Search results for: GHG emissions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1387

Search results for: GHG emissions

517 Exploring the Association between Risks Emerging from Climate Change Scenarios and the Built Environment

Authors: Abdullah M. Alzahrani, Abdel Halim Boussabaine

Abstract:

There is an international consensus on the climate change in the entire world and this is as a result of the combination of the natural factors, such as volcanoes and hurricanes with increased of human activity on the earth, such as industrial renaissance. Where this solidarity increases emissions of greenhouse gases GHGs that considered as the main driver of climate change scenarios and related emerging risks and impacts on buildings. These climatic risks including damages, disruption and disquiet are set to increase and it is considered as the main challenges and difficulties facing built environment due to major implications on assets sector. Consequently, the threat from climate change patterns has a significant impact on a variety of complex human decisions, which affect all aspects of living. Understanding the relationship between buildings and such risks arising from climate change scenarios on buildings are the key in insuring the optimal timing and design of policies and systems, which affect all aspects of the built environment. This paper will uncovering this correlation between emerging climate change risks and the building assets. In addition, how these emerging risks can be classified in practical way in terms of their impact type on buildings. Hence, this mapping will assist professionals and interested parties in the building sector to cope with such risks in several systematic ways including development and designing of mitigation and adaptation strategies and processes of design, specification, construction, and operation; all these leads to successful management of assets.

Keywords: climate change, climate change risks, built environment, building sector, impacts

Procedia PDF Downloads 354
516 Planning and Urban Climate Change Adaptation: Italian Literature Review

Authors: Mara Balestrieri

Abstract:

Climate change has long been the focus of attention for the growing impact of extreme weather events and global warming in many areas of the planet and the evidence of economic, social, and environmental damage caused by global warming. Nowadays, climate change is recognized as a critical global problem. Several initiatives have been undertaken over time to enhance the long theoretical debate and field experience in order to reduce Co2 emissions and contain climate alteration. However, the awareness that climate change is already taking place has led to a growing demand for adaptation. It is certainly a matter of anticipating the negative effects of climate change but, at the same time, implementing appropriate actions to prevent climate change-related damage, minimize the problems that may result, and also seize any opportunities that may arise. Consequently, adaptation has become a core element of climate policy and research. However, the attention to this issue has not developed in a uniform manner across countries. Some countries are further ahead than others. This paper examines the literature on climate change adaptation developed until 2018 in Italy, considering the urban dimension, to provide a framework for it, and to identify main topics and features. The papers were selected from Scopus and were analyzed through a matrix that we propose. Results demonstrate that adaptation to climate change studies attracted increasing attention from Italian scientific communities in the last years, although Italian scientific production is still quantitatively lower than in other countries and describes strengths and weaknesses in line with international panorama with respect to objectives, sectors, and problems.

Keywords: adaptation, bibliometric literature, climate change, urban studies

Procedia PDF Downloads 74
515 Balancing Act: Political Dynamics of Economic and Climatological Security in the Politics of the Middle East

Authors: Zahra Bakhtiari

Abstract:

Middle East countries confront a multitude of main environmental challenges which are inevitable. The unstable economic and political structure which dominates numerous middle East countries makes it difficult to react effectively to unfavorable climate change impacts. This study applies a qualitative methodology and relies on secondary literature aimed to investigate how countries in the Middle East are balancing economic security and climatic security in terms of budgeting, infrastructure investment, political engagement (domestically through discourses or internationally in terms of participation in international organizations or bargaining, etc.) There has been provided an outline of innovative measures in both economic and environmental fields that are in progress in the Middle East countries and what capacity they have for economic development and environmental adaptation, as well as what has already been performed. The primary outcome is that countries that rely more on infrastructure investment such as negative emissions technologies (NET) through green social capital enterprises and political engagement, especially nationally determined contributions (NDCs) commitments and United Nations Framework Convention on Climate Change (UNFCCC), experience more economic and climatological security balance in the Middle East. Since implementing these measures is not the same in all countries in the region, we see different levels of balance between climate security and economic security. The overall suggestion is that the collaboration of both the bottom-up and top-down approaches helps create strategic environmental strategies which are in line with the economic circumstances of each country and creates the desired balance.

Keywords: climate change, economic growth, sustainability, the Middle East, green economy, renewable energy

Procedia PDF Downloads 81
514 A Reference Framework Integrating Lean and Green Principles within Supply Chain Management

Authors: M. Bortolini, E. Ferrari, F. G. Galizia, C. Mora

Abstract:

In the last decades, an increasing set of companies adopted lean philosophy to improve their productivity and efficiency promoting the so-called continuous improvement concept, reducing waste of time and cutting off no-value added activities. In parallel, increasing attention rises toward green practice and management through the spread of the green supply chain pattern, to minimise landfilled waste, drained wastewater and pollutant emissions. Starting from a review on contributions deepening lean and green principles applied to supply chain management, the most relevant drivers to measure the performance of industrial processes are pointed out. Specific attention is paid on the role of cost because it is of key importance and it crosses both lean and green principles. This analysis leads to figure out an original reference framework for integrating lean and green principles in designing and managing supply chains. The proposed framework supports the application, to the whole value chain or to parts of it, e.g. distribution network, assembly system, job-shop, storage system etc., of the lean-green integrated perspective. Evidences show that the combination of the lean and green practices lead to great results, higher than the sum of the performances from their separate application. Lean thinking has beneficial effects on green practices and, at the same time, methods allowing environmental savings generate positive effects on time reduction and process quality increase.

