Search results for: reluctance machines
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 761

Search results for: reluctance machines

701 CNC Milling-Drilling Machine Cutting Tool Holder

Authors: Hasan Al Dabbas

Abstract:

In this paper, it is addressed that the mechanical machinery captures a major share of innovation in drilling and milling chucks technology. Users demand higher speeds in milling because they are cutting more aluminum and are relying on higher speeds to eliminate secondary finishing operations. To meet that demand, milling-machine builders have enhanced their machine’s rigidity. Moreover, faster cutting has caught up with boring mills. Cooling these machine’s internal components is a challenge at high speeds. Another trend predicted that it is more use of controlled axes to let the machines do many more operations on 5 sides without having to move or re-fix the work. Advances of technology in mechanical engineering have helped to make high-speed machining equipment. To accompany these changes in milling and drilling machines chucks, the demand of easiest software is increased. An open architecture controller is being sought that would allow flexibility and information exchange.

Keywords: drilling, milling, chucks, cutting edges, tools, machines

Procedia PDF Downloads 572
700 Prioritization in a Maintenance, Repair and Overhaul (MRO) System Based on Fuzzy Logic at Iran Khodro (IKCO)

Authors: Izadi Banafsheh, Sedaghat Reza

Abstract:

Maintenance, Repair, and Overhaul (MRO) of machinery are a key recent issue concerning the automotive industry. It has always been a debated question what order or priority should be adopted for the MRO of machinery. This study attempts to examine several criteria including process sensitivity, average time between machine failures, average duration of repair, availability of parts, availability of maintenance personnel and workload through a literature review and experts survey so as to determine the condition of the machine. According to the mentioned criteria, the machinery were ranked in four modes below: A) Need for inspection, B) Need for minor repair, C) Need for part replacement, and D) Need for major repair. The Fuzzy AHP was employed to determine the weighting of criteria. At the end, the obtained weights were ranked through the AHP for each criterion, three groups were specified: shaving machines, assembly and painting in four modes. The statistical population comprises the elite in the Iranian automotive industry at IKCO covering operation managers, CEOs and maintenance professionals who are highly specialized in MRO and perfectly knowledgeable in how the machinery function. The information required for this study were collected from both desk research and field review, which eventually led to construction of a questionnaire handed out to the sample respondents in order to collect information on the subject matter. The results of the AHP for weighting the criteria revealed that the availability of maintenance personnel was the top priority at coefficient of 0.206, while the process sensitivity took the last priority at coefficient of 0.066. Furthermore, the results of TOPSIS for prioritizing the IKCO machinery suggested that at the mode where there is need for inspection, the assembly machines took the top priority while paining machines took the third priority. As for the mode where there is need for minor repairs, the assembly machines took the top priority while the third priority belonged to the shaving machines. As for the mode where there is need for parts replacement, the assembly machines took the top priority while the third belonged to the paining machinery. Finally, as for the mode where there is need for major repair, the assembly machines took the top priority while the third belonged to the paining machinery.

Keywords: maintenance, repair, overhaul, MRO, prioritization of machinery, fuzzy logic, AHP, TOPSIS

Procedia PDF Downloads 286
699 Feasibility Study of Wireless Communication for the Control and Monitoring of Rotating Electrical Machine

Authors: S. Ben Brahim, T. H. Vuong, J. David, R. Bouallegue, M. Pietrzak-David

Abstract:

Electrical machine monitoring is important to protect motor from unexpected problems. Today, using wireless communication for electrical machines is interesting for both real time monitoring and diagnostic purposes. In this paper, we propose a system based on wireless communication IEEE 802.11 to control electrical machine. IEEE 802.11 standard is recommended for this type of applications because it provides a faster connection, better range from the base station, and better security. Therefore, our contribution is to study a new technique to control and monitor the rotating electrical machines (motors, generators) using wireless communication. The reliability of radio channel inside rotating electrical machine is also discussed. Then, the communication protocol, software and hardware design used for the proposed system are presented in detail and the experimental results of our system are illustrated.

Keywords: control, DFIM machine, electromagnetic field, EMC, IEEE 802.11, monitoring, rotating electrical machines, wireless communication

Procedia PDF Downloads 695
698 Computational Linguistic Implications of Gender Bias: Machines Reflect Misogyny in Society

Authors: Irene Yi

Abstract:

Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Computational linguistics is a growing field dealing with such issues of data collection for technological development. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Computational analysis on such linguistic data is used to find patterns of misogyny. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.

