Search results for: torse forming vector field
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10153

Search results for: torse forming vector field

10093 Comparison of Linear Discriminant Analysis and Support Vector Machine Classifications for Electromyography Signals Acquired at Five Positions of Elbow Joint

Authors: Amna Khan, Zareena Kausar, Saad Malik

Abstract:

Bio Mechatronics has extended applications in the field of rehabilitation. It has been contributing since World War II in improving the applicability of prosthesis and assistive devices in real life scenarios. In this paper, classification accuracies have been compared for two classifiers against five positions of elbow. Electromyography (EMG) signals analysis have been acquired directly from skeletal muscles of human forearm for each of the three defined positions and at modified extreme positions of elbow flexion and extension using 8 electrode Myo armband sensor. Features were extracted from filtered EMG signals for each position. Performance of two classifiers, support vector machine (SVM) and linear discriminant analysis (LDA) has been compared by analyzing the classification accuracies. SVM illustrated classification accuracies between 90-96%, in contrast to 84-87% depicted by LDA for five defined positions of elbow keeping the number of samples and selected feature the same for both SVM and LDA.

Keywords: classification accuracies, electromyography, linear discriminant analysis (LDA), Myo armband sensor, support vector machine (SVM)

Procedia PDF Downloads 371
10092 Microstructure Evolution and Modelling of Shear Forming

Authors: Karla D. Vazquez-Valdez, Bradley P. Wynne

Abstract:

In the last decades manufacturing needs have been changing, leading to the study of manufacturing methods that were underdeveloped, such as incremental forming processes like shear forming. These processes use rotating tools in constant local contact with the workpiece, which is often also rotating, to generate shape. This means much lower loads to forge large parts and no need for expensive special tooling. Potential has already been established by demonstrating manufacture of high-value products, e.g., turbine and satellite parts, with high dimensional accuracy from difficult to manufacture materials. Thus, huge opportunities exist for these processes to replace the current method of manufacture for a range of high value components, e.g., eliminating lengthy machining, reducing material waste and process times; or the manufacture of a complicated shape without the development of expensive tooling. However, little is known about the exact deformation conditions during processing and why certain materials are better than others for shear forming, leading to a lot of trial and error before production. Three alloys were used for this study: Ti-54M, Jethete M154, and IN718. General Microscopy and Electron Backscatter Diffraction (EBSD) were used to measure strains and orientation maps during shear forming. A Design of Experiments (DOE) analysis was also made in order to understand the impact of process parameters in the properties of the final workpieces. Such information was the key to develop a reliable Finite Element Method (FEM) model that closely resembles the deformation paths of this process. Finally, the potential of these three materials to be shear spun was studied using the FEM model and their Forming Limit Diagram (FLD) which led to the development of a rough methodology for testing the shear spinnability of various metals.

Keywords: shear forming, damage, principal strains, forming limit diagram

Procedia PDF Downloads 167
10091 Strain DistributionProfiles of EDD Steel at Elevated Temperatures

Authors: Eshwara Prasad Koorapati, R. Raman Goud, Swadesh Kumar Singh

Abstract:

In the present work forming limit diagrams and strain distribution profile diagrams for extra deep drawing steel at room and elevated temperatures have been determined experimentally by conducting stretch forming experiments by using designed and fabricated warm stretch forming tooling setup. With the help of forming Limit Diagrams (FLDs) and strain distribution profile diagrams the formability of Extra Deep Drawing steel has been analyzed and co-related with mechanical properties like strain hardening coefficient (n) and normal anisotropy (r−).Mechanical properties of EDD steel from room temperature to 4500 C were determined and discussed the impact of temperature on the properties like work hardening exponent (n) anisotropy (r-) and strength coefficient of the material. Also, the fractured surfaces after stretching have undergone the some metallurgical investigations and attempt has been made to co-relate with the formability of EDD steel sheets. They are co-related and good agreement with FLDs at various temperatures.