Keywords: environmental sustainability, green supply chain, integrated framework, lean thinking, supply chain management

Procedia PDF Downloads 394
513 Vehicle Routing Problem Considering Alternative Roads under Triple Bottom Line Accounting

Authors: Onur Kaya, Ilknur Tukenmez

Abstract:

In this study, we consider vehicle routing problems on networks with alternative direct links between nodes, and we analyze a multi-objective problem considering the financial, environmental and social objectives in this context. In real life, there might exist several alternative direct roads between two nodes, and these roads might have differences in terms of their lengths and durations. For example, a road might be shorter than another but might require longer time due to traffic and speed limits. Similarly, some toll roads might be shorter or faster but require additional payment, leading to higher costs. We consider such alternative links in our problem and develop a mixed integer linear programming model that determines which alternative link to use between two nodes, in addition to determining the optimal routes for different vehicles, depending on the model objectives and constraints. We consider the minimum cost routing as the financial objective for the company, minimizing the CO2 emissions and gas usage as the environmental objectives, and optimizing the driver working conditions/working hours, and minimizing the risks of accidents as the social objectives. With these objective functions, we aim to determine which routes, and which alternative links should be used in addition to the speed choices on each link. We discuss the results of the developed vehicle routing models and compare their results depending on the system parameters.

Keywords: vehicle routing, alternative links between nodes, mixed integer linear programming, triple bottom line accounting

Procedia PDF Downloads 407
512 Urban Dust Influence on the Foliar Surface and Biochemical Constituents of Selected Plants in the National Capital Region of Delhi, India

Authors: G. P. Gupta, B. Kumar, S. Singh, U. C. Kulshrestha

Abstract:

Very high loadings of atmospheric dust in the Indian region contribute to remarkably higher levels of particulate matter. During dry weather conditions which prevail most of the year, dustfall is deposited onto the foliar surfaces affecting their morphology, stomata and biochemical constituents. This study reports chemical characteristics of dustfall, its effect on foliar morphology and biochemical constituents of two medicinal plants i.e. Morus (Morus alba) and Arjun (Terminalia arjuna) in the urban environment of National Capital Region (NCR) of Delhi at two sites i.e. Jawaharlal Nehru University (residential) and Sahibabad (industrial). Atmospheric dust was characterized for major anions (F-, Cl-, NO3-, SO4--) and cations (Na+, NH4+, K+, Mg++, Ca++) along with the biochemical parameters Chl a, Chl b, total chlorophyll, carotenoid, total soluble sugar, relative water content (RWC), pH, and ascorbic acid. The results showed that the concentrations of major ions in dustfall were higher at the industrial site as compared to the residential site due to the higher level of anthropogenic activities. Both the plant species grown at industrial site had significantly lower values of chlorophyll ‘a’, chlorophyll ‘b’, total chlorophyll, carotenoid but relatively higher values of total soluble sugar and ascorbic acid indicating stressful conditions due to industrial and vehicular emissions.

Keywords: dustfall, urban environment, biochemical constituents, atmospheric dust

Procedia PDF Downloads 305
511 Recent Progress in Wave Rotor Combustion

Authors: Mohamed Razi Nalim, Shahrzad Ghadiri

Abstract:

With current concerns regarding global warming, demand for a society with greater environmental awareness significantly increases. With gradual development in hybrid and electric vehicles and the availability of renewable energy resources, increasing efficiency in fossil fuel and combustion engines seems a faster solution toward sustainability and reducing greenhouse gas emissions. This paper aims to provide a comprehensive review of recent progress in wave rotor combustor, one of the combustion concepts with considerable potential to improve power output and emission standards. A wave rotor is an oscillatory flow device that uses the unsteady gas dynamic concept to transfer energy by generating pressure waves. From a thermodynamic point of view, unlike conventional positive-displacement piston engines which follow the Brayton cycle, wave rotors offer higher cycle efficiency due to pressure gain during the combustion process based on the Humphrey cycle. First, the paper covers all recent and ongoing computational and experimental studies around the world with a quick look at the milestones in the history of wave rotor development. Second, the main similarity and differences in the ignition system of the wave rotor with piston engines are considered. Also, the comparison is made with another pressure gain device, rotating detonation engines. Next, the main challenges and research needs for wave rotor combustor commercialization are discussed.

Keywords: wave rotor combustor, unsteady gas dynamic, pre-chamber jet ignition, pressure gain combustion, constant-volume combustion

Procedia PDF Downloads 84
510 Timber Urbanism: Assessing the Carbon Footprint of Mass-Timber, Steel, and Concrete Structural Prototypes for Peri-Urban Densification in the Hudson Valley’s Urban Fringe

Authors: Eleni Stefania Kalapoda

Abstract:

The current fossil-fuel based urbanization pattern and the estimated human population growth are increasing the environmental footprint on our planet’s precious resources. To mitigate the estimated skyrocketing in greenhouse gas emissions associated with the construction of new cities and infrastructure over the next 50 years, we need a radical rethink in our approach to construction to deliver a net zero built environment. This paper assesses the carbon footprint of a mass-timber, a steel, and a concrete structural alternative for peri-urban densification in the Hudson Valley's urban fringe, along with examining the updated policy and the building code adjustments that support synergies between timber construction in city making and sustainable management of timber forests. By quantifying the carbon footprint of a structural prototype for four different material assemblies—a concrete (post-tensioned), a mass timber, a steel (composite), and a hybrid (timber/steel/concrete) assembly applicable to the three updated building typologies of the IBC 2021 (Type IV-A, Type IV-B, Type IV-C) that range between a nine to eighteen-story structure alternative—and scaling-up that structural prototype to the size of a neighborhood district, the paper presents a quantitative and a qualitative approach for a forest-based construction economy as well as a resilient and a more just supply chain framework that ensures the wellbeing of both the forest and its inhabitants.

