higher population and service density, are more efficient than others. Random forest decision tree graph shows that number of inpatients is a determinative factor of efficiency of PHUs, which is a measure of service density. It is advisable for public health policy makers to use statistical learning methods in resource planning decisions to improve efficiency in health care.Keywords: public hospital unions, efficiency, data envelopment analysis, random forest
Procedia PDF Downloads 1299004 Learning Grammars for Detection of Disaster-Related Micro Events
Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev
Abstract:
Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter
Procedia PDF Downloads 4839003 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius
Authors: Mina Adel Shokry Fahim, Jūratė Sužiedelytė Visockienė
Abstract:
With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realisation often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.Keywords: air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter
Procedia PDF Downloads 589002 An Automatic Method for Building Learners’ Groups in Virtual Environment
Authors: O. Bourkoukou, Essaid El Bachari
Abstract:
The group composing is one of the key issue in collaborative learning to achieve a positive educational experience. The goal of this work is to propose for teachers and tutors a method to create effective collaborative learning groups in e-learning environment based on the learner profile. For this purpose, a new function was defined to rate implicitly learning objects used by the learner during his learning experience. This paper describes the proposed algorithm to build an adequate collaborative learning group. In order to verify the performance of the proposed algorithm, several experiments were conducted in real data set in virtual environment. Results show the effectiveness of the method for which it appears that the proposed approach may be promising to produce better outcomes.Keywords: building groups, collaborative learning, e-learning, learning objects
Procedia PDF Downloads 3039001 The Effect of 'Teachers Teaching Teachers' Professional Development Course on Teachers’ Achievement and Classroom Practices
Authors: Nuri Balta, Ali Eryilmaz
Abstract:
High-quality teachers are the key to improve student learning. Without a professional development of the teachers, the improvement of student success is difficult and incomplete. This study offers an in-service training course model for professional development of teachers (PD) entitled "teachers teaching teachers" (TTT). The basic premise of the PD program, designed for this study, was primarily aimed to increase the subject matter knowledge of high school physics teachers. The TTT course (the three hour long workshops), organized for this study, lasted for seven weeks with seventeen teachers took part in the TTT program at different amounts. In this study, the effect of the TTT program on teachers’ knowledge improvement was searched through the modern physics unit (MPU). The participating teachers taught the unit to one of their grade ten classes earlier, and they taught another equivalent class two months later. They were observed in their classes both before and after TTT program. The teachers were divided into placebo and the treatment groups. The aim of Solomon four-group design is an attempt to eliminate the possible effect of pre-test. However, in this study the similar design was used to eliminate the effect of pre teaching. The placebo group teachers taught their both classes as regular and the treatment group teachers had TTT program between the two teachings. The class observation results showed that the TTT program increased teachers’ knowledge and skills in teaching MPU. Further, participating in the TTT program caused teachers to teach the MPU in accordance with the requirements of the curriculum. In order to see any change in participating teachers’ success, an achievement test was applied to them. A large effect size (dCohen=.93) was calculated for the effect of TTT program on treatment group teachers’ achievement. The results suggest that staff developers should consider including topics, attractive to teachers, in-service training programs (a) to help teachers’ practice teaching the new topics (b) to increase the participation rate. During the conduction of the TTT courses, it was observed that teachers could not end some discussions and explain some concepts. It is now clear that teachers need support, especially when discussing counterintuitive concepts such as modern physics concepts. For this reason it is recommended that content focused PD programs be conducted at the helm of a scholarly coach.Keywords: high school physics, in-service training course, modern physics unit, teacher professional development
Procedia PDF Downloads 2019000 Feasibility Study of Wireless Communication for the Control and Monitoring of Rotating Electrical Machine
Authors: S. Ben Brahim, T. H. Vuong, J. David, R. Bouallegue, M. Pietrzak-David
Abstract:
Electrical machine monitoring is important to protect motor from unexpected problems. Today, using wireless communication for electrical machines is interesting for both real time monitoring and diagnostic purposes. In this paper, we propose a system based on wireless communication IEEE 802.11 to control electrical machine. IEEE 802.11 standard is recommended for this type of applications because it provides a faster connection, better range from the base station, and better security. Therefore, our contribution is to study a new technique to control and monitor the rotating electrical machines (motors, generators) using wireless communication. The reliability of radio channel inside rotating electrical machine is also discussed. Then, the communication protocol, software and hardware design used for the proposed system are presented in detail and the experimental results of our system are illustrated.Keywords: control, DFIM machine, electromagnetic field, EMC, IEEE 802.11, monitoring, rotating electrical machines, wireless communication
Procedia PDF Downloads 6998999 Visualize Global Warming and Its Consequences Using Augmented Reality
Authors: K. R. Parvathy, R. Rao Bhavani , M. L. McLain, Kamal Bijlani, R. Jayakrishnan
Abstract:
Augmented Reality (AR) technology is considered to be an important emerging technology used in education today. One potentially key use of AR in education is to teach socio-scientific issues (SSI), topics that inure students towards social conscience and critical thinking. This work uses multiple markers and virtual buttons that interact with each other, creating a life-like visual spectacle. Learning about issues such as global warming by using AR technology, students will have an increased sense of experiencing immersion, immediacy, and presence, thereby enhancing their learning as well as likely improving their ability to make better informed decisions about considerations of such issues. Another advantage of AR is that it is a low cost technology, making it advantageous for educators to adapt to their classrooms. Also in this work we compare the effectiveness of AR versus ordinary video by polling a group of students to assess the content understandability, effectiveness and interaction of both the delivery methods.Keywords: augmented reality, global warming, multiple markers, virtual buttons
Procedia PDF Downloads 4018998 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements
Authors: Ebru Turgal, Beyza Doganay Erdogan
Abstract:
Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data
Procedia PDF Downloads 2058997 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique
Authors: Kritiyaporn Kunsook
Abstract:
Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting
Procedia PDF Downloads 3778996 Students’ Perception of Their M-Learning Readiness
Authors: Sulaiman Almutairy, Trevor Davies, Yota Dimitriadi
Abstract:
This paper presents study investigating how to understand better the psychological readiness for mobile learning (m-learning) among Saudi students, while also evaluating m-learning in Saudi Arabia-a topic that has not yet received adequate attention from researchers. Data was acquired through a questionnaire administered to 131 Saudi students at UK universities, in July 2013. The study confirmed that students are confident using mobile devices in their daily lives and that they would welcome more opportunities for mobile learning. The findings indicated that Saudi higher education students are highly familiar with, and are psychologically ready for, m-learning.Keywords: m-learning, mobile technologies, psychological readiness, higher education
Procedia PDF Downloads 5218995 Park’s Vector Approach to Detect an Inter Turn Stator Fault in a Doubly Fed Induction Machine by a Neural Network
Authors: Amel Ourici
Abstract:
An electrical machine failure that is not identified in an initial stage may become catastrophic and it may suffer severe damage. Thus, undetected machine faults may cascade in it failure, which in turn may cause production shutdowns. Such shutdowns are costly in terms of lost production time, maintenance costs, and wasted raw materials. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator fault in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect this fault, is based on Park’s Vector Approach, using a neural network.Keywords: doubly fed induction machine, PWM inverter, inter turn stator fault, Park’s vector approach, neural network
Procedia PDF Downloads 6128994 Implementation of Correlation-Based Data Analysis as a Preliminary Stage for the Prediction of Geometric Dimensions Using Machine Learning in the Forming of Car Seat Rails
Authors: Housein Deli, Loui Al-Shrouf, Hammoud Al Joumaa, Mohieddine Jelali
Abstract:
When forming metallic materials, fluctuations in material properties, process conditions, and wear lead to deviations in the component geometry. Several hundred features sometimes need to be measured, especially in the case of functional and safety-relevant components. These can only be measured offline due to the large number of features and the accuracy requirements. The risk of producing components outside the tolerances is minimized but not eliminated by the statistical evaluation of process capability and control measurements. The inspection intervals are based on the acceptable risk and are at the expense of productivity but remain reactive and, in some cases, considerably delayed. Due to the considerable progress made in the field of condition monitoring and measurement technology, permanently installed sensor systems in combination with machine learning and artificial intelligence, in particular, offer the potential to independently derive forecasts for component geometry and thus eliminate the risk of defective products - actively and preventively. The reliability of forecasts depends on the quality, completeness, and timeliness of the data. Measuring all geometric characteristics is neither sensible nor technically possible. This paper, therefore, uses the example of car seat rail production to discuss the necessary first step of feature selection and reduction by correlation analysis, as otherwise, it would not be possible to forecast components in real-time and inline. Four different car seat rails with an average of 130 features were selected and measured using a coordinate measuring machine (CMM). The run of such measuring programs alone takes up to 20 minutes. In practice, this results in the risk of faulty production of at least 2000 components that have to be sorted or scrapped if the measurement results are negative. Over a period of 2 months, all measurement data (> 200 measurements/ variant) was collected and evaluated using correlation analysis. As part of this study, the number of characteristics to be measured for all 6 car seat rail variants was reduced by over 80%. Specifically, direct correlations for almost 100 characteristics were proven for an average of 125 characteristics for 4 different products. A further 10 features correlate via indirect relationships so that the number of features required for a prediction could be reduced to less than 20. A correlation factor >0.8 was assumed for all correlations.Keywords: long-term SHM, condition monitoring, machine learning, correlation analysis, component prediction, wear prediction, regressions analysis
Procedia PDF Downloads 528993 Evaluation of the Matching Optimization of Human-Machine Interface Matching in the Cab
Authors: Yanhua Ma, Lu Zhai, Xinchen Wang, Hongyu Liang
Abstract:
In this paper, by understanding the development status of the human-machine interface in today's automobile cab, a subjective and objective evaluation system for evaluating the optimization of human-machine interface matching in automobile cab was established. The man-machine interface of the car cab was divided into a software interface and a hard interface. Objective evaluation method of software human factor analysis is used to evaluate the hard interface matching; The analytic hierarchy process is used to establish the evaluation index system for the software interface matching optimization, and the multi-level fuzzy comprehensive evaluation method is used to evaluate hard interface machine. This article takes Dongfeng Sokon (DFSK) C37 model automobile as an example. The evaluation method given in the paper is used to carry out relevant analysis and evaluation, and corresponding optimization suggestions are given, which have certain reference value for designers.Keywords: analytic hierarchy process, fuzzy comprehension evaluation method, human-machine interface, matching optimization, software human factor analysis
Procedia PDF Downloads 1608992 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication
Authors: Rui Mao, Heming Ji, Xiaoyu Wang
Abstract:
Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM
Procedia PDF Downloads 1628991 E-Learning in Life-Long Learning: Best Practices from the University of the Aegean
Authors: Chryssi Vitsilaki, Apostolos Kostas, Ilias Efthymiou
Abstract:
This paper presents selected best practices on online learning and teaching derived from a novel and innovating Lifelong Learning program through e-Learning, which has during the last five years been set up at the University of the Aegean in Greece. The university, capitalizing on an award-winning, decade-long experience in e-learning and blended learning in undergraduate and postgraduate studies, recently expanded into continuous education and vocational training programs in various cutting-edge fields. So, in this article we present: (a) the academic structure/infrastructure which has been developed for the administrative, organizational and educational support of the e-Learning process, including training the trainers, (b) the mode of design and implementation based on a sound pedagogical framework of open and distance education, and (c) the key results of the assessment of the e-learning process by the participants, as they are used to feedback on continuous organizational and teaching improvement and quality control.Keywords: distance education, e-learning, life-long programs, synchronous/asynchronous learning
Procedia PDF Downloads 3378990 Using Computer Vision and Machine Learning to Improve Facility Design for Healthcare Facility Worker Safety
Authors: Hengameh Hosseini
Abstract:
Design of large healthcare facilities – such as hospitals, multi-service line clinics, and nursing facilities - that can accommodate patients with wide-ranging disabilities is a challenging endeavor and one that is poorly understood among healthcare facility managers, administrators, and executives. An even less-understood extension of this problem is the implications of weakly or insufficiently accommodative design of facilities for healthcare workers in physically-intensive jobs who may also suffer from a range of disabilities and who are therefore at increased risk of workplace accident and injury. Combine this reality with the vast range of facility types, ages, and designs, and the problem of universal accommodation becomes even more daunting and complex. In this study, we focus on the implication of facility design for healthcare workers suffering with low vision who also have physically active jobs. The points of difficulty are myriad and could span health service infrastructure, the equipment used in health facilities, and transport to and from appointments and other services can all pose a barrier to health care if they are inaccessible, less accessible, or even simply less comfortable for people with various disabilities. We conduct a series of surveys and interviews with employees and administrators of 7 facilities of a range of sizes and ownership models in the Northeastern United States and combine that corpus with in-facility observations and data collection to identify five major points of failure common to all the facilities that we concluded could pose safety threats to employees with vision impairments, ranging from very minor to severe. We determine that lack of design empathy is a major commonality among facility management and ownership. We subsequently propose three methods for remedying this lack of empathy-informed design, to remedy the dangers posed to employees: the use of an existing open-sourced Augmented Reality application to simulate the low-vision experience for designers and managers; the use of a machine learning model we develop to automatically infer facility shortcomings from large datasets of recorded patient and employee reviews and feedback; and the use of a computer vision model fine tuned on images of each facility to infer and predict facility features, locations, and workflows, that could again pose meaningful dangers to visually impaired employees of each facility. After conducting a series of real-world comparative experiments with each of these approaches, we conclude that each of these are viable solutions under particular sets of conditions, and finally characterize the range of facility types, workforce composition profiles, and work conditions under which each of these methods would be most apt and successful.Keywords: artificial intelligence, healthcare workers, facility design, disability, visually impaired, workplace safety
Procedia PDF Downloads 1208989 Creating an Enabling Learning Environment for Learners with Visual Impairments Inlesotho Rural Schools by Using Asset-Based Approaches
Authors: Mamochana, A. Ramatea, Fumane, P. Khanare
Abstract:
Enabling the learning environment is a significant and adaptive technique necessary to navigate learners’ educational challenges. However, research has indicated that quality provision of education in the environments that are enabling, especially to learners with visual impairments (LVIs, hereafter) in rural schools, remain an ongoing challenge globally. Hence, LVIs often have a lower level of academic performance as compared to their peers. To balance this gap and fulfill learners'fundamentalhuman rights¬ of receiving an equal quality education, appropriate measures and structures that make enabling learning environment a better place to learn must be better understood. This paper, therefore, intends to find possible means that rural schools of Lesotho can employ to make the learning environment for LVIs enabling. The present study aims to determine suitable assets that can be drawn to make the learning environment for LVIs enabling. The study is also informed by the transformative paradigm and situated within a qualitative research approach. Data were generated through focus group discussions with twelve teachers who were purposefully selected from two rural primary schools in Lesotho. The generated data were then analyzed thematically using Braun and Clarke's six-phase framework. The findings of the study indicated that participating teachers do have an understanding that rural schools boast of assets (existing and hidden) that have a positive influence in responding to the special educational needs of LVIs. However, the participants also admitted that although their schools boast of assets, they still experience limited knowledge about the use of the existing assets and thus, realized a need for improved collaboration, involvement of the existing assets, and enhancement of academic resources to make LVIs’ learning environment enabling. The findings of this study highlight the significance of the effective use of assets. Additionally, coincides with literature that shows recognizing and tapping into the existing assets enable learning for LVIs. In conclusion, the participants in the current study indicated that for LVIs’ learning environment to be enabling, there has to be sufficient use of the existing assets. The researchers, therefore, recommend that the appropriate use of assets is good, but may not be sufficient if the existing assets are not adequately managed. Hence,VILs experience a vicious cycle of vulnerability. It was thus, recommended that adequate use of assets and teachers' engagement as active assets should always be considered to make the learning environment a better place for LVIs to learan in the futureKeywords: assets, enabling learning environment, rural schools, learners with visual impairments