Keywords: computational analysis, gendered grammar, misogynistic language, neural networks

Procedia PDF Downloads 119
697 Acoustic Emission Techniques in Monitoring Low-Speed Bearing Conditions

Authors: Faisal AlShammari, Abdulmajid Addali, Mosab Alrashed

Abstract:

It is widely acknowledged that bearing failures are the primary reason for breakdowns in rotating machinery. These failures are extremely costly, particularly in terms of lost production. Roller bearings are widely used in industrial machinery and need to be maintained in good condition to ensure the continuing efficiency, effectiveness, and profitability of the production process. The research presented here is an investigation of the use of acoustic emission (AE) to monitor bearing conditions at low speeds. Many machines, particularly large, expensive machines operate at speeds below 100 rpm, and such machines are important to the industry. However, the overwhelming proportion of studies have investigated the use of AE techniques for condition monitoring of higher-speed machines (typically several hundred rpm, or even higher). Few researchers have investigated the application of these techniques to low-speed machines ( < 100 rpm). This paper addressed this omission and has established which, of the available, AE techniques are suitable for the detection of incipient faults and measurement of fault growth in low-speed bearings. The first objective of this paper program was to assess the applicability of AE techniques to monitor low-speed bearings. It was found that the measured statistical parameters successfully monitored bearing conditions at low speeds (10-100 rpm). The second objective was to identify which commonly used statistical parameters derived from the AE signal (RMS, kurtosis, amplitude and counts) could identify the onset of a fault in the out race. It was found that these parameters effectually identify the presence of a small fault seeded into the outer races. Also, it is concluded that rotational speed has a strong influence on the measured AE parameters but that they are entirely independent of the load under such load and speed conditions.

Keywords: acoustic emission, condition monitoring, NDT, statistical analysis

Procedia PDF Downloads 248
696 Multi-Stage Multi-Period Production Planning in Wire and Cable Industry

Authors: Mahnaz Hosseinzadeh, Shaghayegh Rezaee Amiri

Abstract:

This paper presents a methodology for serial production planning problem in wire and cable manufacturing process that addresses the problem of input-output imbalance in different consecutive stations, hoping to minimize the halt of machines in each stage. To this end, a linear Goal Programming (GP) model is developed, in which four main categories of constraints as per the number of runs per machine, machines’ sequences, acceptable inventories of machines at the end of each period, and the necessity of fulfillment of the customers’ orders are considered. The model is formulated based upon on the real data obtained from IKO TAK Company, an important supplier of wire and cable for oil and gas and automotive industries in Iran. By solving the model in GAMS software the optimal number of runs, end-of-period inventories, and the possible minimum idle time for each machine are calculated. The application of the numerical results in the target company has shown the efficiency of the proposed model and the solution in decreasing the lead time of the end product delivery to the customers by 20%. Accordingly, the developed model could be easily applied in wire and cable companies for the aim of optimal production planning to reduce the halt of machines in manufacturing stages.

Keywords: goal programming approach, GP, production planning, serial manufacturing process, wire and cable industry

Procedia PDF Downloads 160
695 Rotor Radial Vent Pumping in Large Synchronous Electrical Machines

Authors: Darren Camilleri, Robert Rolston

Abstract:

Rotor radial vents make use of the pumping effect to increase airflow through the active material thus reduce hotspot temperatures. The effect of rotor radial pumping in synchronous machines has been studied previously. This paper presents the findings of previous studies and builds upon their theories using a parametric numerical approach to investigate the rotor radial pumping effect. The pressure head generated by the poles and radial vent flow-rate were identified as important factors in maximizing the benefits of the pumping effect. The use of Minitab and ANSYS Workbench to investigate the key performance characteristics of radial pumping through a Design of Experiments (DOE) was described. CFD results were compared with theoretical calculations. A correlation for each response variable was derived through a statistical analysis. Findings confirmed the strong dependence of radial vent length on vent pressure head, and radial vent cross-sectional area was proved to be significant in maximising radial vent flow rate.

