Search results for: medical resource cost
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11317

Search results for: medical resource cost

11257 A Review on the Re-Usage of Single-Use Medical Devices

Authors: Lucas B. Naves, Maria José Abreu

Abstract:

Reprocessing single-use device has attracted interesting on the medical environment over the last decades. The reprocessing technique was sought in order to reduce the cost of purchasing the new medical device, which can achieve almost double of the price of the reprocessed product. In this manuscript, we have done a literature review, aiming the reuse of medical device that was firstly designed for single use only, but has become, more and more, effective on its reprocessing procedure. We also show the regulation, the countries which allows this procedure, the classification of these device and also the most important issue concerning the re-utilization of medical device, how to minimizing the risk of gram positive and negative bacteria, avoid cross-contamination, hepatitis B (HBV), and C (HCV) virus, and also human immunodeficiency virus (HIV).

Keywords: reusing, reprocessing, single-use medical device, HIV, hepatitis B and C

Procedia PDF Downloads 392
11256 A Cost Effective Approach to Develop Mid-Size Enterprise Software Adopted the Waterfall Model

Authors: Mohammad Nehal Hasnine, Md Kamrul Hasan Chayon, Md Mobasswer Rahman

Abstract:

Organizational tendencies towards computer-based information processing have been observed noticeably in the third-world countries. Many enterprises are taking major initiatives towards computerized working environment because of massive benefits of computer-based information processing. However, designing and developing information resource management software for small and mid-size enterprises under budget costs and strict deadline is always challenging for software engineers. Therefore, we introduced an approach to design mid-size enterprise software by using the Waterfall model, which is one of the SDLC (Software Development Life Cycles), in a cost effective way. To fulfill research objectives, in this study, we developed mid-sized enterprise software named “BSK Management System” that assists enterprise software clients with information resource management and perform complex organizational tasks. Waterfall model phases have been applied to ensure that all functions, user requirements, strategic goals, and objectives are met. In addition, Rich Picture, Structured English, and Data Dictionary have been implemented and investigated properly in engineering manner. Furthermore, an assessment survey with 20 participants has been conducted to investigate the usability and performance of the proposed software. The survey results indicated that our system featured simple interfaces, easy operation and maintenance, quick processing, and reliable and accurate transactions.

Keywords: end-user application development, enterprise software design, information resource management, usability

Procedia PDF Downloads 438
11255 Construction Time - Cost Trade-Off Analysis Using Fuzzy Set Theory

Authors: V. S. S. Kumar, B. Vikram, G. C. S. Reddy

Abstract:

Time and cost are the two critical objectives of construction project management and are not independent but intricately related. Trade-off between project duration and cost are extensively discussed during project scheduling because of practical relevance. Generally when the project duration is compressed, the project calls for an increase in labor and more productive equipments, which increases the cost. Thus, the construction time-cost optimization is defined as a process to identify suitable construction activities for speeding up to attain the best possible savings in both time and cost. As there is hidden tradeoff relationship between project time and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of compressing the schedule. Different combinations of duration and cost for the activities associated with the project determine the best set in the time-cost optimization. Therefore, the contractors need to select the best combination of time and cost to perform each activity, all of which will ultimately determine the project duration and cost. In this paper, the fuzzy set theory is used to model the uncertainties in the project environment for time-cost trade off analysis.

Keywords: fuzzy sets, uncertainty, qualitative factors, decision making

Procedia PDF Downloads 652
11254 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 58
11253 Improving Waste Recycling and Resource Productivity by Integrating Smart Resource Tracking System

Authors: Atiq Zaman

Abstract:

The high contamination rate in the recycling waste stream is one of the major problems in Australia. In addition, a lack of reliable waste data makes it even more difficult for designing and implementing an effective waste management plan. This article conceptualizes the opportunity to improve resource productivity by integrating smart resource tracking system (SRTS) into the Australian household waste management system. The application of the smart resource tracking system will be implemented through the following ways: (i) mobile application-based resource tracking system used to measure the household’s material flow; (ii) RFID, smart image and weighing system used to track waste generation, recycling and contamination; (iii) informing and motivating manufacturer and retailers to improve their problematic products’ packaging; and (iv) ensure quality and reliable data through open-sourced cloud data for public use. The smart mobile application, imaging, radio-frequency identification (RFID) and weighing technologies are not new, but the very straightforward idea of using these technologies in the household resource consumption, waste bins and collection trucks will open up a new era of accurately measuring and effectively managing our waste. The idea will bring the most urgently needed reliable, data and clarity on household consumption, recycling behaviour and waste management practices in the context of available local infrastructure and policies. Therefore, the findings of this study would be very important for decision makers to improve resource productivity in the waste industry by using smart resource tracking system.