Keywords: FLD, micro hardness, strain distribution profile, stretch forming

Procedia PDF Downloads 427
10090 A Review of Research on Pre-training Technology for Natural Language Processing

Authors: Moquan Gong

Abstract:

In recent years, with the rapid development of deep learning, pre-training technology for natural language processing has made great progress. The early field of natural language processing has long used word vector methods such as Word2Vec to encode text. These word vector methods can also be regarded as static pre-training techniques. However, this context-free text representation brings very limited improvement to subsequent natural language processing tasks and cannot solve the problem of word polysemy. ELMo proposes a context-sensitive text representation method that can effectively handle polysemy problems. Since then, pre-training language models such as GPT and BERT have been proposed one after another. Among them, the BERT model has significantly improved its performance on many typical downstream tasks, greatly promoting the technological development in the field of natural language processing, and has since entered the field of natural language processing. The era of dynamic pre-training technology. Since then, a large number of pre-trained language models based on BERT and XLNet have continued to emerge, and pre-training technology has become an indispensable mainstream technology in the field of natural language processing. This article first gives an overview of pre-training technology and its development history, and introduces in detail the classic pre-training technology in the field of natural language processing, including early static pre-training technology and classic dynamic pre-training technology; and then briefly sorts out a series of enlightening technologies. Pre-training technology, including improved models based on BERT and XLNet; on this basis, analyze the problems faced by current pre-training technology research; finally, look forward to the future development trend of pre-training technology.

Keywords: natural language processing, pre-training, language model, word vectors

Procedia PDF Downloads 67
10089 Isolation of Biosurfactant Producing Spore-Forming Bacteria from Oman: Potential Applications in Bioremediation

Authors: Saif N. Al-Bahry, Yahya M. Al-Wahaibi, Abdulkadir E. Elshafie, Ali S. Al-Bemani, Sanket J. Joshi

Abstract:

Environmental pollution is a global problem and best possible solution is identifying and utilizing native microorganisms. One possible application of microbial product -biosurfactant is in bioremediation of hydrocarbon contaminated sites. We have screened forty two different petroleum contaminated sites from Oman, for biosurfactant producing spore-forming bacterial isolates. Initial screening showed that out of 42 soil samples, three showed reduction in surface tension (ST) and interfacial tension (IFT) within 24h of incubation at 40°C. Out of those 3 soil samples, one was further selected for isolation of bacteria and 14 different bacteria were isolated in pure form. Of those 14 spore-forming, rod shaped bacteria, two showed highest reduction in ST and IFT in the range of 70mN/m to < 35mN/m and 26.69mN/m to < 9mN/m, respectively within 24h. These bacterial biosurfactants may be utilized for bioremediation of oil-spills.

Keywords: bioremediation, hydrocarbon pollution, spore-forming bacteria, bio-surfactant

Procedia PDF Downloads 299
10088 Spin Coherent States Without Squeezing

Authors: A. Dehghani, S. Shirin

Abstract:

We propose in this article a new configuration of quantum states, |α, β> := |α>×|β>. Which are composed of vector products of two different copies of spin coherent states, |α> and |β>. Some mathematical as well as physical properties of such states are discussed. For instance, it has been shown that the cross products of two coherent vectors remain coherent again. They admit a resolution of the identity through positive definite measures on the complex plane. They represent packets similar to the true coherent states, in other words we would not expect to take spin squeezing in any of the field quadratures Lˆx, Lˆy and Lˆz. Depending on the particular choice of parameters in the above scenarios, they can be converted into the so-called Dicke states which minimize the uncertainty relations of each pair of the angular momentum components.

Keywords: vector (Cross-)products, minimum uncertainty, angular momentum, measurement, Dicke states

Procedia PDF Downloads 414
10087 SVM-DTC Using for PMSM Speed Tracking Control

Authors: Kendouci Khedidja, Mazari Benyounes, Benhadria Mohamed Rachid, Dadi Rachida

Abstract:

In recent years, direct torque control (DTC) has become an alternative to the well-known vector control especially for permanent magnet synchronous motor (PMSM). However, it presents a problem of field linkage and torque ripple. In order to solve this problem, the conventional DTC is combined with space vector pulse width modulation (SVPWM). This control theory has achieved great success in the control of PMSM. That has become a hotspot for resolving. The main objective of this paper gives us an introduction of the DTC and SVPWM-DTC control theory of PMSM which has been simulating on each part of the system via Matlab/Simulink based on the mathematical modeling. Moreover, the outcome of the simulation proved that the improved SVPWM- DTC of PMSM has a good dynamic and static performance.

Keywords: PMSM, DTC, SVM, speed control

Procedia PDF Downloads 394
10086 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce

Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada

Abstract:

With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.