Keywords: CFD, cooling, electrical machines, regression analysis

Procedia PDF Downloads 312
694 Prediction of Rotating Machines with Rolling Element Bearings and Its Components Deterioration

Authors: Marimuthu Gurusamy

Abstract:

In vibration analysis (with accelerometers) of rotating machines with rolling element bearing, the customers are interested to know the failure of the machine well in advance to plan the spare inventory and maintenance. But in real world most of the machines fails before the prediction of vibration analyst or Expert analysis software. Presently the prediction of failure is based on ISO 10816 vibration limits only. But this is not enough to monitor the failure of machines well in advance. Because more than 50% of the machines will fail even the vibration readings are within acceptable zone as per ISO 10816.Hence it requires further detail analysis and different techniques to predict the failure well in advance. In vibration Analysis, the velocity spectrum is used to analyse the root cause of the mechanical problems like unbalance, misalignment and looseness etc. The envelope spectrum are used to analyse the bearing frequency components, hence the failure in inner race, outer race and rolling elements are identified. But so far there is no correlation made between these two concepts. The author used both velocity spectrum and Envelope spectrum to analyse the machine behaviour and bearing condition to correlated the changes in dynamic load (by unbalance, misalignment and looseness etc.) and effect of impact on the bearing. Hence we could able to predict the expected life of the machine and bearings in the rotating equipment (with rolling element bearings). Also we used process parameters like temperature, flow and pressure to correlate with flow induced vibration and load variations, when abnormal vibration occurs due to changes in process parameters. Hence by correlation of velocity spectrum, envelope spectrum and process data with 20 years of experience in vibration analysis, the author could able to predict the rotating Equipment and its component’s deterioration and expected duration for maintenance.

Keywords: vibration analysis, velocity spectrum, envelope spectrum, prediction of deterioration

Procedia PDF Downloads 451
693 Metaheuristics to Solve Tasks Scheduling

Authors: Rachid Ziteuni, Selt Omar

Abstract:

In this paper, we propose a new polynomial metaheuristic elaboration (tabu search) for solving scheduling problems. This method allows us to solve the scheduling problem of n tasks on m identical parallel machines with unavailability periods. This problem is NP-complete in the strong sens and finding an optimal solution appears unlikely. Note that all data in this problem are integer and deterministic. The performance criterion to optimize in this problem which we denote Pm/N-c/summs of (wjCj) is the weighted sum of the end dates of tasks.

Keywords: scheduling, parallel identical machines, unavailability periods, metaheuristic, tabu search

Procedia PDF Downloads 330
692 Interfacing and Replication of Electronic Machinery Using MATLAB/SIMULINK

Authors: Abdulatif Abdulsalam, Mohamed Shaban

Abstract:

This paper introduces interfacing and replication of electronic tools based on the MATLAB/ SIMULINK mock-up package. Mock-up components contain dc-dc converters, power issue rectifiers, motivation machines, dc gear, synchronous gear, and more entire systems. Power issue rectifier model includes solid state device models. The tools are the clear-cut structure and mock-up of complex energetic systems connecting with power electronic machines.

Keywords: power electronics, machine, MATLAB, simulink

Procedia PDF Downloads 357
691 Authentication and Legal Admissibility of 'Computer Evidence from Electronic Voting Machines' in Electoral Litigation: A Qualitative Legal Analysis of Judicial Opinions of Appellate Courts in the USA

Authors: Felix O. Omosele

Abstract:

Several studies have established that electronic voting machines are prone to multi-faceted challenges. One of which is their capacity to lose votes after the ballots might have been cast. Therefore, the international consensus appears to favour the use of electronic voting machines that are accompanied with verifiable audit paper audit trail (VVPAT). At present, there is no known study that has evaluated the impacts (or otherwise) of this verification and auditing on the authentication, admissibility and evidential weight of electronically-obtained electoral data. This legal inquiry is important as elections are sometimes won or lost in courts and on the basis of such data. This gap will be filled by the present research work. Using the United States of America as a case study, this paper employed a qualitative legal analysis of several of its appellate courts’ judicial opinions. This analysis equally unearths the necessary statutory rules and regulations that are important to the research problem. The objective of the research is to highlight the roles played by VVPAT on electoral evidence- as seen from the eyes of the court. The preliminary outcome of this qualitative analysis shows that the admissibility and weight attached to ‘Computer Evidence from e-voting machines (CEEM)’ are often treated with general standards applied to other computer-stored evidence. These standards sometimes fail to embrace the peculiar challenges faced by CEEM, particularly with respect to their tabulation and transmission. This paper, therefore, argues that CEEM should be accorded unique consideration by courts. It proposes the development of a legal standard which recognises verification and auditing as ‘weight enhancers’ for electronically-obtained electoral data.