Keywords: smart devices, mobile application, smart sensors, resource tracking, waste management, resource productivity

Procedia PDF Downloads 144
11252 Linking Corporate Entrepreneurship with Human Resources Management Practices

Authors: R. Maalej, I. Amami, S. Saadaoui

Abstract:

Within the growing body of literature on corporate entrepreneurship, there is a need to understand the relationship between human resource management and corporate entrepreneurship. This paper outlines the linkage between human resource management practices with corporate entrepreneurship. In response, we propose a review of the literature that is based on a conceptual reading of corporate entrepreneurship, human resource management practices and the relationship between them.

Keywords: human resource management, human resources management practices, corporate entrepreneurship, entrepreneur

Procedia PDF Downloads 422
11251 Composing Method of Decision-Making Function for Construction Management Using Active 4D/5D/6D Objects

Authors: Hyeon-Seung Kim, Sang-Mi Park, Sun-Ju Han, Leen-Seok Kang

Abstract:

As BIM (Building Information Modeling) application continually expands, the visual simulation techniques used for facility design and construction process information are becoming increasingly advanced and diverse. For building structures, BIM application is design - oriented to utilize 3D objects for conflict management, whereas for civil engineering structures, the usability of nD object - oriented construction stage simulation is important in construction management. Simulations of 5D and 6D objects, for which cost and resources are linked along with process simulation in 4D objects, are commonly used, but they do not provide a decision - making function for process management problems that occur on site because they mostly focus on the visual representation of current status for process information. In this study, an nD CAD system is constructed that facilitates an optimized schedule simulation that minimizes process conflict, a construction duration reduction simulation according to execution progress status, optimized process plan simulation according to project cost change by year, and optimized resource simulation for field resource mobilization capability. Through this system, the usability of conventional simple simulation objects is expanded to the usability of active simulation objects with which decision - making is possible. Furthermore, to close the gap between field process situations and planned 4D process objects, a technique is developed to facilitate a comparative simulation through the coordinated synchronization of an actual video object acquired by an on - site web camera and VR concept 4D object. This synchronization and simulation technique can also be applied to smartphone video objects captured in the field in order to increase the usability of the 4D object. Because yearly project costs change frequently for civil engineering construction, an annual process plan should be recomposed appropriately according to project cost decreases/increases compared with the plan. In the 5D CAD system provided in this study, an active 5D object utilization concept is introduced to perform a simulation in an optimized process planning state by finding a process optimized for the changed project cost without changing the construction duration through a technique such as genetic algorithm. Furthermore, in resource management, an active 6D object utilization function is introduced that can analyze and simulate an optimized process plan within a possible scope of moving resources by considering those resources that can be moved under a given field condition, instead of using a simple resource change simulation by schedule. The introduction of an active BIM function is expected to increase the field utilization of conventional nD objects.

Keywords: 4D, 5D, 6D, active BIM

Procedia PDF Downloads 275
11250 A Prediction of Electrical Cost for High-Rise Building Construction

Authors: Picha Sriprachan

Abstract:

The increase in electricity prices affects the cost of high-rise building construction. The objectives of this research are to study the electrical cost, trend of electrical cost and to forecast electrical cost of high-rise building construction. The methods of this research are: 1) to study electrical payment formats, cost data collection methods, and the factors affecting electrical cost of high-rise building construction, 2) to study the quantity and trend of cumulative percentage of the electrical cost, and 3) to forecast the electrical cost for different types of high-rise buildings. The results of this research show that the average proportion between electrical cost and the value of the construction project is 0.87 percent. The proportion of electrical cost for residential, office and commercial, and hotel buildings are closely proportional. If construction project value increases, the proportion of electrical cost and the value of the construction project will decrease. However, there is a relationship between the amount of electrical cost and the value of the construction project. During the structural construction phase, the amount of electrical cost will increase and during structural and architectural construction phase, electrical cost will be maximum. The cumulative percentage of the electrical cost is related to the cumulative percentage of the high-rise building construction cost in the same direction. The amount of service space of the building, number of floors and the duration of the construction affect the electrical cost of construction. The electrical cost of construction forecasted by using linear regression equation is close to the electrical cost forecasted by using the proportion of electrical cost and value of the project.