Keywords: mass-timber innovation, concrete structure, carbon footprint, densification

Procedia PDF Downloads 108
509 Developing Value Chain of Synthetic Methane for Net-zero Carbon City Gas Supply in Japan

Authors: Ryota Kuzuki, Mitsuhiro Kohara, Noboru Kizuki, Satoshi Yoshida, Hidetaka Hirai, Yuta Nezasa

Abstract:

About fifty years have passed since Japan's gas supply industry became the first in the world to switch from coal and oil to LNG as a city gas feedstock. Since the Japanese government target of net-zero carbon emission in 2050 was announced in October 2020, it has now entered a new era of challenges to commit to the requirement for decarbonization. This paper describes the situation that synthetic methane, produced from renewable energy-derived hydrogen and recycled carbon, is a promising national policy of transition toward net-zero society. In November 2020, the Japan Gas Association announced the 'Carbon Neutral Challenge 2050' as a vision to contribute to the decarbonization of society by converting the city gas supply to carbon neutral. The key technologies is methanation. This paper shows that methanation is a realistic solution to contribute to the decarbonization of the whole country at a lower social cost, utilizing the supply chain that already exists, from LNG plants to burner chips. The challenges during the transition period (2030-2050), as CO2 captured from exhaust of thermal power plants and industrial factories are expected to be used, it is proposed that a system of guarantee of origin (GO) for H2 and CO2 should be established and harmonize international rules for calculating and allocating greenhouse gas emissions in the supply chain, a platform is also needed to manage tracking information on certified environmental values.

Keywords: synthetic methane, recycled carbon fuels, methanation, transition period, environmental value transfer platform

Procedia PDF Downloads 108
508 Climate Change and Food Security: The Legal Aspects with Special Focus on the European Union

Authors: M. Adamczak-Retecka, O. Hołub-Śniadach

Abstract:

Dangerous of climate change is now global problem and as such has a strategic priority also for the European Union. Europe and European citizens try to do their best to cut greenhouse gas emissions, moreover they substantially encourage other nations and regions to follow the same way. The European Commission and a number of Member States have developed adaptation strategies in order to help strengthen EU's resilience to the inevitable impacts of climate change. The EU has long been a driving force in international negotiations on climate change and was instrumental in the development of the UN Framework Convention on Climate Change. As the world's leading donor of development aid, the EU also provides substantial funding to help developing countries tackle climate change problem. Global warming influences human health, biodiversity, ecosystems but also many social and economic sectors. The aim of this paper is to focus on impact of claimant change on for food security. Food security challenges are directly related to globalization, climate change. It means that current and future food policy is exposed to all cross-cutting and that must be linked with environmental and climate targets, which supposed to be achieved. In the 7th EAP —The new general Union Environment Action Program to 2020, called “Living well, within the limits of our planet” EU has agreed to step up its efforts to protect natural capital, stimulate resource efficient, low carbon growth and innovation, and safeguard people’s health and wellbeing– while respecting the Earth’s natural limits.

Keywords: climate change, food security, sustainable food consumption, climate governance

Procedia PDF Downloads 179
507 Characteristic of Oxidation Resistant High-Entropy Alloys for Application in Zero-Emission Technologies

Authors: Wojciech J. Nowak, Natalia Maciaszek, Marcin Drajewicz

Abstract:

A constant requirement to reduce greenhouse gas emissions in combination with the desire to increase gas turbine efficiency results in a continuous trend to increase the operating temperature of gas turbines. An increase in operating temperature will result in lower fuel consumption, and a higher combustion temperature will result in lower pollution release. Moreover, there is a strong trend for hydrogen to be used as an alternative and clean fuel. However, using hydrogen or hydrogen-rich fuel results in a higher combustion temperature, as well as an increase in the water vapor content in the exhaust gases. Commonly used Ni-base alloys have their limits. Moreover, the presence of water vapor worsens the oxidation behavior of Ni-based alloys at a high temperature. Therefore, a new brand of materials is demanded to be used in gas turbines operated with hydrogen-rich fuel. High-entropy alloys (HEAs) seem to be very promising materials to replace commonly used Ni-based alloys. HEAs are the group of materials consisting of at least five main equiatomic elements. These alloys can be doped by other elements in amounts less than 5 at. % in total. Thus, in the present study, NiCoCrAlFe-X alloys are studied in terms of oxidation behavior during exposure to dry and wet atmospheres up to 1000 h. NiCoCrAlFe-X alloys are doped with minor alloying elements in amounts ranging from 1-5 at.%. The effect of the chemical composition on oxidation resistance in dry and wet atmospheres will be shown and discussed.

Keywords: high entropy alloys, oxidation resistance, hydrogen fuel, water vapor

Procedia PDF Downloads 49
506 Stakeholders Perceptions of the Linkage between Reproductive Rights and Environmental Sustainability: Environmental Mainstreaming, Injustice and Population Reductionism

Authors: Celine Delacroix

Abstract:

Analyses of global emission scenarios demonstrate that slowing population growth could lead to substantial emissions reductions and play an important role to avoid dangerous climate change. For this reason, the advancement of individual reproductive rights might represent a valid climate change mitigation and adaptation option. With this focus, we reflected on population ethics and the ethical dilemmas associated with environmental degradation and climate change. We conducted a mixed-methods qualitative data study consisting of an online survey followed by in-depth interviews with stakeholders of the reproductive health and rights and environmental sustainability movements to capture the ways in which the linkages between family planning, population growth, and environmental sustainability are perceived by these actors. We found that the multi-layered marginalization of this issue resulted in two processes, the polarization of opinions and its eschewal from the public fora through population reductionism. Our results indicate that stakeholders of the reproductive rights and environmental sustainability movements find that population size and family planning influence environmental sustainability and overwhelmingly find that the reproductive health and rights ideological framework should be integrated in a wider sustainability frame reflecting environmental considerations. This position, whilst majoritarily shared by all participants, was more likely to be adopted by stakeholders of the environmental sustainability sector than those from the reproductive health and rights sector. We conclude that these processes, taken in the context of a context of a climate emergency, threaten to weaken the reproductive health and rights movement.