Keywords: admissibility of computer evidence, electronic voting, qualitative legal analysis, voting machines in the USA

Procedia PDF Downloads 196
690 Simulation-Based Validation of Safe Human-Robot-Collaboration

Authors: Titanilla Komenda

Abstract:

Human-machine-collaboration defines a direct interaction between humans and machines to fulfil specific tasks. Those so-called collaborative machines are used without fencing and interact with humans in predefined workspaces. Even though, human-machine-collaboration enables a flexible adaption to variable degrees of freedom, industrial applications are rarely found. The reasons for this are not technical progress but rather limitations in planning processes ensuring safety for operators. Until now, humans and machines were mainly considered separately in the planning process, focusing on ergonomics and system performance respectively. Within human-machine-collaboration, those aspects must not be seen in isolation from each other but rather need to be analysed in interaction. Furthermore, a simulation model is needed that can validate the system performance and ensure the safety for the operator at any given time. Following on from this, a holistic simulation model is presented, enabling a simulative representation of collaborative tasks – including both, humans and machines. The presented model does not only include a geometry and a motion model of interacting humans and machines but also a numerical behaviour model of humans as well as a Boole’s probabilistic sensor model. With this, error scenarios can be simulated by validating system behaviour in unplanned situations. As these models can be defined on the basis of Failure Mode and Effects Analysis as well as probabilities of errors, the implementation in a collaborative model is discussed and evaluated regarding limitations and simulation times. The functionality of the model is shown on industrial applications by comparing simulation results with video data. The analysis shows the impact of considering human factors in the planning process in contrast to only meeting system performance. In this sense, an optimisation function is presented that meets the trade-off between human and machine factors and aids in a successful and safe realisation of collaborative scenarios.

Keywords: human-machine-system, human-robot-collaboration, safety, simulation

Procedia PDF Downloads 361
689 Towards a Simulation Model to Ensure the Availability of Machines in Maintenance Activities

Authors: Maryam Gallab, Hafida Bouloiz, Youness Chater, Mohamed Tkiouat

Abstract:

The aim of this paper is to present a model based on multi-agent systems in order to manage the maintenance activities and to ensure the reliability and availability of machines just with the required resources (operators, tools). The interest of the simulation is to solve the complexity of the system and to find results without cost or wasting time. An implementation of the model is carried out on the AnyLogic platform to display the defined performance indicators.

Keywords: maintenance, complexity, simulation, multi-agent systems, AnyLogic platform

Procedia PDF Downloads 305
688 A Hierarchical Method for Multi-Class Probabilistic Classification Vector Machines

Authors: P. Byrnes, F. A. DiazDelaO

Abstract:

The Support Vector Machine (SVM) has become widely recognised as one of the leading algorithms in machine learning for both regression and binary classification. It expresses predictions in terms of a linear combination of kernel functions, referred to as support vectors. Despite its popularity amongst practitioners, SVM has some limitations, with the most significant being the generation of point prediction as opposed to predictive distributions. Stemming from this issue, a probabilistic model namely, Probabilistic Classification Vector Machines (PCVM), has been proposed which respects the original functional form of SVM whilst also providing a predictive distribution. As physical system designs become more complex, an increasing number of classification tasks involving industrial applications consist of more than two classes. Consequently, this research proposes a framework which allows for the extension of PCVM to a multi class setting. Additionally, the original PCVM framework relies on the use of type II maximum likelihood to provide estimates for both the kernel hyperparameters and model evidence. In a high dimensional multi class setting, however, this approach has been shown to be ineffective due to bad scaling as the number of classes increases. Accordingly, we propose the application of Markov Chain Monte Carlo (MCMC) based methods to provide a posterior distribution over both parameters and hyperparameters. The proposed framework will be validated against current multi class classifiers through synthetic and real life implementations.

