Search results for: shifted polynomial basis (SPB)
3874 2 Stage CMOS Regulated Cascode Distributed Amplifier Design Based On Inductive Coupling Technique in Submicron CMOS Process
Authors: Kittipong Tripetch, Nobuhiko Nakano
Abstract:
This paper proposes one stage and two stage CMOS Complementary Regulated Cascode Distributed Amplifier (CRCDA) design based on Inductive and Transformer coupling techniques. Usually, Distributed amplifier is based on inductor coupling between gate and gate of MOSFET and between drain and drain of MOSFET. But this paper propose some new idea, by coupling with differential primary windings of transformer between gate and gate of MOSFET first stage and second stage of regulated cascade amplifier and by coupling with differential secondary windings transformer of MOSFET between drain and drain of MOSFET first stage and second stage of regulated cascade amplifier. This paper also proposes polynomial modeling of Silicon Transformer passive equivalent circuit from Nanyang Technological University which is used to extract frequency response of transformer. Cadence simulation results are used to verify validity of transformer polynomial modeling which can be used to design distributed amplifier without Cadence. 4 parameters of scattering matrix of 2 port of the propose circuit is derived as a function of 4 parameters of impedance matrix.Keywords: CMOS regulated cascode distributed amplifier, silicon transformer modeling with polynomial, low power consumption, distribute amplification technique
Procedia PDF Downloads 5113873 The Complete Modal Derivatives
Authors: Sebastian Andersen, Peter N. Poulsen
Abstract:
The use of basis projection in the structural dynamic analysis is frequently applied. The purpose of the method is to improve the computational efficiency, while maintaining a high solution accuracy, by projection the governing equations onto a small set of carefully selected basis vectors. The present work considers basis projection in kinematic nonlinear systems with a focus on two widely used basis vectors; the system mode shapes and their modal derivatives. Particularly the latter basis vectors are given special attention since only approximate modal derivatives have been used until now. In the present work the complete modal derivatives, derived from perturbation methods, are presented and compared to the previously applied approximate modal derivatives. The correctness of the complete modal derivatives is illustrated by use of an example of a harmonically loaded kinematic nonlinear structure modeled by beam elements.Keywords: basis projection, finite element method, kinematic nonlinearities, modal derivatives
Procedia PDF Downloads 2373872 Probabilistic Slope Stability Analysis of Excavation Induced Landslides Using Hermite Polynomial Chaos
Authors: Schadrack Mwizerwa
Abstract:
The characterization and prediction of landslides are crucial for assessing geological hazards and mitigating risks to infrastructure and communities. This research aims to develop a probabilistic framework for analyzing excavation-induced landslides, which is fundamental for assessing geological hazards and mitigating risks to infrastructure and communities. The study uses Hermite polynomial chaos, a non-stationary random process, to analyze the stability of a slope and characterize the failure probability of a real landslide induced by highway construction excavation. The correlation within the data is captured using the Karhunen-Loève (KL) expansion theory, and the finite element method is used to analyze the slope's stability. The research contributes to the field of landslide characterization by employing advanced random field approaches, providing valuable insights into the complex nature of landslide behavior and the effectiveness of advanced probabilistic models for risk assessment and management. The data collected from the Baiyuzui landslide, induced by highway construction, is used as an illustrative example. The findings highlight the importance of considering the probabilistic nature of landslides and provide valuable insights into the complex behavior of such hazards.Keywords: Hermite polynomial chaos, Karhunen-Loeve, slope stability, probabilistic analysis
Procedia PDF Downloads 763871 Numerical Study of Fiber Bragg Grating Sensor: Longitudinal and Transverse Detection of Temperature and Strain
Authors: K. Khelil, H. Ammar, K. Saouchi
Abstract:
Fiber Bragg Grating (FBG) structure is an periodically modulated optical fiber. It acts as a selective filter of wavelength whose reflected peak is called Bragg wavelength and it depends on the period of the fiber and the refractive index. The simulation of FBG is based on solving the Coupled Mode Theory equation by using the Transfer Matrix Method which is carried out using MATLAB. It is found that spectral reflectivity is shifted when the change of temperature and strain is uniform. Under non-uniform temperature or strain perturbation, the spectrum is both shifted and destroyed. In case of transverse loading, reflectivity spectrum is split into two peaks, the first is specific to X axis, and the second belongs to Y axis. FBGs are used in civil engineering to detect perturbations applied to buildings.Keywords: Bragg wavelength, coupled mode theory, optical fiber, temperature measurement