Keywords: high-rise building construction, electrical cost, construction phase, architectural phase

Procedia PDF Downloads 390
11249 Cost Overrun Causes in Public Construction Projects in Saudi Arabia

Authors: Ibrahim Mahamid, A. Al-Ghonamy, M. Aichouni

Abstract:

This study is conducted to identify causes of cost deviations in public construction projects in Saudi Arabia from contractors’ perspective. 41 factors that might affect cost estimating accuracy were identified through literature review and discussion with some construction experts. The factors were tabulated in a questionnaire form and a field survey included 51 contractors from the Northern Province of Saudi Arabia was performed. The results show that the top five important causes are: wrong estimation method, long period between design and time of implementation, cost of labor, cost of machinary and absence of construction-cost data.

Keywords: cost deviation, public construction, cost estimating, Saudi Arabia, contractors

Procedia PDF Downloads 475
11248 On Multiobjective Optimization to Improve the Scalability of Fog Application Deployments Using Fogtorch

Authors: Suleiman Aliyu

Abstract:

Integrating IoT applications with Fog systems presents challenges in optimization due to diverse environments and conflicting objectives. This study explores achieving Pareto optimal deployments for Fog-based IoT systems to address growing QoS demands. We introduce Pareto optimality to balance competing performance metrics. Using the FogTorch optimization framework, we propose a hybrid approach (Backtracking search with branch and bound) for scalable IoT deployments. Our research highlights the advantages of Pareto optimality over single-objective methods and emphasizes the role of FogTorch in this context. Initial results show improvements in IoT deployment cost in Fog systems, promoting resource-efficient strategies.

Keywords: pareto optimality, fog application deployment, resource allocation, internet of things

Procedia PDF Downloads 88
11247 Estimating Marine Tidal Power Potential in Kenya

Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema

Abstract:

The rapidly diminishing fossil fuel reserves, their exorbitant cost and the increasingly apparent negative effect of fossil fuels to climate changes is a wake-up call to explore renewable energy. Wind, bio-fuel and solar power have already become staples of Kenyan electricity mix. The potential of electric power generation from marine tidal currents is enormous, with oceans covering more than 70% of the earth. However, attempts to harness marine tidal energy in Kenya, has yet to be studied thoroughly due to its promising, cyclic, reliable and predictable nature and the vast energy contained within it. The high load factors resulting from the fluid properties and the predictable resource characteristics make marine currents particularly attractive for power generation and advantageous when compared to others. Global-level resource assessments and oceanographic literature and data have been compiled in an analysis of the technology-specific requirements for tidal energy technologies and the physical resources. Temporal variations in resource intensity as well as the differences between small-scale applications are considered.

Keywords: tidal power, renewable energy, energy assessment, Kenya

Procedia PDF Downloads 569
11246 Introduction to Multi-Agent Deep Deterministic Policy Gradient

Authors: Xu Jie

Abstract:

As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decisionmaking problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security). By modeling the multi-job collaborative cryptographic service scheduling problem as a multiobjective optimized job flow scheduling problem, and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing, and effectively solves the problem of complex resource scheduling in cryptographic services.

Keywords: multi-agent reinforcement learning, non-stationary dynamics, multi-agent systems, cooperative and competitive agents

Procedia PDF Downloads 23
11245 Opportunity Cost of Producing Sugarcane, Sweet Orange and Soybean in Sri Lankan Context: An Economic Analysis

Authors: Tharsinithevy Kirupananthan

Abstract:

This study analyzed the decision on growing three different crops which suit dry zone of Sri Lanka using the opportunity cost concept in economics. The variable cost of production of sugar cane, sweet orange, and soybean was 112,418.76, 13,463 and 10,928.08 Sri Lankan Rs. (LKR) per acre in the dry zone of Sri Lanka. The yield of the sugar cane, sweet orange, and soybean were 49.33 tons, 25,595 fruits, and 1032 kg per acre. The market price of the sugar cane, sweet orange, and soybean were 4200 LKR/ton, LKR 14.66 per fruit and LKR 89.69 per kg. The market value or the total income of the sugar cane, sweet orange, and soybean were LKR 207194.4, 283090.74, and 92560.08. The accounting profit of the sugar cane, sweet orange, and soybean was 94,775.64, 269,627.74, and 81,632 LKR per acre. Therefore, the opportunity cost of sugarcane per acre in terms of accounting profit was LKR. 269,627.74 from sweet orange and LKR 81,632 from soybean. The highest opportunity cost per acre in terms of accounting profit was found when soybean is produced instead of sweet orange. The opportunity cost which compared among the crops in terms of market value for sugar cane per acre was LKR 283090.74 of sweet orange and LKR 92560.08 of soybean. The highest opportunity cost both in terms of accounting profit and market value was found when growing soybean instead of sweet orange by using the resource per acre of land. The economic profit of sugar cane production in place of sweet orange was LKR -188315.1 per acre. The highest economic profit LKR 177067.66 was found when sweet orange is produced in place of soybean. A positive value of economic profit was found in all combination of sweet orange production without considering the first harvest duration of the crop.

Keywords: agricultural economics, crop, opportunity cost, Sri Lanka

Procedia PDF Downloads 343
11244 Role of Strategic Human Resource Practices and Knowledge Management Capacity

Authors: Ploychompoo Kittikunchotiwut

Abstract:

This study examines the relationships between human resource practices, knowledge management capacity, and innovation performance. The data were collected by using a questionnaire from 241 firms in the hotels in Thailand. The hypothesized relationships among variables are examined by using ordinary least square (OLS) regression analysis. The findings show that human resource practices have a positive effect on knowledge management capacity. Besides, knowledge management capacity was found to positively affect innovation performance. Finally, the limitations of the study and directions for future research are discussed.

Keywords: human resource practices, knowledge management capacity, innovation performance

Procedia PDF Downloads 304
11243 Genetic Algorithm Optimization of Multiple Resources for Multi-Projects

Authors: A. Samer Ezeldin, Sarah A. Fotouh

Abstract:

Optimization of resources is very important in all fields, as in construction management. Project managers have to face problems regarding management of cost, time and available resources of single projects and more problems arise when managing multiple projects. Most of the studies focused on optimization of resources for a single project, but, this paper will discuss the design and modeling of multiple resources optimization for multiple projects using Genetic Algorithm. Most of the companies in construction industry optimize the resources for single projects only, but with the presence of several mega projects in several developing countries running at the same time, there is a need for a model to enhance the efficiency of available resources and decreases the fluctuation as much as possible. The proposed model calculates the cost of each resource, tries to minimize the cost of extra resources as much as possible and generates the schedule of each project within a selected program.

Keywords: construction management, genetic algorithm, multiple projects, multiple resources, optimization

Procedia PDF Downloads 459
11242 Economic Impact and Benefits of Integrating Augmented Reality Technology in the Healthcare Industry: A Systematic Review

Authors: Brenda Thean I. Lim, Safurah Jaafar

Abstract:

Augmented reality (AR) in the healthcare industry has been gaining popularity in recent years, principally in areas of medical education, patient care and digital health solutions. One of the drivers in deciding to invest in AR technology is the potential economic benefits it could bring for patients and healthcare providers, including the pharmaceutical and medical technology sectors. Works of literature have shown that the benefits and impact of AR technologies have left trails of achievements in improving medical education and patient health outcomes. However, little has been published on the economic impact of AR in healthcare, a very resource-intensive industry. This systematic review was performed on studies focused on the benefits and impact of AR in healthcare to appraise if they meet the founded quality criteria so as to identify relevant publications for an in-depth analysis of the economic impact assessment. The literature search was conducted using multiple databases such as PubMed, Cochrane, Science Direct and Nature. Inclusion criteria include research papers on AR implementation in healthcare, from education to diagnosis and treatment. Only papers written in English language were selected. Studies on AR prototypes were excluded. Although there were many articles that have addressed the benefits of AR in the healthcare industry in the area of medical education, treatment and diagnosis and dental medicine, there were very few publications that identified the specific economic impact of technology within the healthcare industry. There were 13 publications included in the analysis based on the inclusion criteria. Out of the 13 studies, none comprised a systematically comprehensive cost impact evaluation. An outline of the cost-effectiveness and cost-benefit framework was made based on an AR article from another industry as a reference. This systematic review found that while the advancements of AR technology is growing rapidly and industries are starting to adopt them into respective sectors, the technology and its advancements in healthcare were still in their early stages. There are still plenty of room for further advancements and integration of AR into different sectors within the healthcare industry. Future studies will require more comprehensive economic analyses and costing evaluations to enable economic decisions for or against implementing AR technology in healthcare. This systematic review concluded that the current literature lacked detailed examination and conduct of economic impact and benefit analyses. Recommendations for future research would be to include details of the initial investment and operational costs for the AR infrastructure in healthcare settings while comparing the intervention to its conventional counterparts or alternatives so as to provide a comprehensive comparison on impact, benefit and cost differences.