Keywords: probabilistic classification vector machines, multi class classification, MCMC, support vector machines

Procedia PDF Downloads 221
687 The Impact of Artificial Intelligence on Agricultural Machines and Plant Nutrition

Authors: Kirolos Gerges Yakoub Gerges

Abstract:

Self-sustaining agricultural machines act in stochastic surroundings and therefore, should be capable of perceive the surroundings in real time. This notion can be done using image sensors blended with superior device learning, mainly Deep mastering. Deep convolutional neural networks excel in labeling and perceiving colour pix and since the fee of RGB-cameras is low, the hardware cost of accurate notion relies upon heavily on memory and computation power. This paper investigates the opportunity of designing lightweight convolutional neural networks for semantic segmentation (pixel clever class) with reduced hardware requirements, to allow for embedded usage in self-reliant agricultural machines. The usage of compression techniques, a lightweight convolutional neural community is designed to carry out actual-time semantic segmentation on an embedded platform. The community is skilled on two big datasets, ImageNet and Pascal Context, to apprehend as much as four hundred man or woman instructions. The 400 training are remapped into agricultural superclasses (e.g. human, animal, sky, road, area, shelterbelt and impediment) and the capacity to provide correct actual-time perception of agricultural environment is studied. The network is carried out to the case of self-sufficient grass mowing the usage of the NVIDIA Tegra X1 embedded platform. Feeding case-unique pics to the community consequences in a fully segmented map of the superclasses within the picture. As the network remains being designed and optimized, handiest a qualitative analysis of the technique is entire on the abstract submission deadline. intending this cut-off date, the finalized layout is quantitatively evaluated on 20 annotated grass mowing pictures. Light-weight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show aggressive performance on the subject of accuracy and speed. It’s miles viable to offer value-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.

Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigationaxial flux machines, axial flux applications, coreless machines, PM machinesautonomous agricultural machines, deep learning, safety, visual perception

Procedia PDF Downloads 26
686 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle

Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel

Abstract:

Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.

Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network

Procedia PDF Downloads 208
685 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines

Procedia PDF Downloads 357
684 Hierarchical Queue-Based Task Scheduling with CloudSim

Authors: Wanqing You, Kai Qian, Ying Qian

Abstract:

The concepts of Cloud Computing provide users with infrastructure, platform and software as service, which make those services more accessible for people via Internet. To better analysis the performance of Cloud Computing provisioning policies as well as resources allocation strategies, a toolkit named CloudSim proposed. With CloudSim, the Cloud Computing environment can be easily constructed by modelling and simulating cloud computing components, such as datacenter, host, and virtual machine. A good scheduling strategy is the key to achieve the load balancing among different machines as well as to improve the utilization of basic resources. Recently, the existing scheduling algorithms may work well in some presumptive cases in a single machine; however they are unable to make the best decision for the unforeseen future. In real world scenario, there would be numbers of tasks as well as several virtual machines working in parallel. Based on the concepts of multi-queue, this paper presents a new scheduling algorithm to schedule tasks with CloudSim by taking into account several parameters, the machines’ capacity, the priority of tasks and the history log.

Keywords: hierarchical queue, load balancing, CloudSim, information technology

Procedia PDF Downloads 421
683 High-Speed Electrical Drives and Applications: A Review

Authors: Vaishnavi Patil, K. M. Kurundkar

Abstract:

Electrical Drives play a vital role in industry development and applications. Drives have an inevitable part in the needs of various fields such as industry, commercial, and domestic applications. The development of material technology, Power Electronics devices, and accompanying applications led to the focus of industry and researchers on high-speed electrical drives. Numerous articles charted the applications of electrical machines and various converters for high-speed applications. The choice depends on the application under study. This paper goals to highlight high-speed applications, main challenges, and some applications of electrical drives in the field.

Keywords: high-speed, electrical machines, drives, applications

Procedia PDF Downloads 68
682 Brief Review of the Self-Tightening, Left-Handed Thread

Authors: Robert S. Giachetti, Emanuele Grossi

Abstract:

Loosening of bolted joints in rotating machines can adversely affect their performance, cause mechanical damage, and lead to injuries. In this paper, two potential loosening phenomena in rotating applications are discussed. First, ‘precession,’ is governed by thread/nut contact forces, while the second is based on inertial effects of the fastened assembly. These mechanisms are reviewed within the context of historical usage of left-handed fasteners in rotating machines which appears absent in the literature and common machine design texts. Historically, to prevent loosening of wheel nuts, vehicle manufacturers have used right-handed and left-handed threads on different sides of the vehicle, but most modern vehicles have abandoned this custom and only use right-handed, tapered lug nuts on all sides of the vehicle. Other classical machines such as the bicycle continue to use different handed threads on each side while other machines such as, bench grinders, circular saws and brush cutters still use left-handed threads to fasten rotating components. Despite the continued use of left-handed fasteners, the rationale and analysis of left-handed threads to mitigate self-loosening of fasteners in rotating applications is not commonly, if at all, discussed in the literature or design textbooks. Without scientific literature to support these design selections, these implementations may be the result of experimental findings or aged institutional knowledge. Based on a review of rotating applications, historical documents and mechanical design references, a formal study of the paradoxical nature of left-handed threads in various applications is merited.