Procedia PDF Downloads 4943870 Cryptographic Attack on Lucas Based Cryptosystems Using Chinese Remainder Theorem
Authors: Tze Jin Wong, Lee Feng Koo, Pang Hung Yiu
Abstract:
Lenstra’s attack uses Chinese remainder theorem as a tool and requires a faulty signature to be successful. This paper reports on the security responses of fourth and sixth order Lucas based (LUC4,6) cryptosystem under the Lenstra’s attack as compared to the other two Lucas based cryptosystems such as LUC and LUC3 cryptosystems. All the Lucas based cryptosystems were exposed mathematically to the Lenstra’s attack using Chinese Remainder Theorem and Dickson polynomial. Result shows that the possibility for successful Lenstra’s attack is less against LUC4,6 cryptosystem than LUC3 and LUC cryptosystems. Current study concludes that LUC4,6 cryptosystem is more secure than LUC and LUC3 cryptosystems in sustaining against Lenstra’s attack.Keywords: Lucas sequence, Dickson polynomial, faulty signature, corresponding signature, congruence
Procedia PDF Downloads 1663869 An Optimization Model for Maximum Clique Problem Based on Semidefinite Programming
Authors: Derkaoui Orkia, Lehireche Ahmed
Abstract:
The topic of this article is to exploring the potentialities of a powerful optimization technique, namely Semidefinite Programming, for solving NP-hard problems. This approach provides tight relaxations of combinatorial and quadratic problems. In this work, we solve the maximum clique problem using this relaxation. The clique problem is the computational problem of finding cliques in a graph. It is widely acknowledged for its many applications in real-world problems. The numerical results show that it is possible to find a maximum clique in polynomial time, using an algorithm based on semidefinite programming. We implement a primal-dual interior points algorithm to solve this problem based on semidefinite programming. The semidefinite relaxation of this problem can be solved in polynomial time.Keywords: semidefinite programming, maximum clique problem, primal-dual interior point method, relaxation
Procedia PDF Downloads 2223868 Operational Matrix Method for Fuzzy Fractional Reaction Diffusion Equation
Authors: Sachin Kumar
Abstract:
Fuzzy fractional diffusion equation is widely useful to depict different physical processes arising in physics, biology, and hydrology. The motive of this article is to deal with the fuzzy fractional diffusion equation. We study a mathematical model of fuzzy space-time fractional diffusion equation in which unknown function, coefficients, and initial-boundary conditions are fuzzy numbers. First, we find out a fuzzy operational matrix of Legendre polynomial of Caputo type fuzzy fractional derivative having a non-singular Mittag-Leffler kernel. The main advantages of this method are that it reduces the fuzzy fractional partial differential equation (FFPDE) to a system of fuzzy algebraic equations from which we can find the solution of the problem. The feasibility of our approach is shown by some numerical examples. Hence, our method is suitable to deal with FFPDE and has good accuracy.Keywords: fractional PDE, fuzzy valued function, diffusion equation, Legendre polynomial, spectral method
Procedia PDF Downloads 2013867 Encryption Image via Mutual Singular Value Decomposition
Authors: Adil Al-Rammahi
Abstract:
Image or document encryption is needed through e- government data base. Really in this paper we introduce two matrices images, one is the public, and the second is the secret (original). The analyses of each matrix is achieved using the transformation of singular values decomposition. So each matrix is transformed or analyzed to three matrices say row orthogonal basis, column orthogonal basis, and spectral diagonal basis. Product of the two row basis is calculated. Similarly the product of the two column basis is achieved. Finally we transform or save the files of public, row product and column product. In decryption stage, the original image is deduced by mutual method of the three public files.Keywords: image cryptography, singular values decomposition
Procedia PDF Downloads 4363866 Off-Grid Sparse Inverse Synthetic Aperture Imaging by Basis Shift Algorithm
Authors: Mengjun Yang, Zhulin Zong, Jie Gao
Abstract:
In this paper, a new and robust algorithm is proposed to achieve high resolution for inverse synthetic aperture radar (ISAR) imaging in the compressive sensing (CS) framework. Traditional CS based methods have to assume that unknown scatters exactly lie on the pre-divided grids; otherwise, their reconstruction performance dropped significantly. In this processing algorithm, several basis shifts are utilized to achieve the same effect as grid refinement does. The detailed implementation of the basis shift algorithm is presented in this paper. From the simulation we can see that using the basis shift algorithm, imaging precision can be improved. The effectiveness and feasibility of the proposed method are investigated by the simulation results.Keywords: ISAR imaging, sparse reconstruction, off-grid, basis shift
