Search results for: machine vision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3797

Search results for: machine vision

3737 Emotions in Human-Machine Interaction

Authors: Joanna Maj

Abstract:

Awe inspiring is the idea that emotions could be present in human-machine interactions, both on the human side as well as the machine side. Human factors present intriguing components and are examined in detail while discussing this controversial topic. Mood, attention, memory, performance, assessment, causes of emotion, and neurological responses are analyzed as components of the interaction. Problems in computer-based technology, revenge of the system on its users and design, and applications comprise a major part of all descriptions and examples throughout this paper. It also allows for critical thinking while challenging intriguing questions regarding future directions in research, dealing with emotion in human-machine interactions.

Keywords: biocomputing, biomedical engineering, emotions, human-machine interaction, interfaces

Procedia PDF Downloads 131
3736 Examining the Significance of Service Learning in Driving the Purpose of a Rural-Based University in South Africa

Authors: C. Maphosa, Ndileleni Mudzielwana, Lufuno Phillip Netshifhefhe

Abstract:

In line with established mission and vision, a university articulates its focus and purpose of existence. The conduct of business in a university should be for the furtherance of the mission and vision. Teaching and learning should play a pivotal role in driving the purpose of a university. In this paper, the researchers examine how service learning could be significant in driving the purpose of a rural-based university whose focus is to promote rural development. The importance of institutions’ vision and mission statement is explored and the vision and mission of the said university examined closely. The concept rural development and the contribution of a university in its promotion is discussed. Service learning as a teaching and learning approach is examined and its significance in driving the purpose of a rural-based university explained.

Keywords: relevance, differentiation, purpose, teaching, learning

Procedia PDF Downloads 317
3735 Comparison of Instantaneous Short Circuit versus Step DC Voltage to Determine PMG Inductances

Authors: Walter Evaldo Kuchenbecker, Julio Carlos Teixeira

Abstract:

Since efficiency became a challenge to reduce energy consumption of all electrical machines applications, the permanent magnet machine raises up as a better option, because its performance, robustness and simple control. Even though, the electrical machine was developed through analyses of magnetism effect, permanent magnet machines still not well dominated. As permanent magnet machines are becoming popular in most applications, the pressure to standardize this type of electrical machine increases. However, due limited domain, it is still nowadays without any standard to manufacture, test and application. In order to determine an inductance of the machine, a new method is proposed.

Keywords: permanent magnet generators (pmg), synchronous machine parameters, test procedures, inductances

Procedia PDF Downloads 301
3734 Chinese Undergraduates’ Trust in And Usage of Machine Translation: A Survey

Authors: Bi Zhao

Abstract:

Neural network technology has greatly improved the output of machine translation in terms of both fluency and accuracy, which greatly increases its appeal for young users. The present exploratory study aims to find out how the Chinese undergraduates perceive and use machine translation in their daily life. A survey is conducted to collect data from 100 undergraduate students from multiple Chinese universities and with varied academic backgrounds, including arts, business, science, engineering, and medicine. The survey questions inquire about their use (including frequency, scenarios, purposes, and preferences) of and attitudes (including trust, quality assessment, justifications, and ethics) toward machine translation. Interviews and tasks of evaluating machine translation output are also employed in combination with the survey on a sample of selected respondents. The results indicate that Chinese undergraduate students use machine translation on a daily basis for a wide range of purposes in academic, communicative, and entertainment scenarios. Most of them have preferred machine translation tools, but the availability of machine translation tools within a certain scenario, such as the embedded machine translation tool on the webpage, is also the determining factor in their choice. The results also reveal that despite the reportedly limited trust in the accuracy of machine translation output, most students lack the ability to critically analyze and evaluate such output. Furthermore, the evidence is revealed of the inadequate awareness of ethical responsibility as machine translation users among Chinese undergraduate students.

Keywords: Chinese undergraduates, machine translation, trust, usage

Procedia PDF Downloads 138
3733 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process

Authors: Jan Stodt, Christoph Reich

Abstract:

The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.