Keywords: rotating machinery, self-loosening fasteners, wheel fastening, vibration loosening

Procedia PDF Downloads 135
681 Use of Improved Genetic Algorithm in Cloud Computing to Reduce Energy Consumption in Migration of Virtual Machines

Authors: Marziyeh Bahrami, Hamed Pahlevan Hsseini, Behnam Ghamami, Arman Alvanpour, Hamed Ezzati, Amir Salar Sadeghi

Abstract:

One of the ways to increase the efficiency of services in the system of agents and, of course, in the world of cloud computing, is to use virtualization techniques. The aim of this research is to create changes in cloud computing services that will reduce as much as possible the energy consumption related to the migration of virtual machines and, in some way, the energy related to the allocation of resources and reduce the amount of pollution. So far, several methods have been proposed to increase the efficiency of cloud computing services in order to save energy in the cloud environment. The method presented in this article tries to prevent energy consumption by data centers and the subsequent production of carbon and biological pollutants as much as possible by increasing the efficiency of cloud computing services. The results show that the proposed algorithm, using the improvement in virtualization techniques and with the help of a genetic algorithm, improves the efficiency of cloud services in the matter of migrating virtual machines and finally saves consumption. becomes energy.

Keywords: consumption reduction, cloud computing, genetic algorithm, live migration, virtual Machine

Procedia PDF Downloads 60
680 A Study on Impact of Scheduled Preventive Maintenance on Overall Self-Life as Well as Reduction of Operational down Time of Critical Oil Field Mobile Equipment

Authors: Dipankar Deka

Abstract:

Exploration and production of Oil & Gas is a very challenging business on which a nation’s energy security depends on. The exploration and Production of hydrocarbon is a very precise and time-bound process. The striking rate of hydrocarbon in a drilled well is so uncertain that the success rate is only 31% in 2021 as per Rigzone. Huge cost is involved in drilling as well as the production of hydrocarbon from a well. Due to this very reason, no one can effort to lose a well because of faulty machines, which increases the non-productive time (NPT). Numerous activities that include manpower and machines synchronized together works in a precise way to complete the full cycle of exploration, rig movement, drilling and production of crude oil. There are several machines, both fixed and mobile, are used in the complete cycle. Most of these machines have a tight schedule of work operating in various drilling sites that are simultaneously being drilled, providing a very narrow window for maintenance. The shutdown of any of these machines for even a small period of time delays the whole project and increases the cost of production of hydrocarbon by manifolds. Moreover, these machines are custom designed exclusively for oil field operations to be only used in Mining Exploration Licensed area (MEL) earmarked by the government and are imported and very costly in nature. The cost of some of these mobile units like Well Logging Units, Coil Tubing units, Nitrogen pumping units etc. that are used for Well stimulation and activation process exceeds more than 1 million USD per unit. So the increase of self-life of these units also generates huge revenues during the extended duration of their services. In this paper we are considering the very critical mobile oil field equipment like Well Logging Unit, Coil Tubing unit, well-killing unit, Nitrogen pumping unit, MOL Oil Field Truck, Hot Oil Circulation Unit etc., and their extensive preventive maintenance in our auto workshop. This paper is the outcome of 10 years of structured automobile maintenance and minute documentation of each associated event that allowed us to perform the comparative study between the new practices of preventive maintenance over the age-old practice of system-based corrective maintenance and its impact on the self-life of the equipment.