Procedia PDF Downloads 2653865 Implicit Off-Grid Block Method for Solving Fourth and Fifth Order Ordinary Differential Equations Directly
Authors: Olusola Ezekiel Abolarin, Gift E. Noah
Abstract:
This research work considered an innovative procedure to numerically approximate higher-order Initial value problems (IVP) of ordinary differential equations (ODE) using the Legendre polynomial as the basis function. The proposed method is a half-step, self-starting Block integrator employed to approximate fourth and fifth order IVPs without reduction to lower order. The method was developed through a collocation and interpolation approach. The basic properties of the method, such as convergence, consistency and stability, were well investigated. Several test problems were considered, and the results compared favorably with both exact solutions and other existing methods.Keywords: initial value problem, ordinary differential equation, implicit off-grid block method, collocation, interpolation
Procedia PDF Downloads 843864 A Contribution to the Polynomial Eigen Problem
Authors: Malika Yaici, Kamel Hariche, Tim Clarke
Abstract:
The relationship between eigenstructure (eigenvalues and eigenvectors) and latent structure (latent roots and latent vectors) is established. In control theory eigenstructure is associated with the state space description of a dynamic multi-variable system and a latent structure is associated with its matrix fraction description. Beginning with block controller and block observer state space forms and moving on to any general state space form, we develop the identities that relate eigenvectors and latent vectors in either direction. Numerical examples illustrate this result. A brief discussion of the potential of these identities in linear control system design follows. Additionally, we present a consequent result: a quick and easy method to solve the polynomial eigenvalue problem for regular matrix polynomials.Keywords: eigenvalues/eigenvectors, latent values/vectors, matrix fraction description, state space description
Procedia PDF Downloads 4703863 Modeling of Compaction Curves for CCA-Cement Stabilized Lateritic Soils
Authors: O. Ahmed Apampa, Yinusa, A. Jimoh
Abstract:
The aim of this study was to develop an appropriate model for predicting the compaction behavior of lateritic soils and corn cob ash (CCA) stabilized lateritic soils. This was done by first adopting an equation earlier developed for fine-grained soils and subsequent adaptation by others and extending it to modified lateritic soil through the introduction of alpha and beta parameters which are polynomial functions of the CCA binder input. The polynomial equations were determined with MATLAB R2011 curve fitting tool, while the alpha and beta parameters were determined by standard linear programming techniques using the Solver function of Microsoft Excel 2010. The model so developed was a good fit with a correlation coefficient R2 value of 0.86. The paper concludes that it is possible to determine the optimum moisture content and the maximum dry density of CCA stabilized soils from the compaction test of the unmodified soil, and recommends that this procedure is extended to other binder stabilized lateritic soils to facilitate quick decision making in roadworks.Keywords: compaction, corn cob ash, lateritic soil, stabilization
Procedia PDF Downloads 5333862 An Efficient Algorithm of Time Step Control for Error Correction Method
Authors: Youngji Lee, Yonghyeon Jeon, Sunyoung Bu, Philsu Kim
Abstract:
The aim of this paper is to construct an algorithm of time step control for the error correction method most recently developed by one of the authors for solving stiff initial value problems. It is achieved with the generalized Chebyshev polynomial and the corresponding error correction method. The main idea of the proposed scheme is in the usage of the duplicated node points in the generalized Chebyshev polynomials of two different degrees by adding necessary sample points instead of re-sampling all points. At each integration step, the proposed method is comprised of two equations for the solution and the error, respectively. The constructed algorithm controls both the error and the time step size simultaneously and possesses a good performance in the computational cost compared to the original method. Two stiff problems are numerically solved to assess the effectiveness of the proposed scheme.Keywords: stiff initial value problem, error correction method, generalized Chebyshev polynomial, node points
Procedia PDF Downloads 5733861 On Block Vandermonde Matrix Constructed from Matrix Polynomial Solvents
Authors: Malika Yaici, Kamel Hariche
Abstract:
In control engineering, systems described by matrix fractions are studied through properties of block roots, also called solvents. These solvents are usually dealt with in a block Vandermonde matrix form. Inverses and determinants of Vandermonde matrices and block Vandermonde matrices are used in solving problems of numerical analysis in many domains but require costly computations. Even though Vandermonde matrices are well known and method to compute inverse and determinants are many and, generally, based on interpolation techniques, methods to compute the inverse and determinant of a block Vandermonde matrix have not been well studied. In this paper, some properties of these matrices and iterative algorithms to compute the determinant and the inverse of a block Vandermonde matrix are given. These methods are deducted from the partitioned matrix inversion and determinant computing methods. Due to their great size, parallelization may be a solution to reduce the computations cost, so a parallelization of these algorithms is proposed and validated by a comparison using algorithmic complexity.Keywords: block vandermonde matrix, solvents, matrix polynomial, matrix inverse, matrix determinant, parallelization
Procedia PDF Downloads 2393860 An Attack on the Lucas Based El-Gamal Cryptosystem in the Elliptic Curve Group Over Finite Field Using Greater Common Divisor
Authors: Lee Feng Koo, Tze Jin Wong, Pang Hung Yiu, Nik Mohd Asri Nik Long
Abstract:
Greater common divisor (GCD) attack is an attack that relies on the polynomial structure of the cryptosystem. This attack required two plaintexts differ from a fixed number and encrypted under same modulus. This paper reports a security reaction of Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field under GCD attack. Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field was exposed mathematically to the GCD attack using GCD and Dickson polynomial. The result shows that the cryptanalyst is able to get the plaintext without decryption by using GCD attack. Thus, the study concluded that it is highly perilous when two plaintexts have a slight difference from a fixed number in the same Elliptic curve group over finite field.Keywords: decryption, encryption, elliptic curve, greater common divisor
Procedia PDF Downloads 2563859 Hybrid Robust Estimation via Median Filter and Wavelet Thresholding with Automatic Boundary Correction
Authors: Alsaidi M. Altaher, Mohd Tahir Ismail
Abstract:
Wavelet thresholding has been a power tool in curve estimation and data analysis. In the presence of outliers this non parametric estimator can not suppress the outliers involved. This study proposes a new two-stage combined method based on the use of the median filter as primary step before applying wavelet thresholding. After suppressing the outliers in a signal through the median filter, the classical wavelet thresholding is then applied for removing the remaining noise. We use automatic boundary corrections; using a low order polynomial model or local polynomial model as a more realistic rule to correct the bias at the boundary region; instead of using the classical assumptions such periodic or symmetric. A simulation experiment has been conducted to evaluate the numerical performance of the proposed method. Results show strong evidences that the proposed method is extremely effective in terms of correcting the boundary bias and eliminating outlier’s sensitivity.Keywords: boundary correction, median filter, simulation, wavelet thresholding
Procedia PDF Downloads 4283858 Quantum Computing with Qudits on a Graph
Authors: Aleksey Fedorov
Abstract:
Building a scalable platform for quantum computing remains one of the most challenging tasks in quantum science and technologies. However, the implementation of most important quantum operations with qubits (quantum analogues of classical bits), such as multiqubit Toffoli gate, requires either a polynomial number of operation or a linear number of operations with the use of ancilla qubits. Therefore, the reduction of the number of operations in the presence of scalability is a crucial goal in quantum information processing. One of the most elegant ideas in this direction is to use qudits (multilevel systems) instead of qubits and rely on additional levels of qudits instead of ancillas. Although some of the already obtained results demonstrate a reduction of the number of operation, they suffer from high complexity and/or of the absence of scalability. We show a strong reduction of the number of operations for the realization of the Toffoli gate by using qudits for a scalable multi-qudit processor. This is done on the basis of a general relation between the dimensionality of qudits and their topology of connections, that we derived.Keywords: quantum computing, qudits, Toffoli gates, gate decomposition
Procedia PDF Downloads 1463857 Closed Forms of Trigonometric Series Interms of Riemann’s ζ Function and Dirichlet η, λ, β Functions or the Hurwitz Zeta Function and Harmonic Numbers
Authors: Slobodan B. Tričković
Abstract:
We present the results concerned with trigonometric series that include sine and cosine functions with a parameter appearing in the denominator. We derive two types of closed-form formulas for trigonometric series. At first, for some integer values, as we know that Riemann’s ζ function and Dirichlet η, λ equal zero at negative even integers, whereas Dirichlet’s β function equals zero at negative odd integers, after a certain number of members, the rest of the series vanishes. Thus, a trigonometric series becomes a polynomial with coefficients involving Riemann’s ζ function and Dirichlet η, λ, β functions. On the other hand, in some cases, one cannot immediately replace the parameter with any positive integer because we shall encounter singularities. So it is necessary to take a limit, so in the process, we apply L’Hospital’s rule and, after a series of rearrangements, we bring a trigonometric series to a form suitable for the application of Choi-Srivastava’s theorem dealing with Hurwitz’s zeta function and Harmonic numbers. In this way, we express a trigonometric series as a polynomial over Hurwitz’s zeta function derivative.Keywords: Dirichlet eta lambda beta functions, Riemann's zeta function, Hurwitz zeta function, Harmonic numbers
Procedia PDF Downloads 1033856 Modeling Vegetation Phenological Characteristics of Terrestrial Ecosystems
Authors: Zongyao Sha
Abstract:
Green vegetation plays a vital role in energy flows and matter cycles in terrestrial ecosystems, and vegetation phenology may not only be influenced by but also impose active feedback on climate changes. The phenological events of vegetation, such as the start of the season (SOS), end of the season (EOS), and length of the season (LOS), can respond to climate changes and affect gross primary productivity (GPP). Here we coupled satellite remote sensing imagery with FLUXNET observations to systematically map the shift of SOS, EOS, and LOS in global vegetated areas and explored their response to climate fluctuations and feedback on GPP during the last two decades. Results indicated that SOS advanced significantly, at an average rate of 0.19 days/year at a global scale, particularly in the northern hemisphere above the middle latitude (≥30°N) and that EOS was slightly delayed during the past two decades, resulting in prolonged LOS in 72.5% of the vegetated area. The climate factors, including seasonal temperature and precipitation, are attributed to the shifts in vegetation phenology but with a high spatial and temporal difference. The study revealed interactions between vegetation phenology and climate changes. Both temperature and precipitation affect vegetation phenology. Higher temperature as a direct consequence of global warming advanced vegetation green-up date. On the other hand, 75.9% and 20.2% of the vegetated area showed a positive correlation and significant positive correlation between annual GPP and length of vegetation growing season (LOS), likely indicating an enhancing effect on vegetation productivity and thus increased carbon uptake from the shifted vegetation phenology. Our study highlights a comprehensive view of the vegetation phenology changes of the global terrestrial ecosystems during the last two decades. The interactions between the shifted vegetation phenology and climate changes may provide useful information for better understanding the future trajectory of global climate changes. The feedback on GPP from the shifted vegetation phenology may serve as an adaptation mechanism for terrestrial ecosystems to mitigate global warming through improved carbon uptake from the atmosphere.Keywords: vegetation phenology, growing season, NPP, correlation analysis
Procedia PDF Downloads 1023855 A Computational Study on Solvent Effects on the Keto-Enol Tautomeric Equilibrium of Dimedone and Acetylacetone 1,3- Dicabonyls
Authors: Imad Eddine Charif, Sidi Mohamed Mekelleche, Didier Villemin
Abstract:
The solvent effects on the keto-enol tautomeric equilibriums of acetylacetone and dimedone are theoretically investigated at the correlated Becke-3-parameter-Lee-Yang-Parr (B3LYP) and second-order Møller-Plesset (MP2) computational levels. The present study shows that the most stable keto tautomer of acetylacetone corresponds to the trans-diketo, E,Z form; while the most stable enol tautomer corresponds to the closed cis-enol,Z,Z form. The keto tautomer of dimedone prefers the trans diketo, E, E form; while the most stable enol tautomer corresponds to trans-enol form. The calculated free Gibbs enthalpies indicate that, in polar solvents, the keto-enol equilibrium of acetylacetone is shifted toward the keto tautomer; whereas the keto-enol equilibrium of dimedone is shifted towards the enol tautomer. The experimental trends of the change of equilibrium constants with respect to the change of solvent polarity are well reproduced by both B3LYP and MP2 calculations.Keywords: acetylacetone, dimedone, solvent effects, keto-enol equilibrium, theoretical calculations
Procedia PDF Downloads 4483854 Extension and Closure of a Field for Engineering Purpose
Authors: Shouji Yujiro, Memei Dukovic, Mist Yakubu
Abstract:
Fields are important objects of study in algebra since they provide a useful generalization of many number systems, such as the rational numbers, real numbers, and complex numbers. In particular, the usual rules of associativity, commutativity and distributivity hold. Fields also appear in many other areas of mathematics; see the examples below. When abstract algebra was first being developed, the definition of a field usually did not include commutativity of multiplication, and what we today call a field would have been called either a commutative field or a rational domain. In contemporary usage, a field is always commutative. A structure which satisfies all the properties of a field except possibly for commutativity, is today called a division ring ordivision algebra or sometimes a skew field. Also non-commutative field is still widely used. In French, fields are called corps (literally, body), generally regardless of their commutativity. When necessary, a (commutative) field is called corps commutative and a skew field-corps gauche. The German word for body is Körper and this word is used to denote fields; hence the use of the blackboard bold to denote a field. The concept of fields was first (implicitly) used to prove that there is no general formula expressing in terms of radicals the roots of a polynomial with rational coefficients of degree 5 or higher. An extension of a field k is just a field K containing k as a subfield. One distinguishes between extensions having various qualities. For example, an extension K of a field k is called algebraic, if every element of K is a root of some polynomial with coefficients in k. Otherwise, the extension is called transcendental. The aim of Galois Theory is the study of algebraic extensions of a field. Given a field k, various kinds of closures of k may be introduced. For example, the algebraic closure, the separable closure, the cyclic closure et cetera. The idea is always the same: If P is a property of fields, then a P-closure of k is a field K containing k, having property, and which is minimal in the sense that no proper subfield of K that contains k has property P. For example if we take P (K) to be the property ‘every non-constant polynomial f in K[t] has a root in K’, then a P-closure of k is just an algebraic closure of k. In general, if P-closures exist for some property P and field k, they are all isomorphic. However, there is in general no preferable isomorphism between two closures.Keywords: field theory, mechanic maths, supertech, rolltech
Procedia PDF Downloads 3723853 A Characterization of Skew Cyclic Code with Complementary Dual
Authors: Eusebio Jr. Lina, Ederlina Nocon
Abstract:
Cyclic codes are a fundamental subclass of linear codes that enjoy a very interesting algebraic structure. The class of skew cyclic codes (or θ-cyclic codes) is a generalization of the notion of cyclic codes. This a very large class of linear codes which can be used to systematically search for codes with good properties. A linear code with complementary dual (LCD code) is a linear code C satisfying C ∩ C^⊥ = {0}. This subclass of linear codes provides an optimum linear coding solution for a two-user binary adder channel and plays an important role in countermeasures to passive and active side-channel analyses on embedded cryptosystems. This paper aims to identify LCD codes from the class of skew cyclic codes. Let F_q be a finite field of order q, and θ be an automorphism of F_q. Some conditions for a skew cyclic code to be LCD were given. To this end, the properties of a noncommutative skew polynomial ring F_q[x, θ] of automorphism type were revisited, and the algebraic structure of skew cyclic code using its skew polynomial representation was examined. Using the result that skew cyclic codes are left ideals of the ring F_q[x, θ]/〈x^n-1〉, a characterization of a skew cyclic LCD code of length n was derived. A necessary condition for a skew cyclic code to be LCD was also given.Keywords: LCD cyclic codes, skew cyclic LCD codes, skew cyclic complementary dual codes, theta-cyclic codes with complementary duals
Procedia PDF Downloads 3443852 Nonparametric Path Analysis with Truncated Spline Approach in Modeling Rural Poverty in Indonesia
Authors: Usriatur Rohma, Adji Achmad Rinaldo Fernandes
Abstract:
Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best nonparametric truncated spline path function between linear and quadratic polynomial degrees with 1, 2, and 3-knot points and to determine the significance of estimating the best nonparametric truncated spline path function in the model of the effect of population migration and agricultural economic growth on rural poverty through the variable unemployment rate using the t-test statistic at the jackknife resampling stage. The data used in this study are secondary data obtained from statistical publications. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3-knot points. In addition, the significance of the best-truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.Keywords: nonparametric path analysis, truncated spline, linear, quadratic, rural poverty, jackknife resampling
Procedia PDF Downloads 463851 Rank of Semigroup: Generating Sets and Cases Revealing Limitations of the Concept of Independence
Authors: Zsolt Lipcsey, Sampson Marshal Imeh
Abstract:
We investigate a certain characterisation for rank of a semigroup by Howie and Ribeiro (1999), to ascertain the relevance of the concept of independence. There are cases where the concept of independence fails to be useful for this purpose. One would expect the basic element to be the maximal independent subset of a given semigroup. However, we construct examples for semigroups where finite basis exist and the basis is larger than the number of independent elements.Keywords: generating sets, independent set, rank, cyclic semigroup, basis, commutative