Keywords: environmental sustainability, family planning, population growth, population ethics, reproductive rights

Procedia PDF Downloads 163
505 A Study on Marble-Slag Based Geopolymer Green Concrete

Authors: Zong-Xian Qiu, Ta-Wui Cheng, Wei-Hao Lee, Yung-Chin Ding

Abstract:

The greenhouse effect is an important issue since it has been responsible for global warming. Carbon dioxide plays an important part of role in the greenhouse effect. Therefore, human has the responsibility for reducing CO₂ emissions in their daily operations. Except iron making and power plants, another major CO₂ production industry is cement industry. According to the statistics by EPA of Taiwan, production 1 ton of Portland cement will produce 520.29 kg of CO₂. There are over 7.8 million tons of CO₂ produced annually. Thus, trying to development low CO₂ emission green concrete is an important issue, and it can reduce CO₂ emission problems in Taiwan. The purpose of this study is trying to use marble wastes and slag as the raw materials to fabricate geopolymer green concrete. The result shows the marble based geopolymer green concrete have good workability and the compressive strength after curing for 28 days and 365 days can be reached 44MPa and 53MPa in indoor environment, 28MPa and 40.43MPa in outdoor environment. The acid resistance test shows the geopolymer green concrete have good resistance for chemical attack. The coefficient of permeability of geopolymer green concrete is better than Portland concrete. By comparing with Portland cement products, the marble based geopolymer not only reduce CO₂ emission problems but also provides great performance in practices. According to the experiment results shown that geopolymer concrete has great potential for further engineering development in the future, the new material could be expected to replace the Portland cement products in the future days.

Keywords: marble, slag, geopolymer, green concrete, CO₂ emission

Procedia PDF Downloads 138
504 Synergistic Effect of Zr-Modified Cu-ZnO-Al₂O₃ and Bio-Templated HZSM-5 Catalysts in CO₂ Hydrogenation to Methanol and DME

Authors: Abrar Hussain, Kuen-Song Lin, Sayed Maeen Badshah, Jamshid Hussain

Abstract:

The conversion of CO₂ into versatile, useful compounds such as fuels and other chemicals remains a challenging frontier in research, demanding the innovation of increasingly effective catalysts. In the present work, a catalyst-incorporating zirconium (Zr) modification within CuO–ZnO–Al₂O₃ (CZA) was synthesized via a co-precipitation method to convert CO₂ into methanol. Furthermore, bio-HZSM-5 was used to promote methanol dehydration to produce dimethyl ether (DME). We prepared the porous hierarchy bio-HZSM-5 with remarkable pore connectivity by utilizing an economical loofah sponge and rice husks as biotemplates. The synthesized catalysts were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), X–ray diffraction (XRD), N₂ adsorption (BET), temperature-programmed desorption (NH₃-TPD) and thermogravimetric analysis (TGA). The Zr addition improved the performance of the CZZA catalyst as a structural promoter, leading to increased DME selectivity and total carbon conversion by enhancing active sites, surface area, and the synergistic interfaces between CuO and ZnO. The presence of silicon in the biomass, notably from the loofah sponge (0.016 wt %) and rice husks (8.3 wt %), also performed a pivotal role in the preparation of bio-HZSM-5. Furthermore, contrasted to the CZZA/com-ZSM-5 catalyst, the integration of CZZA with bio-HZSM-5-L bifunctional catalyst achieved the highest DME yield (12.1 %), DME selectivity (58.6%), CO₂ conversion (22.5%) at 280 °C and 30 bar. The payback time for 5 and 10-tons per day (5 and10-TPD) DME formation using the catalytic process of CO₂ from petrochemical refinery plant waste gas emissions was 2.98 and 2.44 years, respectively.

Keywords: Cost assessment, Dimethyl ether, low-cost bio-HZSM-5, CZZA catalyst, CO₂ hydrogenation

Procedia PDF Downloads 10
503 Deposition of Size Segregated Particulate Matter in Human Respiratory Tract and Their Health Effects in Glass City Residents

Authors: Kalpana Rajouriya, Ajay Taneja

Abstract:

Particulates are ubiquitous in the air environment and cause serious threats to human beings, such as lung cancer, COPD, and Asthma. Particulates mainly arise from industrial effluent, vehicular emission, and other anthropogenic activities. In the glass industrial city Firozabad, real-time monitoring of size segregated Particulate Matter (PM) and black carbon was done by Aerosol Black Carbon Detector (ABCD) and GRIMM portable aerosol Spectrometer at two different sites in which one site is urban and another is rural. The average mass concentration of size segregated PM during the study period (March & April 2022) was recorded as PM10 (223.73 g/m⁻³), PM5.0 (44.955 g/m⁻³), PM2.5 (59.275 g/m⁻³), PM1.0 (33.02 g/m⁻³), PM0.5 (2.05 g/m⁻³), and PM0.25 (2.99 g/m⁻³). The highest concentration of BC was found in Urban due to the emissions from diesel engines and wood burning, while NO2 was highest at the rural sites. The average concentrations of PM10 (6.08 and 2.73 times) PM2.5 exceeded the NAAQS and WHO guidelines. Particulate Matter deposition and health risk assessment was done by MPPD and USEPA model to know about the particulate matter toxicity in industrial residents. Health risk assessment results showed that Children are most likely to be affected by exposure of PM10 and PM2.5 and may have various non-carcinogenic and carcinogenic diseases. Deposition results inferred that the sensitive exposed population, especially 9 years old children, have high PM deposition as well as visualization and may be at risk of developing health-related problems from exposure to size-segregated PM. They will be discussed during presentation.