Keywords: augmented reality, benefit, economic impact, healthcare, patient care

Procedia PDF Downloads 207
11241 Challenges of Management of Acute Pancreatitis in Low Resource Setting

Authors: Md. Shakhawat Hossain, Jimma Hossain, Md. Naushad Ali

Abstract:

Acute pancreatitis is a dangerous medical emergency in the practice of gastroenterology. Management of acute pancreatitis needs multidisciplinary approach with support starts from emergency to ICU. So, there is a chance of mismanagement in every steps, especially in low resource settings. Other factors such as patient’s financial condition, education, social custom, transport facility, referral system from periphery may also challenge the current guidelines for management. The present study is intended to determine the clinico-pathological profile, severity assessment and challenges of management of acute pancreatitis in a government laid tertiary care hospital to image the real scenario of management in a low resource place. A total 100 patients of acute pancreatitis were studied in this prospective study, held in the Department of Gastroenterology, Rangpur medical college hospital, Bangladesh from July 2017 to July 2018 within one year. Regarding severity, 85 % of the patients were mild, whereas 13 were moderately severe, and 2 had severe acute pancreatitis according to the revised Atlanta criteria. The most common etiologies of acute pancreatitis in our study were gall stone (15%) and biliary sludge (15%), whereas 54% were idiopathic. The most common challenges we faced were delay in hospital admission (59%) and delay in hospital diagnosis (20%). Others are non-adherence of patient party, and lack of investigation facility, physician’s poor knowledge about current guidelines. We were able to give early aggressive fluid to only 18% of patients as per current guideline. Conclusion: Management of acute pancreatitis as per guideline is challenging when optimum facility is lacking. So, modified guidelines for assessment and management of acute pancreatitis should be prepared for low resource setting.

Keywords: acute pancreatitis, challenges of management, severity, prognosis

Procedia PDF Downloads 129
11240 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes

Authors: Frank Kuebler, Rolf Steinhilper

Abstract:

Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.

Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process

Procedia PDF Downloads 524
11239 Resource Efficiency within Current Production

Authors: Sarah Majid Ansari, Serjosha Wulf, Matthias Goerke

Abstract:

In times of global warming and the increasing shortage of resources, sustainable production is becoming more and more inevitable. Companies cannot only heighten their competitiveness but also contribute positively to environmental protection through efficient energy and resource consumption. Regarding this, technical solutions are often preferred during production, although organizational and process-related approaches also offer great potential. This project focuses on reducing resource usage, with a special emphasis on the human factor. It is the aspiration to develop a methodology that systematically implements and embeds suitable and individual measures and methods regarding resource efficiency throughout the entire production. The measures and methods established help employees handle resources and energy more sensitively. With this in mind, this paper also deals with the difficulties that can occur during the sensitization of employees and the implementation of these measures and methods. In addition, recommendations are given on how to avoid such difficulties.

Keywords: implementation, human factors, production plants, resource efficiency

Procedia PDF Downloads 481
11238 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.

Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence

Procedia PDF Downloads 111
11237 Implications of Learning Resource Centre in a Web Environment

Authors: Darshana Lal, Sonu Rana

Abstract:

Learning Resource Centers (LRC) are acquiring different kinds of documents like books, journals, thesis, dissertations, standard, databases etc. in print and e-form. This article deals with the different types of sources available in LRC. It also discusses the concept of the web, as a tool, as a multimedia system and the different interfaces available on the web. The reasons for establishing LRC are highlighted along with the assignments of LRC. Different features of LRC‘S like self-learning and group learning are described. It also implements a group of activities like reading, learning, educational etc. The use of LRC by students and faculties are given and concluded with the benefits.