Keywords: audit, machine learning, assessment, metrics

Procedia PDF Downloads 269
3732 A New and Simple Method of Plotting Binocular Single Vision Field (BSVF) using the Cervical Range of Motion - CROM - Device

Authors: Mihir Kothari, Heena Khan, Vivek Rathod

Abstract:

Assessment of binocular single vision field (BSVF) is traditionally done using a Goldmann perimeter. The measurement of BSVF is important for the management of incomitant strabismus, viz. orbital fractures, thyroid orbitopathy, oculomotor cranial nerve palsies, Duane syndrome etc. In this paper, we describe a new technique for measuring BSVF using a CROM device. Goldmann perimeter is very bulky and expensive (Euro 5000.00 or more) instrument which is 'almost' obsolete from the contemporary ophthalmology practice. Whereas, CROM can be easily made in the DIY (do it yourself) manner for the fraction of the price of the perimeter (only Euro 15.00). Moreover, CROM is useful for the accurate measurement of ocular torticollis vis. nystagmus, paralytic or incomitant squint etc, and it is highly portable.

Keywords: binocular single vision, perimetry, cervical rgen of motion, visual field, binocular single vision field

Procedia PDF Downloads 66
3731 Using Computer Vision and Machine Learning to Improve Facility Design for Healthcare Facility Worker Safety

Authors: Hengameh Hosseini

Abstract:

Design of large healthcare facilities – such as hospitals, multi-service line clinics, and nursing facilities - that can accommodate patients with wide-ranging disabilities is a challenging endeavor and one that is poorly understood among healthcare facility managers, administrators, and executives. An even less-understood extension of this problem is the implications of weakly or insufficiently accommodative design of facilities for healthcare workers in physically-intensive jobs who may also suffer from a range of disabilities and who are therefore at increased risk of workplace accident and injury. Combine this reality with the vast range of facility types, ages, and designs, and the problem of universal accommodation becomes even more daunting and complex. In this study, we focus on the implication of facility design for healthcare workers suffering with low vision who also have physically active jobs. The points of difficulty are myriad and could span health service infrastructure, the equipment used in health facilities, and transport to and from appointments and other services can all pose a barrier to health care if they are inaccessible, less accessible, or even simply less comfortable for people with various disabilities. We conduct a series of surveys and interviews with employees and administrators of 7 facilities of a range of sizes and ownership models in the Northeastern United States and combine that corpus with in-facility observations and data collection to identify five major points of failure common to all the facilities that we concluded could pose safety threats to employees with vision impairments, ranging from very minor to severe. We determine that lack of design empathy is a major commonality among facility management and ownership. We subsequently propose three methods for remedying this lack of empathy-informed design, to remedy the dangers posed to employees: the use of an existing open-sourced Augmented Reality application to simulate the low-vision experience for designers and managers; the use of a machine learning model we develop to automatically infer facility shortcomings from large datasets of recorded patient and employee reviews and feedback; and the use of a computer vision model fine tuned on images of each facility to infer and predict facility features, locations, and workflows, that could again pose meaningful dangers to visually impaired employees of each facility. After conducting a series of real-world comparative experiments with each of these approaches, we conclude that each of these are viable solutions under particular sets of conditions, and finally characterize the range of facility types, workforce composition profiles, and work conditions under which each of these methods would be most apt and successful.

Keywords: artificial intelligence, healthcare workers, facility design, disability, visually impaired, workplace safety

Procedia PDF Downloads 115
3730 Comparison of Different Electrical Machines with Permanent Magnets in the Stator for Use as an Industrial Drive

Authors: Marcel Lehr, Andreas Binder

Abstract:

This paper compares three different permanent magnet synchronous machines (Doubly-Salient-Permanent-Magnet-Machine (DSPM), Flux-Reversal-Permanent-Magnet-Machine (FRPM), Flux-Switching-Permanent-Magnet-Machine (FSPM)) with the permanent magnets in the stator of the machine for use as an industrial drive for 400 V Y, 45 kW and 1000 ... 3000 min-1. The machines are compared based on the magnetic co-energy and Finite-Element-Method-Simulations regarding the torque density. The results show that the FSPM provides the highest torque density of the three machines. Therefore, an FSPM prototype was built, tested on a test bench and finally compared with an already built conventional permanent magnet synchronous machine (PMSM) of the same size (stator outer diameter dso = 314 mm, axial length lFe = 180 mm) and rating with surface-mounted rotor magnets. These measurements show that the conventional PMSM and the FSPM machine are roughly equivalent in their electrical behavior.