Keywords: particulate matter, black carbon, NO2, deposition of PM, health risk

Procedia PDF Downloads 66
502 Assessing the Impacts of Long-Range Forest Fire Emission Transport on Air Quality in Toronto, Ontario, Using MODIS Fire Data and HYSPLIT Trajectories

Authors: Bartosz Osiecki, Jane Liu

Abstract:

Pollutants emitted from forest fires such as PM₂.₅ and carbon monoxide (CO) have been found to impact the air quality of distant regions through long-range transport. PM₂.₅ is of particular concern due to its transport capacity and implications for human respiratory and cardiovascular health. As such, significant increases in PM₂.₅ concentrations have been exhibited in urban areas downwind of fire sources. This study seeks to expand on this literature by evaluating the impacts of long-range forest fire emission transport on air quality in Toronto, Ontario, as a means of evaluating the vulnerability of this major urban center to distant fire events. In order to draw correlations between the fire event and air pollution episode in Toronto, MODIS fire count data and HYPLSIT trajectories are used to assess the date, location, and severity of the fire and track the trajectory of emissions (respectively). Forward and back-trajectories are run, terminating at the West Toronto air monitoring station. PM₂.₅ and CO concentrations in Toronto during September 2017 are found to be significantly elevated, which is likely attributable to the fire activity. Other sites in Ontario including Toronto (East, North, Downtown), Mississauga, Brampton, and Hamilton (Downtown) exhibit similar peaks in PM₂.₅ concentrations. This work sheds light on the non-local, natural factors influencing air quality in urban areas. This is especially important in the context of climate change which is expected to exacerbate intense forest fire events in the future.

Keywords: air quality, forest fires, PM₂.₅, Toronto

Procedia PDF Downloads 130
501 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities

Authors: Salman Naseer

Abstract:

One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.

Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission

Procedia PDF Downloads 142
500 Pozzolanic Properties of Synthetic Zeolites as Materials Used for the Production of Building Materials

Authors: Joanna Styczen, Wojciech Franus

Abstract:

Currently, cement production reaches 3-6 Gt per year. The production of one ton of cement is associated with the emission of 0.5 to 1 ton of carbon dioxide into the atmosphere, which means that this process is responsible for 5% of global CO2 emissions. Simply improving the cement manufacturing process is not enough. An effective solution is the use of pozzolanic materials, which can partly replace clinker and thus reduce energy consumption, and emission of pollutants and give mortars the desired characteristics, shaping their microstructure. Pozzolanic additives modify the phase composition of cement, reducing the amount of portlandite and changing the CaO/SiO2 ratio in the C-S-H phase. Zeolites are a pozzolanic additive that is not commonly used. Three types of zeolites were synthesized in work: Na-A, sodalite and ZSM-5 (these zeolites come from three different structural groups). Zeolites were obtained by hydrothermal synthesis of fly ash in an aqueous NaOH solution. Then, the pozzolanicity of the obtained materials was assessed. The pozzolanic activity of the zeolites synthesized for testing was tested by chemical methods in accordance with the ASTM C 379-65 standard. The method consisted in determining the percentage content of active ingredients (soluble silicon oxide and aluminum).in alkaline solutions, i.e. those that are potentially reactive towards calcium hydroxide. The highest amount of active silica was found in zeolite ZSM-5 - 88.15%. The amount of active Al2O3 was small - 1%. The smallest pozzolanic activity was found in the Na-A zeolite (active SiO2 - 4.4%, and active Al2O3 - 2.52). The tests carried out using the XRD, SEM, XRF and textural tests showed that the obtained zeolites are characterized by high porosity, which makes them a valuable addition to mortars.

Keywords: pozzolanic properties, hydration, zeolite, alite

Procedia PDF Downloads 78
499 Prevention of Green Gentrification: The Case of the Sustainable Urban Policy in Paris

Authors: Elise Machline

Abstract:

In the late 1980’s, sustainable urban development emerged in Europe. Sustainable neighborhoods are one attempt to implement sustainable urban energy planning in the city. So, for twenty years, projects of sustainable neighborhoods (or ‘eco-neighborhoods’) have emerged in Europe. Debates about sustainability no longer restrict it to environmental concerns (to limit greenhouse gas emissions), but rather extend to the economic and social dimensions. A growing number of empirical studies demonstrate that sustainable urbanism yield rental/sale premia, as well as higher occupancy rates and thus higher asset values. For example, European eco neighborhood projects usually focus on the middle to upper classes, given the costs involved in renting or buying the dwellings built in such projects. As a result sustainable residential buildings are not affordable and their construction tends to have a gentrifying effect. An increasing number of countries are institutionalizing green strategies for affordable housing. In France, the sustainable neighborhoods ‘ecoquartier’ must meet environmental performance criteria, have a potential for economic development and, provide social and functional diversity. The issue of social diversity trough the provision of affordable housing has emerged as a dimension of public housing policies. Thus, the ecoquartier residential buildings must be both energy efficient and affordable. Through the Parisian example our study considers how the concept of social diversity and other elements of sustainability are illustrated in the ecoquartiers and whether the authorities have been able to avoid gentrification when implementing a sustainable urban policy.