Keywords: distributed algorithm, MapReduce, multi-class, support vector machine

Procedia PDF Downloads 405
10085 Component Based Testing Using Clustering and Support Vector Machine

Authors: Iqbaldeep Kaur, Amarjeet Kaur

Abstract:

Software Reusability is important part of software development. So component based software development in case of software testing has gained a lot of practical importance in the field of software engineering from academic researcher and also from software development industry perspective. Finding test cases for efficient reuse of test cases is one of the important problems aimed by researcher. Clustering reduce the search space, reuse test cases by grouping similar entities according to requirements ensuring reduced time complexity as it reduce the search time for retrieval the test cases. In this research paper we proposed approach for re-usability of test cases by unsupervised approach. In unsupervised learning we proposed k-mean and Support Vector Machine. We have designed the algorithm for requirement and test case document clustering according to its tf-idf vector space and the output is set of highly cohesive pattern groups.

Keywords: software testing, reusability, clustering, k-mean, SVM

Procedia PDF Downloads 435
10084 Study and Simulation of the Thrust Vectoring in Supersonic Nozzles

Authors: Kbab H, Hamitouche T

Abstract:

In recent years, significant progress has been accomplished in the field of aerospace propulsion and propulsion systems. These developments are associated with efforts to enhance the accuracy of the analysis of aerothermodynamic phenomena in the engine. This applies in particular to the flow in the nozzles used. One of the most remarkable processes in this field is thrust vectoring by means of devices able to orientate the thrust vector and control the deflection of the exit jet in the engine nozzle. In the study proposed, we are interested in the fluid thrust vectoring using a second injection in the nozzle divergence. This fluid injection causes complex phenomena, such as boundary layer separation, which generates a shock wave in the primary jet upstream of the fluid interacting zone (primary jet - secondary jet). This will cause the deviation of the main flow, and therefore of the thrust vector with reference to the axis nozzle. In the modeling of the fluidic thrust vector, various parameters can be used. The Mach number of the primary jet and the injected fluid, the total pressures ratio, the injection rate, the thickness of the upstream boundary layer, the injector position in the divergent part, and the nozzle geometry are decisive factors in this type of phenomenon. The complexity of the latter challenges researchers to understand the physical phenomena of the turbulent boundary layer encountered in supersonic nozzles, as well as the calculation of its thickness and the friction forces induced on the walls. The present study aims to numerically simulate the thrust vectoring by secondary injection using the ANSYS-FLUENT, then to analyze and validate the results and the performances obtained (angle of deflection, efficiency...), which will then be compared with those obtained by other authors.

Keywords: CD Nozzle, TVC, SVC, NPR, CFD, NPR, SPR

Procedia PDF Downloads 138
10083 A Comparative Study of Series-Connected Two-Motor Drive Fed by a Single Inverter

Authors: A. Djahbar, E. Bounadja, A. Zegaoui, H. Allouache

Abstract:

In this paper, vector control of a series-connected two-machine drive system fed by a single inverter (CSI/VSI) is presented. The two stator windings of both machines are connected in series while the rotors may be connected to different loads, are called series-connected two-machine drive. Appropriate phase transposition is introduced while connecting the series stator winding to obtain decoupled control the two-machines. The dynamic decoupling of each machine from the group is obtained using the vector control algorithm. The independent control is demonstrated by analyzing the characteristics of torque and speed of each machine obtained via simulation under vector control scheme. The viability of the control techniques is proved using analytically and simulation approach.

Keywords: drives, inverter, multi-phase induction machine, vector control

Procedia PDF Downloads 483
10082 Diagonal Vector Autoregressive Models and Their Properties

Authors: Usoro Anthony E., Udoh Emediong

Abstract:

Diagonal Vector Autoregressive Models are special classes of the general vector autoregressive models identified under certain conditions, where parameters are restricted to the diagonal elements in the coefficient matrices. Variance, autocovariance, and autocorrelation properties of the upper and lower diagonal VAR models are derived. The new set of VAR models is verified with empirical data and is found to perform favourably with the general VAR models. The advantage of the diagonal models over the existing models is that the new models are parsimonious, given the reduction in the interactive coefficients of the general VAR models.