Keywords: doubly-salient-permanent-magnet-machine, flux-reversal-permanent-magnet-machine, flux-switching-permanent-magnet-machine, industrial drive

Procedia PDF Downloads 369
3729 Improvement on a CNC Gantry Machine Structure Design for Higher Machining Speed Capability

Authors: Ahmed A. D. Sarhan, S. R. Besharaty, Javad Akbaria, M. Hamdi

Abstract:

The capability of CNC gantry milling machines in manufacturing long components has caused the expanded use of such machines. On the other hand, the machines’ gantry rigidity can reduce under severe loads or vibration during operation. Indeed, the quality of machining is dependent on the machine’s dynamic behavior throughout the operating process. For this reason, this type of machines has always been used prudently and are non efficient. Therefore, they can usually be employed for rough machining and may not produce adequate surface finishing. In this paper, a CNC gantry milling machine with the potential to produce good surface finish has been designed and analyzed. The lowest natural frequency of this machine is 202 Hz at all motion amplitudes with a full range of suitable frequency responses. Meanwhile, the maximum deformation under dead loads for the gantry machine is 0.565µm, indicating that this machine tool is capable of producing higher product quality.

Keywords: frequency response, finite element, gantry machine, gantry design, static and dynamic analysis

Procedia PDF Downloads 356
3728 Evaluation of Quick Covering Machine for Grain Drying Pavement

Authors: Fatima S. Rodriguez, Victorino T. Taylan, Manolito C. Bulaong, Helen F. Gavino, Vitaliana U. Malamug

Abstract:

In sundrying the quality of the grains are greatly reduced when paddy grains were caught by the rain unsacked and unstored resulting to reduced profit. The objectives of this study were to design and fabricate a quick covering machine for grain drying pavement; to test and evaluate the operating characteristics of the machine according to its deployment speed, recovery speed, deployment time, recovery time, power consumption, aesthetics of laminated sack; and to conduct partial budget and cost curve analysis. The machine was able to cover the grains in a 12.8 m x 22.5 m grain drying pavement at an average time of 17.13 s. It consumed 0.53 W-hr for the deployment and recovery of the cover. The machine entailed an investment cost of $1,344.40 and an annual cost charge of $647.32. Moreover, the savings per year using the quick covering machine was $101.83.

Keywords: quick covering machine, grain drying pavement, laminated polypropylene, recovery time

Procedia PDF Downloads 322
3727 Material Choice Driving Sustainability of 3D Printing

Authors: Jeremy Faludi, Zhongyin Hu, Shahd Alrashed, Christopher Braunholz, Suneesh Kaul, Leulekal Kassaye

Abstract:

Environmental impacts of six 3D printers using various materials were compared to determine if material choice drove sustainability, or if other factors such as machine type, machine size, or machine utilization dominate. Cradle-to-grave life-cycle assessments were performed, comparing a commercial-scale FDM machine printing in ABS plastic, a desktop FDM machine printing in ABS, a desktop FDM machine printing in PET and PLA plastics, a polyjet machine printing in its proprietary polymer, an SLA machine printing in its polymer, and an inkjet machine hacked to print in salt and dextrose. All scenarios were scored using ReCiPe Endpoint H methodology to combine multiple impact categories, comparing environmental impacts per part made for several scenarios per machine. Results showed that most printers’ ecological impacts were dominated by electricity use, not materials, and the changes in electricity use due to different plastics was not significant compared to variation from one machine to another. Variation in machine idle time determined impacts per part most strongly. However, material impacts were quite important for the inkjet printer hacked to print in salt: In its optimal scenario, it had up to 1/38th the impacts coreper part as the worst-performing machine in the same scenario. If salt parts were infused with epoxy to make them more physically robust, then much of this advantage disappeared, and material impacts actually dominated or equaled electricity use. Future studies should also measure DMLS and SLS processes / materials.