Keywords: sustainable neighborhoods, social diversity, social housing policies, green buildings

Procedia PDF Downloads 358
498 Study of Suezmax Shuttle Tanker Energy Efficiency for Operations at the Brazilian Pre-Salt Region

Authors: Rodrigo A. Schiller, Rubens C. Da Silva, Kazuo Nishimoto, Claudio M. P. Sampaio

Abstract:

The need to reduce fossil fuels consumption due to the current scenario of trying to restrain global warming effects and reduce air pollution is dictating a series of transformations in shipping. This study introduces, at first, the changes of the regulatory framework concerning gas emissions control and fuel consumption efficiency on merchant ships. Secondly, the main operational procedures with high potential reduction of fuel consumption are discussed, with focus on existing vessels, using ship speed reduction procedure. This procedure shows the positive impacts on both operating costs reduction and also on energy efficiency increase if correctly applied. Finally, a numerical analysis of the fuel consumption variation with the speed was carried out for a Suezmax class oil tanker, which has been adapted to oil offloading operations for FPSOs in Brazilian offshore oil production systems. In this analysis, the discussions about the variations of vessel energy efficiency from small speed rate reductions and the possible applications of this improvement, taking into account the typical operating profile of the vessel in such a way to have significant economic impacts on the operation. This analysis also evaluated the application of two different numerical methods: one based only on regression equations produced by existing data, semi-empirical method, and another using a CFD simulations for estimating the hull shape parameters that are most relevant for determining fuel consumption, analyzing inaccuracies and impact on the final results.

Keywords: energy efficiency, offloading operations, speed reduction, Suezmax oil tanker

Procedia PDF Downloads 528
497 Near-Infrared Optogenetic Manipulation of a Channelrhodopsin via Upconverting Nanoparticles

Authors: Kanchan Yadav, Ai-Chuan Chou, Rajesh Kumar Ulaganathan, Hua-De Gao, Hsien-Ming Lee, Chien-Yuan Pan, Yit-Tsong Chen

Abstract:

Optogenetics is an innovative technology now widely adopted by researchers in different fields of the biological sciences. However, due to the weak tissue penetration capability of the short wavelengths used to activate light-sensitive proteins, an invasive light guide has been used in animal studies for photoexcitation of target tissues. Upconverting nanoparticles (UCNPs), which transform near-infrared (NIR) light to short-wavelength emissions, can help address this issue. To improve optogenetic performance, we enhance the target selectivity for optogenetic controls by specifically conjugating the UCNPs with light-sensitive proteins at a molecular level, which shortens the distance as well as enhances the efficiency of energy transfer. We tagged V5 and Lumio epitopes to the extracellular N-terminal of channelrhodopsin-2 with an mCherry conjugated at the intracellular C-terminal (VL-ChR2m) and then bound NeutrAvidin-functionalized UCNPs (NAv-UCNPs) to the VL-ChR2m via a biotinylated antibody against V5 (bV5-Ab). We observed an apparent energy transfer from the excited UCNP (donor) to the bound VL-ChR2m (receptor) by measuring emission-intensity changes at the donor-receptor complex. The successful patch-clamp electrophysiological test and an intracellular Ca2+ elevation observed in the designed UCNP-ChR2 system under optogenetic manipulation confirmed the practical employment of UCNP-assisted NIR-optogenetic functionality. This work represents a significant step toward improving therapeutic optogenetics.

Keywords: Channelrhodopsin-2, near infrared, optogenetics, upconverting nanoparticles

Procedia PDF Downloads 276
496 Design of a CO₂-Reduced 3D Concrete Mixture Using Circular (Clay-Based) Building Materials

Authors: N. Z. van Hierden, Q. Yu, F. Gauvin

Abstract:

Cement manufacturing is, because of its production process, among the highest contributors to CO₂ emissions worldwide. As cement is one of the major components in 3D printed concrete, achieving sustainability and carbon neutrality can be particularly challenging. To improve the sustainability of 3D printed materials, different CO₂-reducing strategies can be used, each one with a distinct level of impact and complexity. In this work, we focus on the development of these sustainable mixtures and finding alternatives. Promising alternatives for cement and clinker replacement include the use of recycled building materials, amongst which (calcined) bricks and roof tiles. To study the potential of recycled clay-based building materials, the application of calcinated clay itself is studied as well. Compared to cement, the calcination temperature of clay-based materials is significantly lower, resulting in reduced CO₂ output. Reusing these materials is therefore a promising solution for utilizing waste streams while simultaneously reducing the cement content in 3D concrete mixtures. In addition, waste streams can be locally sourced, thereby reducing the emitted CO₂ during transportation. In this research, various alternative binders are examined, such as calcined clay blends (LC3) from recycled tiles and bricks, or locally obtained clay resources. Using various experiments, a high potential for mix designs including these resources has been shown with respect to material strength, while sustaining decent printability and buildability. Therefore, the defined strategies are promising and can lead to a more sustainable, low-CO₂ mixture suitable for 3D printing while using accessible materials.

Keywords: cement replacement, 3DPC, circular building materials, calcined clay, CO₂ reduction

Procedia PDF Downloads 85
495 Value-Added Products from Recycling of Solid Waste in Steel Plants

Authors: B. Karthik Vasan, Rachil Maliwal, Somnath Basu

Abstract:

Generation of solid waste is a major problem confronting the iron and steel industry around the world. Disposal of untreated wastes is no longer a viable solution in view of the environmental regulations becoming more and more stringent, as well as an increase in community awareness about the long-term hazards of indiscriminate waste disposal. The current work explores the possibility of converting some of the ‘problematic’ solid wastes generated during steel manufacturing operations, viz. dust from primary steelmaking, iron ore handling, and flux calcination processes, into value-added products instead of environmentally hazardous disposal practices. It was possible to develop a synthetic calcium ferrite, which helped to enhance the dissolution of calcined basic fluxes (e.g. CaO) and reduce the overall energy consumption during steel making. This, in turn, increased process efficiency and reduced greenhouse gas emissions. The preliminary results from laboratory-scale experiments clearly demonstrate the potential of utilizing these ‘waste materials’ that are generated in-house in iron and steel manufacturing plants. The energy required for synthesis of the ferrite may be reduced further by partially utilizing the waste heat from the exhaust gases. In the longer run, it would result in significant financial benefits due to reduced dependence on purchased fluxes. The synthesized ferrite is non-hygroscopic and this provides an additional benefit during its storage and transportation, relative to calcined lime (CaO) that is widely used as a basic flux across the steel making industry.