Keywords: VAR models, diagonal VAR models, variance, autocovariance, autocorrelations

Procedia PDF Downloads 119
10081 Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique

Authors: Saumya Srivastava, Rina Maiti

Abstract:

In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India.

Keywords: gradient, vehicle detection, histograms of oriented gradients, support vector machine

Procedia PDF Downloads 127
10080 Parametrical Simulation of Sheet Metal Forming Process to Control the Localized Thinning

Authors: Hatem Mrad, Alban Notin, Mohamed Bouazara

Abstract:

Sheet metal forming process has a multiple successive steps starting from sheets fixation to sheets evacuation. Often after forming operation, the sheet has defects requiring additional corrections steps. For example, in the drawing process, the formed sheet may have several defects such as springback, localized thinning and bends. All these defects are directly dependent on process, geometric and material parameters. The prediction and elimination of these defects requires the control of most sensitive parameters. The present study is concerned with a reliable parametric study of deep forming process in order to control the localized thinning. The proposed approach will be based on stochastic finite element method. Especially, the polynomial Chaos development will be used to establish a reliable relationship between input (process, geometric and material parameters) and output variables (sheet thickness). The commercial software Abaqus is used to conduct numerical finite elements simulations. The automatized parametrical modification is provided by coupling a FORTRAN routine, a PYTHON script and input Abaqus files.

Keywords: sheet metal forming, reliability, localized thinning, parametric simulation

Procedia PDF Downloads 424
10079 Generator Subgraphs of the Wheel

Authors: Neil M. Mame

Abstract:

We consider only finite graphs without loops nor multiple edges. Let G be a graph with E(G) = {e1, e2, …., em}. The edge space of G, denoted by ε(G), is a vector space over the field Z2. The elements of ε(G) are all the subsets of E(G). Vector addition is defined as X+Y = X Δ Y, the symmetric difference of sets X and Y, for X, Y ∈ ε(G). Scalar multiplication is defined as 1.X =X and 0.X = Ø for X ∈ ε(G). The set S ⊆ ε(G) is called a generating set if every element ε(G) is a linear combination of the elements of S. For a non-empty set X ∈ ε(G), the smallest subgraph with edge set X is called edge-induced subgraph of G, denoted by G[X]. The set EH(G) = { A ∈ ε(G) : G[A] ≅ H } denotes the uniform set of H with respect to G and εH(G) denotes the subspace of ε(G) generated by EH(G). If εH(G) is generating set, then we call H a generator subgraph of G. This paper gives the characterization for the generator subgraphs of the wheel that contain cycles and gives the necessary conditions for the acyclic generator subgraphs of the wheel.

Keywords: edge space, edge-induced subgraph, generator subgraph, wheel

Procedia PDF Downloads 467
10078 Effect of Incremental Forming Parameters on Titanium Alloys Properties

Authors: P. Homola, L. Novakova, V. Kafka, M. P. Oscoz

Abstract:

Shear spinning is closely related to the asymmetric incremental sheet forming (AISF) that could significantly reduce costs incurred by the fabrication of complex aeronautical components with a minimal environmental impact. The spinning experiments were carried out on commercially pure titanium (Ti-Gr2) and Ti-6Al-4V (Ti-Gr5) alloy. Three forming modes were used to characterize the titanium alloys properties from the point of view of different spinning parameters. The structure and properties of the materials were assessed by means of metallographic analyses and micro-hardness measurements. The highest value wall angle failure limit was achieved using spinning parameters mode for both materials. The feed rate effect was observed only in the samples from the Ti-Gr2 material, when a refinement of the grain microstructure with lower feed rate and higher tangential speed occurred. Ti-Gr5 alloy exhibited a decrease of the micro-hardness at higher straining due to recovery processes.