Keywords: automobile maintenance, preventive maintenance, symptom based maintenance, workshop technologies

Procedia PDF Downloads 74
679 Solving Nonconvex Economic Load Dispatch Problem Using Particle Swarm Optimization with Time Varying Acceleration Coefficients

Authors: Alireza Alizadeh, Hossein Ghadimi, Oveis Abedinia, Noradin Ghadimi

Abstract:

A Particle Swarm Optimization with Time Varying Acceleration Coefficients (PSO-TVAC) is proposed to determine optimal economic load dispatch (ELD) problem in this paper. The proposed methodology easily takes care of solving non-convex economic load dispatch problems along with different constraints like transmission losses, dynamic operation constraints and prohibited operating zones. The proposed approach has been implemented on the 3-machines 6-bus, IEEE 5-machines 14-bus, IEEE 6-machines 30-bus systems and 13 thermal units power system. The proposed technique is compared to solve the ELD problem with hybrid approach by using the valve-point effect. The comparison results prove the capability of the proposed method giving significant improvements in the generation cost for the economic load dispatch problem.

Keywords: PSO-TVAC, economic load dispatch, non-convex cost function, prohibited operating zone, transmission losses

Procedia PDF Downloads 387
678 Improving Pain Management for Trauma Patients at Two Rwandan Emergency Departments

Authors: Jean Pierre Hagenimana, Paulin Ruhato Banguti, Rebecca Lynn Churchill Anderson, Jean de Dieu Tuyishime, Gaston Nyirigira, Eugene Tuyishime

Abstract:

Background: Little is known regarding the effectiveness of pain protocols and guidelines used in Emergency Departments (ED) in Sub-Saharan Africa (SSA). Therefore, to shed light on this research gap, this study aimed to evaluate the quality of pain management following the implementation of both the WHO pain ladder-based trauma pain management protocol in two Rwandan teaching hospitals. Methods: This was a pre-and post-intervention study. The intervention was a 1-day acute pain course training for ED clinical staff followed by 1 week of mentorship on the use of the WHO pain ladder-based trauma pain management. Results: 261 participants were enrolled in the study (124 before the intervention and 137 after the intervention). The number of patients with undocumented pain scores decreased from 58% to 24% after the intervention (p-value > 0.001), and most patients (62%) had mild pain. In addition, patients who were satisfied with the quality of pain management increased significantly from 42% before the intervention to 80% (p-value > 0.001). Barriers were identified, however, including inadequate training and experience, shortage of staff, and patient’s reluctance to report pain. Conclusion: The implementation of the WHO pain ladder-based trauma pain management protocol significantly improved the quality of pain management in both CHUK and CHUB referral Hospital emergency departments. Despite this, some barriers remain, such as inadequate training and experience, shortage of staff, and patient’s reluctance to report pain. Appropriate interventions should be implemented to address the identified barriers and ensure adequate pain management for patients admitted at the emergency departments in referral hospitals in Rwanda.

Keywords: pain management, trauma, emergency departments, Rwanda

Procedia PDF Downloads 10
677 Challenges for IoT Adoption in India: A Study Based on Foresight Analysis for 2025

Authors: Shruti Chopra, Vikas Rao Vadi

Abstract:

In the era of the digital world, the Internet of Things (IoT) has been receiving significant attention. Its ubiquitous connectivity between humans, machines to machines (M2M) and machines to humans provides it a potential to transform the society and establish an ecosystem to serve new dimensions to the economy of the country. Thereby, this study has attempted to identify the challenges that seem prevalent in IoT adoption in India through the literature survey. Further, the data has been collected by taking the opinions of experts to conduct the foresight analysis and it has been analyzed with the help of scenario planning process – Micmac, Mactor, Multipol, and Smic-Prob. As a methodology, the study has identified the relationship between variables through variable analysis using Micmac and actor analysis using Mactor, this paper has attempted to generate the entire field of possibilities in terms of hypotheses and construct various scenarios through Multipol. And lastly, the findings of the study include final scenarios that are selected using Smic-Prob by assigning the probability to all the scenarios (including the conditional probability). This study may help the practitioners and policymakers to remove the obstacles to successfully implement the IoT in India.

Keywords: Internet of Thing (IoT), foresight analysis, scenario planning, challenges, policymaking

Procedia PDF Downloads 147
676 A Metaheuristic for the Layout and Scheduling Problem in a Job Shop Environment

Authors: Hernández Eva Selene, Reyna Mary Carmen, Rivera Héctor, Barragán Irving

Abstract:

We propose an approach that jointly addresses the layout of a facility and the scheduling of a sequence of jobs. In real production, these two problems are interrelated. However, they are treated separately in the literature. Our approach is an extension of the job shop problem with transportation delay, where the location of the machines is selected among possible sites. The model minimizes the makespan, using the short processing times rule with two algorithms; the first one considers all the permutations for the location of machines, and the second only a heuristic to select some specific permutations that reduces computational time. Some instances are proved and compared with literature.