Procedia PDF Downloads 1108988 Collaborative Learning Strategies in Engineering Tuition Focused on Students’ Engagement
Authors: Maria Gonzalez Alriols, Itziar Egues, Maria A. Andres, Mirari Antxustegi
Abstract:
Peer to peer learning is an educational tool very useful to enhance teamwork and reinforce cooperation between mates. It is particularly successful to work with students of different level of previous knowledge, as it often happens among pupils of subjects in the first course of science and engineering studies. Depending on the performed pre-university academic itinerary, the acquired knowledge in disciplines as mathematics, physics, or chemistry may be quite different. This fact is an added difficulty to the tuition of first-course basic science subjects of engineering degrees, with inexperienced students that do not know each other. In this context, peer to peer learning applied in small groups facilitates the communication between mates and makes it easier for the students with low level to be helped by the ones with better prior knowledge. In this work, several collaborative learning strategies were designed to be applied in the tuition of the subject 'chemistry', which is imparted in the first course of an engineering degree. Students were organized in groups combining mates with different level of prior knowledge. The teaching role was offered to the more experienced students who were responsible for designing learning pills to help the other mates in their group. This workload was rewarded with an extra mark, and more extra points were offered to all the group mates if every student in the group reached a determined level at the end of the semester. It was very important to start these activities from the beginning of the semester in order to avoid absenteeism. The obtained results were positive as a higher percentage of mates signed up and passed the final exam, the obtained final marks were higher, and a much better atmosphere was observed in the class.Keywords: peer to peer tuition, collaborative learning, engineering instruction, chemistry
Procedia PDF Downloads 1438987 Exact Energy Spectrum and Expectation Values of the Inverse Square Root Potential Model
Authors: Benedict Ita, Peter Okoi
Abstract:
In this work, the concept of the extended Nikiforov-Uvarov technique is discussed and employed to obtain the exact bound state energy eigenvalues and the corresponding normalized eigenfunctions of the inverse square root potential. With expressions for the exact energy eigenvalues and corresponding eigenfunctions, the expressions for the expectation values of the inverse separation-squared, kinetic energy, and the momentum-squared of the potential are presented using the Hellmann Feynman theorem. For visualization, algorithms written and implemented in Python language are used to generate tables and plots for l-states of the energy eigenvalues and some expectation values. The results obtained here may find suitable applications in areas like atomic and molecular physics, chemical physics, nuclear physics, and solid-state physics.Keywords: Schrodinger equation, Nikoforov-Uvarov method, inverse square root potential, diatomic molecules, Python programming, Hellmann-Feynman theorem, second order differential equation, matrix algebra
Procedia PDF Downloads 288986 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests
Authors: Julius Onyancha, Valentina Plekhanova
Abstract:
One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.Keywords: web log data, web user profile, user interest, noise web data learning, machine learning
Procedia PDF Downloads 2678985 ‘Daily Speaking’: Designing an App for Construction of Language Learning Model Supporting ‘Seamless Flipped’ Environment
Authors: Zhou Hong, Gu Xiao-Qing, Lıu Hong-Jiao, Leng Jing
Abstract:
Seamless learning is becoming a research hotspot in recent years, and the emerging of micro-lectures, flipped classroom has strengthened the development of seamless learning. Based on the characteristics of the seamless learning across time and space and the course structure of the flipped classroom, and the theories of language learning, we put forward the language learning model which can support ‘seamless flipped’ environment (abbreviated as ‘S-F’). Meanwhile, the characteristics of the ‘S-F’ learning environment, the corresponding framework construction and the activity design of diversified corpora were introduced. Moreover, a language learning app named ‘Daily Speaking’ was developed to facilitate the practice of the language learning model in ‘S-F’ environment. In virtue of the learning case of Shanghai language, the rationality and feasibility of this framework were examined, expecting to provide a reference for the design of ‘S-F’ learning in different situations.Keywords: seamless learning, flipped classroom, seamless-flipped environment, language learning model
Procedia PDF Downloads 1938984 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery
Authors: Forouzan Salehi Fergeni
Abstract:
Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine
Procedia PDF Downloads 55