Keywords: incremental forming, metallography, shear spinning, titanium alloys

Procedia PDF Downloads 241
10077 Improving Cheon-Kim-Kim-Song (CKKS) Performance with Vector Computation and GPU Acceleration

Authors: Smaran Manchala

Abstract:

Homomorphic Encryption (HE) enables computations on encrypted data without requiring decryption, mitigating data vulnerability during processing. Usable Fully Homomorphic Encryption (FHE) could revolutionize secure data operations across cloud computing, AI training, and healthcare, providing both privacy and functionality, however, the computational inefficiency of schemes like Cheon-Kim-Kim-Song (CKKS) hinders their widespread practical use. This study focuses on optimizing CKKS for faster matrix operations through the implementation of vector computation parallelization and GPU acceleration. The variable effects of vector parallelization on GPUs were explored, recognizing that while parallelization typically accelerates operations, it could introduce overhead that results in slower runtimes, especially in smaller, less computationally demanding operations. To assess performance, two neural network models, MLPN and CNN—were tested on the MNIST dataset using both ARM and x86-64 architectures, with CNN chosen for its higher computational demands. Each test was repeated 1,000 times, and outliers were removed via Z-score analysis to measure the effect of vector parallelization on CKKS performance. Model accuracy was also evaluated under CKKS encryption to ensure optimizations did not compromise results. According to the results of the trail runs, applying vector parallelization had a 2.63X efficiency increase overall with a 1.83X performance increase for x86-64 over ARM architecture. Overall, these results suggest that the application of vector parallelization in tandem with GPU acceleration significantly improves the efficiency of CKKS even while accounting for vector parallelization overhead, providing impact in future zero trust operations.

Keywords: CKKS scheme, runtime efficiency, fully homomorphic encryption (FHE), GPU acceleration, vector parallelization

Procedia PDF Downloads 33
10076 Open-Loop Vector Control of Induction Motor with Space Vector Pulse Width Modulation Technique

Authors: Karchung, S. Ruangsinchaiwanich

Abstract:

This paper presents open-loop vector control method of induction motor with space vector pulse width modulation (SVPWM) technique. Normally, the closed loop speed control is preferred and is believed to be more accurate. However, it requires a position sensor to track the rotor position which is not desirable to use it for certain workspace applications. This paper exhibits the performance of three-phase induction motor with the simplest control algorithm without the use of a position sensor nor an estimation block to estimate rotor position for sensorless control. The motor stator currents are measured and are transformed to synchronously rotating (d-q-axis) frame by use of Clarke and Park transformation. The actual control happens in this frame where the measured currents are compared with the reference currents. The error signal is fed to a conventional PI controller, and the corrected d-q voltage is generated. The controller outputs are transformed back to three phase voltages and are fed to SVPWM block which generates PWM signal for the voltage source inverter. The open loop vector control model along with SVPWM algorithm is modeled in MATLAB/Simulink software and is experimented and validated in TMS320F28335 DSP board.

Keywords: electric drive, induction motor, open-loop vector control, space vector pulse width modulation technique

Procedia PDF Downloads 150
10075 Using New Machine Algorithms to Classify Iranian Musical Instruments According to Temporal, Spectral and Coefficient Features

Authors: Ronak Khosravi, Mahmood Abbasi Layegh, Siamak Haghipour, Avin Esmaili

Abstract:

In this paper, a study on classification of musical woodwind instruments using a small set of features selected from a broad range of extracted ones by the sequential forward selection method was carried out. Firstly, we extract 42 features for each record in the music database of 402 sound files belonging to five different groups of Flutes (end blown and internal duct), Single –reed, Double –reed (exposed and capped), Triple reed and Quadruple reed. Then, the sequential forward selection method is adopted to choose the best feature set in order to achieve very high classification accuracy. Two different classification techniques of support vector machines and relevance vector machines have been tested out and an accuracy of up to 96% can be achieved by using 21 time, frequency and coefficient features and relevance vector machine with the Gaussian kernel function.

Keywords: coefficient features, relevance vector machines, spectral features, support vector machines, temporal features

Procedia PDF Downloads 324
10074 A Deletion-Cost Based Fast Compression Algorithm for Linear Vector Data

Authors: Qiuxiao Chen, Yan Hou, Ning Wu

Abstract:

As there are deficiencies of the classic Douglas-Peucker Algorithm (DPA), such as high risks of deleting key nodes by mistake, high complexity, time consumption and relatively slow execution speed, a new Deletion-Cost Based Compression Algorithm (DCA) for linear vector data was proposed. For each curve — the basic element of linear vector data, all the deletion costs of its middle nodes were calculated, and the minimum deletion cost was compared with the pre-defined threshold. If the former was greater than or equal to the latter, all remaining nodes were reserved and the curve’s compression process was finished. Otherwise, the node with the minimal deletion cost was deleted, its two neighbors' deletion costs were updated, and the same loop on the compressed curve was repeated till the termination. By several comparative experiments using different types of linear vector data, the comparison between DPA and DCA was performed from the aspects of compression quality and computing efficiency. Experiment results showed that DCA outperformed DPA in compression accuracy and execution efficiency as well.