Keywords: calcium ferrite, flux, slag formation, solid waste

Procedia PDF Downloads 214
494 A Three-Dimensional (3D) Numerical Study of Roofs Shape Impact on Air Quality in Urban Street Canyons with Tree Planting

Authors: Bouabdellah Abed, Mohamed Bouzit, Lakhdar Bouarbi

Abstract:

The objective of this study is to investigate numerically the effect of roof shaped on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, Pvol = 96%. A three-dimensional computational fluid dynamics (CFD) model for evaluating air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier–Stokes (RANS) equations and the k-Epsilon EARSM turbulence model as close of the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against the wind tunnel experiment. Having established this, the wind flow and pollutant dispersion in urban street canyons of six roof shapes are simulated. The numerical simulation agrees reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated, this complexity is increased with presence of tree and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped. The results also indicated that the corners eddies provide additional ventilation and lead to lower traffic pollutant concentrations at the street canyon ends.

Keywords: street canyon, pollutant dispersion, trees, building configuration, numerical simulation, k-Epsilon EARSM

Procedia PDF Downloads 366
493 The Effect of Sulfur and Calcium on the Formation of Dioxin in a Bubbling Fluidized Bed Incinerator

Authors: Chien-Song Chyang, Wei-Chih Wang

Abstract:

For the incineration process, the inhibition of dioxin formation is an important issue. Many investigations indicate that adding sulfur compounds in the combustion process can be an effectively inhibition for the dioxin formation. In the process, the ratio of sulfur-to-chlorine plays an important role for the reduction efficiency of dioxin formation. Ca-base sorbent is also a common used for the acid gas removing. Moreover, that is also the indirectly way for dioxin inhibition. Although sulfur and calcium can reduce the dioxin formation, it still have some confusion exists between these additives. To understand and clarify the relationship between the dioxin and simultaneous addition of sulfur and calcium are presented in this study. The experimental data conducted in a pilot scale fluidized bed combustion system at various operating conditions are analysis comprehensively. The focus is on the dioxin of fly ash in this study. The experimental data in this study showed that the PCDD/Fs concentration in the fly ash collected from the baghouse is increased slightly as the simultaneous addition of sulfur and calcium. This work described the CO concentration with the addition of sulfur and calcium at the freeboard temperature from 800°C to 900°C, which is raised by the fuel complexity. The positive correlation exists between the dioxin concentration and CO concentration and carbon contained in the fly ash.. At the same sulfur/chlorine ratio, the toxic equivalent quantity (TEQ) can be reduced by increasing the actual concentration of sulfur and calcium. The homologue profiles showed that the P₅CDD and P₅CDF were the two major sources for the toxicity of dioxin. 2,3,7,8-TCDD and 2,3,7,8-TCDF reduced by the addition of pyrite and hydrated lime. The experimental results showed that the trend of PCDD/Fs concentration in the fly ash was different by the different sulfur/chlorine ratio with the addition of sulfur at 800°C.

Keywords: reduction of dioxin emissions, sulfur-to-chlorine ratio, de-chlorination, Ca-based sorbent

Procedia PDF Downloads 147
492 Design of New Sustainable Pavement Concrete: An Experimental Road

Authors: Manuel Rosales, Francisco Agrela, Julia Rosales

Abstract:

The development of concrete pavements that include recycled waste with active and predictive safety features is a possible approach to mitigate the harmful impacts of the construction industry, such as CO2 emissions and the consumption of energy and natural resources during the construction and maintenance of road infrastructure. This study establishes the basis for formulating new smart materials for concrete pavements and carrying out the in-situ implementation of an experimental road section. To this end, a comprehensive recycled pavement solution is developed that combines eco-hybrid cement made with 25% mixed recycled aggregate powder (pMRA) and biomass bottom ash powder (pBBA) and a 30% substitution of natural aggregate by MRA and BBA. This work is grouped in three lines. 1) construction materials with high rates of use of recycled material, 2) production processes with efficient consumption of natural resources and use of cleaner energies, and 3) implementation and monitoring of road section with sustainable concrete made from waste. The objective of this study is to ensure satisfactory rheology, mechanical strength, durability, and CO2 capture of pavement concrete manufactured from waste and its subsequent application in real road section as well as its monitoring to establish the optimal range of recycled material. The concrete developed during this study are aimed at the reuse of waste, promoting the circular economy. For this purpose, and after having carried out different tests in the laboratory, three mixtures were established to be applied on the experimental road.

Keywords: biomass bottom ash, construction and demolition waste, recycled concrete pavements, full-scale experimental road, monitoring

Procedia PDF Downloads 68
491 Lime Based Products as a Maintainable Option for Repair And Restoration of Historic Buildings in India

Authors: Adedayo Jeremiah Adeyekun, Samuel Oluwagbemiga Ishola

Abstract:

This research aims to study the use of traditional building materials for the repair and refurbishment of historic buildings in India and to provide an authentic treatment of historical buildings that will be highly considered by taking into consideration the new standards of rehabilitating process. This can be proven to be an effective solution over modern impervious material due to its compatibility with traditional building methods and materials. For example, their elastoplastic properties allow accommodating movement due to settlement or moisture/temperature changes without cracking. The use of lime also enhances workability, water retention and bond characteristics. Lime is considered to be a natural, traditional material, but it is also sustainable and energy-efficient, with production powered by biomass and emissions up to 25% less than cementitious materials. However, there is a lack of comprehensive data on the impact of lime‐based materials on the energy efficiency and thermal properties of traditional buildings and structures. Although lime mortars, renders and plasters were largely superseded by cement-based products in the first half of the 20th century, lime has a long and proven track record dating back to ancient times. This was used by the Egyptians in 4000BC to construct the pyramids. This doesn't mean that lime is an outdated technology, nor is it difficult to be used as a material. In fact, lime has a growing place in modern construction, with increasing numbers of designers choosing to use lime-based products because of their special properties. To carry out this research, some historic buildings will be surveyed and information will be derived from the textbooks and journals related to Architectural restoration.