Keywords: layout problem, job shop scheduling problem, concurrent scheduling and layout problem, metaheuristic

Procedia PDF Downloads 606
675 An Effective Route to Control of the Safety of Accessing and Storing Data in the Cloud-Based Data Base

Authors: Omid Khodabakhshi, Amir Rozdel

Abstract:

The subject of cloud computing security research has allocated a number of challenges and competitions because the data center is comprised of complex private information and are always faced various risks of information disclosure by hacker attacks or internal enemies. Accordingly, the security of virtual machines in the cloud computing infrastructure layer is very important. So far, there are many software solutions to develop security in virtual machines. But using software alone is not enough to solve security problems. The purpose of this article is to examine the challenges and security requirements for accessing and storing data in an insecure cloud environment. In other words, in this article, a structure is proposed for the implementation of highly isolated security-sensitive codes using secure computing hardware in virtual environments. It also allows remote code validation with inputs and outputs. We provide these security features even in situations where the BIOS, the operating system, and even the super-supervisor are infected. To achieve these goals, we will use the hardware support provided by the new Intel and AMD processors, as well as the TPM security chip. In conclusion, the use of these technologies ultimately creates a root of dynamic trust and reduces TCB to security-sensitive codes.

Keywords: code, cloud computing, security, virtual machines

Procedia PDF Downloads 191
674 Characteristics of Double-Stator Inner-Rotor Axial Flux Permanent Magnet Machine with Rotor Eccentricity

Authors: Dawoon Choi, Jian Li, Yunhyun Cho

Abstract:

Axial Flux Permanent Magnet (AFPM) machines have been widely used in various applications due to their important merits, such as compact structure, high efficiency and high torque density. This paper presents one of the most important characteristics in the design process of the AFPM device, which is a recent issue. To design AFPM machine, the predicting electromagnetic forces between the permanent magnets and stator is important. Because of the magnitude of electromagnetic force affects many characteristics such as machine size, noise, vibration, and quality of output power. Theoretically, this force is canceled by the equilibrium of force when it is in the middle of the gap, but it is inevitable to deviate due to manufacturing problems in actual machine. Such as large scale wind generator, because of the huge attractive force between rotor and stator disks, this is more serious in getting large power applications such as large. This paper represents the characteristics of Double-Stator Inner –Rotor AFPM machines when it has rotor eccentricity. And, unbalanced air-gap and inclined air-gap condition which is caused by rotor offset and tilt in a double-stator single inner-rotor AFPM machine are each studied in electromagnetic and mechanical aspects. The output voltage and cogging torque under un-normal air-gap condition of AF machines are firstly calculated using a combined analytical and numerical methods, followed by a structure analysis to study the effect to mechanical stress, deformation and bending forces on bearings. Results and conclusions given in this paper are instructive for the successful development of AFPM machines.

Keywords: axial flux permanent magnet machine, inclined air gap, unbalanced air gap, rotor eccentricity

Procedia PDF Downloads 219
673 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 40
672 Automatic Verification Technology of Virtual Machine Software Patch on IaaS Cloud

Authors: Yoji Yamato

Abstract:

In this paper, we propose an automatic verification technology of software patches for user virtual environments on IaaS Cloud to decrease verification costs of patches. In these days, IaaS services have been spread and many users can customize virtual machines on IaaS Cloud like their own private servers. Regarding to software patches of OS or middleware installed on virtual machines, users need to adopt and verify these patches by themselves. This task increases operation costs of users. Our proposed method replicates user virtual environments, extracts verification test cases for user virtual environments from test case DB, distributes patches to virtual machines on replicated environments and conducts those test cases automatically on replicated environments. We have implemented the proposed method on OpenStack using Jenkins and confirmed the feasibility. Using the implementation, we confirmed the effectiveness of test case creation efforts by our proposed idea of 2-tier abstraction of software functions and test cases. We also evaluated the automatic verification performance of environment replications, test cases extractions and test cases conductions.

Keywords: OpenStack, cloud computing, automatic verification, jenkins

Procedia PDF Downloads 486