Procedia PDF Downloads 1893850 A Polynomial Time Clustering Algorithm for Solving the Assignment Problem in the Vehicle Routing Problem
Authors: Lydia Wahid, Mona F. Ahmed, Nevin Darwish
Abstract:
The vehicle routing problem (VRP) consists of a group of customers that needs to be served. Each customer has a certain demand of goods. A central depot having a fleet of vehicles is responsible for supplying the customers with their demands. The problem is composed of two subproblems: The first subproblem is an assignment problem where the number of vehicles that will be used as well as the customers assigned to each vehicle are determined. The second subproblem is the routing problem in which for each vehicle having a number of customers assigned to it, the order of visits of the customers is determined. Optimal number of vehicles, as well as optimal total distance, should be achieved. In this paper, an approach for solving the first subproblem (the assignment problem) is presented. In the approach, a clustering algorithm is proposed for finding the optimal number of vehicles by grouping the customers into clusters where each cluster is visited by one vehicle. Finding the optimal number of clusters is NP-hard. This work presents a polynomial time clustering algorithm for finding the optimal number of clusters and solving the assignment problem.Keywords: vehicle routing problems, clustering algorithms, Clarke and Wright Saving Method, agglomerative hierarchical clustering
Procedia PDF Downloads 3933849 A Robust Optimization of Chassis Durability/Comfort Compromise Using Chebyshev Polynomial Chaos Expansion Method
Authors: Hanwei Gao, Louis Jezequel, Eric Cabrol, Bernard Vitry
Abstract:
The chassis system is composed of complex elements that take up all the loads from the tire-ground contact area and thus it plays an important role in numerous specifications such as durability, comfort, crash, etc. During the development of new vehicle projects in Renault, durability validation is always the main focus while deployment of comfort comes later in the project. Therefore, sometimes design choices have to be reconsidered because of the natural incompatibility between these two specifications. Besides, robustness is also an important point of concern as it is related to manufacturing costs as well as the performance after the ageing of components like shock absorbers. In this paper an approach is proposed aiming to realize a multi-objective optimization between chassis endurance and comfort while taking the random factors into consideration. The adaptive-sparse polynomial chaos expansion method (PCE) with Chebyshev polynomial series has been applied to predict responses’ uncertainty intervals of a system according to its uncertain-but-bounded parameters. The approach can be divided into three steps. First an initial design of experiments is realized to build the response surfaces which represent statistically a black-box system. Secondly within several iterations an optimum set is proposed and validated which will form a Pareto front. At the same time the robustness of each response, served as additional objectives, is calculated from the pre-defined parameter intervals and the response surfaces obtained in the first step. Finally an inverse strategy is carried out to determine the parameters’ tolerance combination with a maximally acceptable degradation of the responses in terms of manufacturing costs. A quarter car model has been tested as an example by applying the road excitations from the actual road measurements for both endurance and comfort calculations. One indicator based on the Basquin’s law is defined to compare the global chassis durability of different parameter settings. Another indicator related to comfort is obtained from the vertical acceleration of the sprung mass. An optimum set with best robustness has been finally obtained and the reference tests prove a good robustness prediction of Chebyshev PCE method. This example demonstrates the effectiveness and reliability of the approach, in particular its ability to save computational costs for a complex system.Keywords: chassis durability, Chebyshev polynomials, multi-objective optimization, polynomial chaos expansion, ride comfort, robust design
Procedia PDF Downloads 1523848 A Polynomial Approach for a Graphical-based Integrated Production and Transport Scheduling with Capacity Restrictions
Authors: M. Ndeley
Abstract:
The performance of global manufacturing supply chains depends on the interaction of production and transport processes. Currently, the scheduling of these processes is done separately without considering mutual requirements, which leads to no optimal solutions. An integrated scheduling of both processes enables the improvement of supply chain performance. The integrated production and transport scheduling problem (PTSP) is NP-hard, so that heuristic methods are necessary to efficiently solve large problem instances as in the case of global manufacturing supply chains. This paper presents a heuristic scheduling approach which handles the integration of flexible production processes with intermodal transport, incorporating flexible land transport. The method is based on a graph that allows a reformulation of the PTSP as a shortest path problem for each job, which can be solved in polynomial time. The proposed method is applied to a supply chain scenario with a manufacturing facility in South Africa and shipments of finished product to customers within the Country. The obtained results show that the approach is suitable for the scheduling of large-scale problems and can be flexibly adapted to different scenarios.Keywords: production and transport scheduling problem, graph based scheduling, integrated scheduling
Procedia PDF Downloads 4743847 Electrochemical Behaviour of 2014 and 2024 Al-Cu-Mg Alloys of Various Tempers
Authors: K. S. Ghosh, Sagnik Bose, Kapil Tripati
Abstract:
Potentiodynamic polarization studies carried out on AA2024 and AA2014 Al-Cu-Mg alloys of various tempers in 3.5 wt. % NaCl and in 3.5 wt. % NaCl + 1.0 % H2O2 solution characteristic E-i curves. Corrosion potential (Ecorr) value has shifted towards more negative potential with the increase of artificial aging time. The Ecorr value for the alloy tempers has also shifted anodically in presence of H2O2 in 3.5 % NaCl solution. Further, passivity phenomenon has been observed in all the alloy tempers when tested in 3.5 wt. % NaCl solution at pH 12. Stress corrosion cracking (SCC) behaviour of friction stir weld (FSW) joint of AA2014 alloy has been studied bu slow strain rate test (SSRT) in 3.5 wt. % NaCl solution. Optical micrographs of the corroded surfaces of polarised samples showed general corrosion, extensive pitting and intergranular corrosion as well. Further, potentiodynamic cyclic polarization curves displayed wide hysteresis loop indicating that the alloy tempers are susceptible to pit growth damage. Attempts have been made to explain the variation of observed electrochemical and SCC behaviour of the alloy tempers and the electrolyte conditions with the help of microstructural features.Keywords: AA 2014 and AA 2024 Al-C-Mg alloy, artificial ageing, potentiodynamic polarization, TEM micrographs, stress corrosion cracking (SCC)
Procedia PDF Downloads 3343846 Nonparametric Path Analysis with a Truncated Spline Approach in Modeling Waste Management Behavior Patterns
Authors: Adji Achmad Rinaldo Fernandes, Usriatur Rohma
Abstract:
Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best truncated spline nonparametric path function between linear and quadratic polynomial degrees with 1, 2, and 3 knot points and to determine the significance of estimating the best truncated spline nonparametric path function in the model of the effect of perceived benefits and perceived convenience on behavior to convert waste into economic value through the intention variable of changing people's mindset about waste using the t test statistic at the jackknife resampling stage. The data used in this study are primary data obtained from research grants. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3 knot points. In addition, the significance of the best truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.Keywords: nonparametric path analysis, truncated spline, linear, kuadratic, behavior to turn waste into economic value, jackknife resampling
Procedia PDF Downloads 473845 A Theorem Related to Sample Moments and Two Types of Moment-Based Density Estimates
Authors: Serge B. Provost
Abstract:
Numerous statistical inference and modeling methodologies are based on sample moments rather than the actual observations. A result justifying the validity of this approach is introduced. More specifically, it will be established that given the first n moments of a sample of size n, one can recover the original n sample points. This implies that a sample of size n and its first associated n moments contain precisely the same amount of information. However, it is efficient to make use of a limited number of initial moments as most of the relevant distributional information is included in them. Two types of density estimation techniques that rely on such moments will be discussed. The first one expresses a density estimate as the product of a suitable base density and a polynomial adjustment whose coefficients are determined by equating the moments of the density estimate to the sample moments. The second one assumes that the derivative of the logarithm of a density function can be represented as a rational function. This gives rise to a system of linear equations involving sample moments, the density estimate is then obtained by solving a differential equation. Unlike kernel density estimation, these methodologies are ideally suited to model ‘big data’ as they only require a limited number of moments, irrespective of the sample size. What is more, they produce simple closed form expressions that are amenable to algebraic manipulations. They also turn out to be more accurate as will be shown in several illustrative examples.Keywords: density estimation, log-density, polynomial adjustments, sample moments
Procedia PDF Downloads 165