Keywords: lime, materials, historic, buildings, sustainability

Procedia PDF Downloads 166
490 An Approach towards Designing an Energy Efficient Building through Embodied Energy Assessment: A Case of Apartment Building in Composite Climate

Authors: Ambalika Ekka

Abstract:

In today’s world, the growing demand for urban built forms has resulted in the production and consumption of building materials i.e. embodied energy in building construction, leading to pollution and greenhouse gas (GHG) emissions. Therefore, new buildings will offer a unique opportunity to implement more energy efficient building without compromising on building performance of the building. Embodied energy of building materials forms major contribution to embodied energy in buildings. The paper results in an approach towards designing an energy efficient apartment building through embodied energy assessment. This paper discusses the trend of residential development in Rourkela, which includes three case studies of the contemporary houses, followed by architectural elements, number of storeys, predominant material use and plot sizes using primary data. It results in identification of predominant material used and other characteristics in urban area. Further, the embodied energy coefficients of various dominant building materials and alternative materials manufactured in Indian Industry is taken in consideration from secondary source i.e. literature study. The paper analyses the embodied energy by estimating materials and operational energy of proposed building followed by altering the specifications of the materials based on the building components i.e. walls, flooring, windows, insulation and roof through res build India software and comparison of different options is assessed with consideration of sustainable parameters. This paper results that autoclaved aerated concrete block only reaches the energy performance Index benchmark i.e. 69.35 kWh/m2 yr i.e. by saving 4% of operational energy and as embodied energy has no particular index, out of all materials it has the highest EE 23206202.43  MJ.

Keywords: energy efficient, embodied energy, EPI, building materials

Procedia PDF Downloads 196
489 Setting up Model Hospitals in Health Care Waste Management in Madagascar

Authors: Sandrine Andriantsimietry, Hantanirina Ravaosendrasoa

Abstract:

Madagascar, in 2018, set up the first best available technology, autoclave, to treat the health care waste in public hospitals according the best environmental practices in health care waste management. Incineration of health care waste, frequently through open burning is the most common practice of treatment and elimination of health care waste across the country. Autoclave is a best available technology for non-incineration of health care waste that permits recycling of treated waste and prevents harm in environment through the reduction of unintended persistent organic pollutants from the health sector. A Global Environment Fund project supported the introduction of the non-incineration treatment of health care waste to help countries in Africa to move towards Stockholm Convention objectives in the health sector. Two teaching hospitals in Antananarivo and one district hospital in Manjakandriana were equipped respectively with 1300L, 250L and 80L autoclaves. The capacity of these model hospitals was strengthened by the donation of equipment and materials and the training of the health workers in best environmental practices in health care waste management. Proper segregation of waste in the wards to collect the infectious waste that was treated in the autoclave was the main step guaranteeing a cost-efficient non-incineration of health care waste. Therefore, the start-up of the switch of incineration into non-incineration treatment was carried out progressively in each ward with close supervision of hygienist. Emissions avoided of unintended persistent organic pollutants during these four months of autoclaves use is 9.4 g Toxic Equivalent per year. Public hospitals in low income countries can be model in best environmental practices in health care waste management but efforts must be made internally for sustainment.

Keywords: autoclave, health care waste management, model hospitals, non-incineration

Procedia PDF Downloads 163
488 The Effect of Pozzolan Addition on the Physico-Chemical and Mechanical Properties of Mortars Based on Cement Resistant to Sulfate (CRS)

Authors: L. Belagraa, A. Belguendouz, Y. Rouabah, A. Bouzid, A. Noui, O. Kessal

Abstract:

The use of cements CRS in aggressive environments showed a lot of benefits as like good mechanical responses and therefore better durability, however, their manufacturing consume a lot of clinker, which leads to the random hazardous deposits, the shortage of natural resources and the gas and the dust emissions mainly; (CO2) with its ecological negative impact on the environment. Technical, economic and environmental benefits by the use of blended cements have been reported and being considered as a research area of great interest. The purpose of this study is to evaluate the influence of the substitution of natural pozzolan on the physico-chemical properties of the new formulated binder and the mechanical behavior of mortar containing this binary cement. Hence, the pozzolan replacement is composed with different proportions (0%, 2.5%, 5%, 7.5% and 10%). The physico-chemical properties of cement resistant to sulfate (CRS) alternative composition were investigated. Further, the behavior of the mortars based on this binder is studied. These characteristics includes chemical composition, density and fineness, consistency, setting time, shrinkage, absorption and the mechanical response. The results obtained showed that the substitution of pozzolan at the optimal ratio of 5% has a positive effect on the resulting cement, greater specific surface area, reduced water demand, accelerating the process of hydration, a better mechanical responses and decreased absorption. Therefore, economic and ecological cement based on mineral addition like pozzolan could be possible as well as advantageous to the formulation of environmental mortars.

Keywords: Cement Resistant to Sulfate (CRS), environmental mortars mechanical response, physico-chemical properties, pozzolan

Procedia PDF Downloads 361