Keywords: internet, search engine, resource centre, opac, self-learning, group learning

Procedia PDF Downloads 377
11236 Chaotic Dynamics of Cost Overruns in Oil and Gas Megaprojects: A Review

Authors: O. J. Olaniran, P. E. D. Love, D. J. Edwards, O. Olatunji, J. Matthews

Abstract:

Cost overruns are a persistent problem in oil and gas megaprojects. Whilst the extant literature is filled with studies on incidents and causes of cost overruns, underlying theories to explain their emergence in oil and gas megaprojects are few. Yet, a way to contain the syndrome of cost overruns is to understand the bases of ‘how and why’ they occur. Such knowledge will also help to develop pragmatic techniques for better overall management of oil and gas megaprojects. The aim of this paper is to explain the development of cost overruns in hydrocarbon megaprojects through the perspective of chaos theory. The underlying principles of chaos theory and its implications for cost overruns are examined and practical recommendations proposed. In addition, directions for future research in this fertile area provided.

Keywords: chaos theory, oil and gas, cost overruns, megaprojects

Procedia PDF Downloads 559
11235 Identification of Factors Influencing Costs in Green Projects

Authors: Nazirah Zainul Abidin, Nurul Zahirah Mokhtar Azizi

Abstract:

Cost has always been the leading concern in green building development. The perception that construction cost for green building is higher than conventional buildings has only made the discussion of green building cost more difficult. Understanding the factors that will influence the cost of green construction is expected to shed light into what makes green construction more or at par with conventional projects, or perhaps, where cost can be optimised. This paper identifies the elements of cost before shifting the attention to the influencing factors. Findings from past studies uncovered various factors related to cost which are grouped into five focal themes i.e. awareness, knowledge, financial, technical, and government support. A conceptual framework is produced in a form of a flower diagram indicating the cost influencing factors of green building development. These factors were found to be both physical and non-physical aspects of a project. The framework provides ground for the next stage of research that is to further explore how these factors influence the project cost and decision making.

Keywords: green project, factors influencing cost, hard cost, soft cost

Procedia PDF Downloads 345
11234 Examining Relationship between Resource-Curse and Under-Five Mortality in Resource-Rich Countries

Authors: Aytakin Huseynli

Abstract:

The paper reports findings of the study which examined under-five mortality rate among resource-rich countries. Typically when countries obtain wealth citizens gain increased wellbeing. Societies with new wealth create equal opportunities for everyone including vulnerable groups. But scholars claim that this is not the case for developing resource-rich countries and natural resources become the curse for them rather than the blessing. Spillovers from natural resource curse affect the social wellbeing of vulnerable people negatively. They get excluded from the mainstream society, and their situation becomes tangible. In order to test this hypothesis, the study compared under-5 mortality rate among resource-rich countries by using independent sample one-way ANOVA. The data on under-five mortality rate came from the World Bank. The natural resources for this study are oil, gas and minerals. The list of 67 resource-rich countries was taken from Natural Resource Governance Institute. The sample size was categorized and 4 groups were created such as low, low-middle, upper middle and high-income countries based on income classification of the World Bank. Results revealed that there was a significant difference in the scores for low, middle, upper-middle and high-income countries in under-five mortality rate (F(3(29.01)=33.70, p=.000). To find out the difference among income groups, the Games-Howell test was performed and it was found that infant mortality was an issue for low, middle and upper middle countries but not for high-income countries. Results of this study are in agreement with previous research on resource curse and negative effects of resource-based development. Policy implications of the study for social workers, policy makers, academicians and social development specialists are to raise and discuss issues of marginalization and exclusion of vulnerable groups in developing resource-rich countries and suggest interventions for avoiding them.

Keywords: children, natural resource, extractive industries, resource-based development, vulnerable groups

Procedia PDF Downloads 254
11233 Cloud Monitoring and Performance Optimization Ensuring High Availability

Authors: Inayat Ur Rehman, Georgia Sakellari

Abstract:

Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.

Keywords: cloud computing, cloud monitoring, performance optimization, high availability, scalability, resource allocation, load balancing, auto-scaling, data security, data privacy

Procedia PDF Downloads 59
11232 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement

Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti

Abstract:

Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.

Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing

Procedia PDF Downloads 108
11231 An Animation-Based Resource for Screening Emotional and Behavioural Distress in Children Aged 6 to 12

Authors: Zoe Lynch, Kirsty Zieschank

Abstract:

There are several factors that compromise the utility and wide-spread use of existing emotional and behavioural distress screening instruments. Some of these factors include lengthy administration times, high costs, feasibility issues, and a lack of self-report options for children under 12 years of age. This animation-based resource was developed to overcome as many of these factors as possible. Developed for educators and medical and mental health professionals, this resource offers children a self-guided mechanism for reporting any current emotional and behavioural distress. An avatar assistant, selected by the child, accompanies them through each stage of the screening process, offering further instruction if prompted. Children enter their age and gender before viewing comparative animations conveying common childhood emotional and behavioural difficulties. The child then selects the most relatable animations, along with the frequency with which they experience the depicted emotions. From a perspective of intellectual development, an engaging, animated format means that outcomes will not be constrained by children’s reading, writing, cognitive, or verbal expression abilities. Having been user-tested with children aged 6 to 12, this resource shows promising results as a self-guided screening instrument.

Keywords: animation-based screening instrument, mental health, primary-aged children, self-guided

Procedia PDF Downloads 158
11230 Availability Strategy of Medical Information for Telemedicine Services

Authors: Rozo D. Juan Felipe, Ramírez L. Leonardo Juan, Puerta A. Gabriel Alberto

Abstract:

The telemedicine services require correct computing resource management to guarantee productivity and efficiency for medical and non-medical staff. The aim of this study was to examine web management strategies to ensure the availability of resources and services in telemedicine so as to provide medical information management with an accessible strategy. In addition, to evaluate the quality-of-service parameters, the followings were measured: delays, throughput, jitter, latency, available bandwidth, percent of access and denial of services based of web management performance map with profiles permissions and database management. Through 24 different test scenarios, the results show 100% in availability of medical information, in relation to access of medical staff to web services, and quality of service (QoS) of 99% because of network delay and performance of computer network. The findings of this study suggest that the proposed strategy of web management is an ideal solution to guarantee the availability, reliability, and accessibility of medical information. Finally, this strategy offers seven user profile used at telemedicine center of Bogota-Colombia keeping QoS parameters suitable to telemedicine services.

Keywords: availability, medical information, QoS, strategy, telemedicine

Procedia PDF Downloads 205
11229 Impact of Extended Enterprise Resource Planning in the Context of Cloud Computing on Industries and Organizations

Authors: Gholamreza Momenzadeh, Forough Nematolahi

Abstract:

The Extended Enterprise Resource Planning (ERPII) system usually requires massive amounts of storage space, powerful servers, and large upfront and ongoing investments to purchase and manage the software and the related hardware which are not affordable for organizations. In recent decades, organizations prefer to adapt their business structures with new technologies for remaining competitive in the world economy. Therefore, cloud computing (which is one of the tools of information technology (IT)) is a modern system that reveals the next-generation application architecture. Also, cloud computing has had some advantages that reduce costs in many ways such as: lower upfront costs for all computing infrastructure and lower cost of maintaining and supporting. On the other hand, traditional ERPII is not responding for huge amounts of data and relations between the organizations. In this study, based on a literature study, ERPII is investigated in the context of cloud computing where the organizations operate more efficiently. Also, ERPII conditions have a response to needs of organizations in large amounts of data and relations between the organizations.

Keywords: extended enterprise resource planning, cloud computing, business process, enterprise information integration

Procedia PDF Downloads 222
11228 Cross-Layer Design of Event-Triggered Adaptive OFDMA Resource Allocation Protocols with Application to Vehicle Clusters

Authors: Shaban Guma, Naim Bajcinca

Abstract:

We propose an event-triggered algorithm for the solution of a distributed optimization problem by means of the projected subgradient method. Thereby, we invoke an OFDMA resource allocation scheme by applying an event-triggered sensitivity analysis at the access point. The optimal resource assignment of the subcarriers to the involved wireless nodes is carried out by considering the sensitivity analysis of the overall objective function as defined by the control of vehicle clusters with respect to the information exchange between the nodes.

Keywords: consensus, cross-layer, distributed, event-triggered, multi-vehicle, protocol, resource, OFDMA, wireless

Procedia PDF Downloads 331