Keywords: Douglas-Peucker algorithm, linear vector data, compression, deletion cost

Procedia PDF Downloads 254
10073 SVM-Based Modeling of Mass Transfer Potential of Multiple Plunging Jets

Authors: Surinder Deswal, Mahesh Pal

Abstract:

The paper investigates the potential of support vector machines based regression approach to model the mass transfer capacity of multiple plunging jets, both vertical (θ = 90°) and inclined (θ = 60°). The data set used in this study consists of four input parameters with a total of eighty eight cases. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 (root mean square error values of 0.0025 and 0.0020) were achieved by using polynomial and radial basis kernel functions based support vector regression respectively. Results suggest an improved performance by radial basis function in comparison to polynomial kernel based support vector machines. The estimated overall mass transfer coefficient, by both the kernel functions, is in good agreement with actual experimental values (within a scatter of ±15 %); thereby suggesting the utility of support vector machines based regression approach.

Keywords: mass transfer, multiple plunging jets, support vector machines, ecological sciences

Procedia PDF Downloads 467
10072 Using Cooperation Approaches at Different Levels of Artificial Bee Colony Method

Authors: Vahid Zeighami, Mohsen Ghsemi, Reza Akbari

Abstract:

In this work, a Multi-Level Artificial Bee Colony (called MLABC) is presented. In MLABC two species are used. The first species employs n colonies in which each of the them optimizes the complete solution vector. The cooperation between these colonies is carried out by exchanging information through a leader colony, which contains a set of elite bees. The second species uses a cooperative approach in which the complete solution vector is divided to k sub-vectors, and each of these sub-vectors is optimized by a a colony. The cooperation between these colonies is carried out by compiling sub-vectors into the complete solution vector. Finally, the cooperation between two species is obtained by exchanging information between them. The proposed algorithm is tested on a set of well known test functions. The results show that MLABC algorithms provide efficiency and robustness to solve numerical functions.

Keywords: artificial bee colony, cooperative, multilevel cooperation, vector

Procedia PDF Downloads 451
10071 Decision Support System for Diagnosis of Breast Cancer

Authors: Oluwaponmile D. Alao

Abstract:

In this paper, two models have been developed to ascertain the best network needed for diagnosis of breast cancer. Breast cancer has been a disease that required the attention of the medical practitioner. Experience has shown that misdiagnose of the disease has been a major challenge in the medical field. Therefore, designing a system with adequate performance for will help in making diagnosis of the disease faster and accurate. In this paper, two models: backpropagation neural network and support vector machine has been developed. The performance obtained is also compared with other previously obtained algorithms to ascertain the best algorithms.

Keywords: breast cancer, data mining, neural network, support vector machine

Procedia PDF Downloads 348
10070 An Efficient Automated Radiation Measuring System for Plasma Monopole Antenna

Authors: Gurkirandeep Kaur, Rana Pratap Yadav

Abstract:

This experimental study is aimed to examine the radiation characteristics of different plasma structures of a surface wave-driven plasma antenna by an automated measuring system. In this study, a 30 cm long plasma column of argon gas with a diameter of 3 cm is excited by surface wave discharge mechanism operating at 13.56 MHz with RF power level up to 100 Watts and gas pressure between 0.01 to 0.05 mb. The study reveals that a single structured plasma monopole can be modified into an array of plasma antenna elements by forming multiple striations or plasma blobs inside the discharge tube by altering the values of plasma properties such as working pressure, operating frequency, input RF power, discharge tube dimensions, i.e., length, radius, and thickness. It is also reported that plasma length, electron density, and conductivity are functions of operating plasma parameters and controlled by changing working pressure and input power. To investigate the antenna radiation efficiency for the far-field region, an automation-based radiation measuring system has been fabricated and presented in detail. This developed automated system involves a combined setup of controller, dc servo motors, vector network analyzer, and computing device to evaluate the radiation intensity, directivity, gain and efficiency of plasma antenna. In this system, the controller is connected to multiple motors for moving aluminum shafts in both elevation and azimuthal plane whereas radiation from plasma monopole antenna is measured by a Vector Network Analyser (VNA) which is further wired up with the computing device to display radiations in polar plot forms. Here, the radiation characteristics of both continuous and array plasma monopole antenna have been studied for various working plasma parameters. The experimental results clearly indicate that the plasma antenna is as efficient as a metallic antenna. The radiation from plasma monopole antenna is significantly influenced by plasma properties which provides a wider range in radiation pattern where desired radiation parameters like beam-width, the direction of radiation, radiation intensity, antenna efficiency, etc. can be achieved in a single monopole. Due to its wide range of selectivity in radiation pattern; this can meet the demands of wider bandwidth to get high data speed in communication systems. Moreover, this developed system provides an efficient and cost-effective solution for measuring the radiation pattern in far-field zone for any kind of antenna system.

Keywords: antenna radiation characteristics, dynamically reconfigurable, plasma antenna, plasma column, plasma striations, surface wave

Procedia PDF Downloads 121
10069 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines

Authors: Xiaogang Li, Jieqiong Miao

Abstract:

As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square error

Keywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error

Procedia PDF Downloads 467
10068 Simulation of Kinetic Friction in L-Bending of Sheet Metals

Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang

Abstract:

This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.

Keywords: friction, L-bending, springback, Stribeck curves

Procedia PDF Downloads 495
10067 Forecasting of Grape Juice Flavor by Using Support Vector Regression

Authors: Ren-Jieh Kuo, Chun-Shou Huang

Abstract:

The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractively. Thus, this study intends to introduce the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN and LR to forecast the flavor of grapes juice in real data, the result shows that SVR is more suitable and effective at predicting performance.

Keywords: flavor forecasting, artificial neural networks, Support Vector Regression, China

Procedia PDF Downloads 497
10066 Effect of Machining Induced Microstructure Changes on the Edge Formability of Titanium Alloys at Room Temperature

Authors: James S. Kwame, E. Yakushina, P. Blackwell

Abstract:

The challenges in forming titanium alloys at room temperature are well researched and are linked both to the limitations imposed by the basic crystal structure and their ability to form texture during plastic deformation. One major issue of concern for the sheet forming of titanium alloys is their high sensitivity to surface inhomogeneity. Various machining processes are utilised in preparing sheet hole edges for edge flanging applications. However, the response of edge forming tendencies of titanium to different edge surface finishes is not well investigated. The hole expansion test is used in this project to elucidate the impact of abrasive water jet (AWJ) and electro-discharge machining (EDM) cutting techniques on the edge formability of CP-Ti (Grade 2) and Ti-3Al-2.5V alloys at room temperature. The results show that the quality of the edge surface finish has a major effect on the edge formability of the materials. The work also found that the variations in the edge forming performance are mainly the result of the influence of machining induced edge surface defects.

Keywords: titanium alloys, hole expansion test, edge formability, non-conventional machining

Procedia PDF Downloads 140
10065 Experimental and Finite Element Forming Limit Diagrams for Interstitial Free Steels

Authors: Basavaraj Vadavadagi, Satishkumar Shekhawat

Abstract:

Interstitial free steels posses better formability and have many applications in automotive industries. Forming limit diagrams (FLDs) indicate the formability of materials which can be determined by experimental and finite element (FE) simulations. FLDs were determined experimentally by LDH test, utilizing optical strain measurement system for measuring the strains in different width specimens and by FE simulations in Interstitial Free (IF) and Interstitial Free High Strength (IFHS) steels. In this study, the experimental and FE simulated FLDs are compared and also the stress based FLDs were investigated.

Keywords: forming limit diagram, limiting dome height, optical strain measurement, interstitial

Procedia PDF Downloads 235
10064 Pyramid Binary Pattern for Age Invariant Face Verification

Authors: Saroj Bijarnia, Preety Singh

Abstract:

We propose a simple and effective biometrics system based on face verification across aging using a new variant of texture feature, Pyramid Binary Pattern. This employs Local Binary Pattern along with its hierarchical information. Dimension reduction of generated texture feature vector is done using Principal Component Analysis. Support Vector Machine is used for classification. Our proposed method achieves an accuracy of 92:24% and can be used in an automated age-invariant face verification system.

Keywords: biometrics, age invariant, verification, support vector machine

Procedia PDF Downloads 356