Keywords: 3D printing, additive manufacturing, sustainability, life-cycle assessment, design for environment

Procedia PDF Downloads 494
3726 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods

Authors: Bandar Alahmadi, Lethia Jackson

Abstract:

Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 338
3725 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study

Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman

Abstract:

Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.

Keywords: artificial neural network, data mining, classification, students’ evaluation

Procedia PDF Downloads 612
3724 Enhancing Precision Agriculture through Object Detection Algorithms: A Study of YOLOv5 and YOLOv8 in Detecting Armillaria spp.

Authors: Christos Chaschatzis, Chrysoula Karaiskou, Pantelis Angelidis, Sotirios K. Goudos, Igor Kotsiuba, Panagiotis Sarigiannidis

Abstract:

Over the past few decades, the rapid growth of the global population has led to the need to increase agricultural production and improve the quality of agricultural goods. There is a growing focus on environmentally eco-friendly solutions, sustainable production, and biologically minimally fertilized products in contemporary society. Precision agriculture has the potential to incorporate a wide range of innovative solutions with the development of machine learning algorithms. YOLOv5 and YOLOv8 are two of the most advanced object detection algorithms capable of accurately recognizing objects in real time. Detecting tree diseases is crucial for improving the food production rate and ensuring sustainability. This research aims to evaluate the efficacy of YOLOv5 and YOLOv8 in detecting the symptoms of Armillaria spp. in sweet cherry trees and determining their health status, with the goal of enhancing the robustness of precision agriculture. Additionally, this study will explore Computer Vision (CV) techniques with machine learning algorithms to improve the detection process’s efficiency.

Keywords: Armillaria spp., machine learning, precision agriculture, smart farming, sweet cherries trees, YOLOv5, YOLOv8

Procedia PDF Downloads 111
3723 An Application of a Machine Monitoring by Using the Internet of Things to Improve a Preventive Maintenance: Case Study of an Automated Plastic Granule-Packing Machine

Authors: Anek Apipatkul, Paphakorn Pitayachaval

Abstract:

Preventive maintenance is a standardized procedure to control and prevent risky problems affecting production in order to increase work efficiency. Machine monitoring also routinely works to collect data for a scheduling maintenance period. This paper is to present the application of machine monitoring by using the internet of things (IOTs) and a lean technique in order to manage with complex maintenance tasks of an automated plastic granule packing machine. To organize the preventive maintenance, there are several processes that the machine monitoring was applied, starting with defining a clear scope of the machine, establishing standards in maintenance work, applying a just-in-time (JIT) technique for timely delivery in the maintenance work, solving problems on the floor, and also improving the inspection process. The result has shown that wasted time was reduced, and machines have been operated as scheduled. Furthermore, the efficiency of the scheduled maintenance period was increased by 95%.

Keywords: internet of things, preventive maintenance, machine monitoring, lean technique

Procedia PDF Downloads 101
3722 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence

Authors: Muhammad Bilal Shaikh

Abstract:

Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.

Keywords: multimodal AI, computer vision, NLP, mineral processing, mining

Procedia PDF Downloads 65
3721 Facilitating Curriculum Access for Pupils with Vision Impairments: An Analysis of the Role of Specialist Teachers in England and Turkey

Authors: Kubra Akbayrak

Abstract:

In parallel with increasing inclusive practice for pupils with vision impairments, the role of specialist teachers who have specialized in the area of vision impairment has dramatically changed in recent years. This study, therefore, aims to provide a holistic perspective towards the distinctive role of specialist teachers of pupils with vision impairments in different educational settings (including mainstream settings, special school settings, etc.) in Turkey and England. Within the scope of the study, semi-structured interviews have been conducted with 17 specialist teachers in Turkey and 14 specialist teachers in England in order to reveal the perception of specialist teachers regarding their roles in different educational settings as well as their perception towards their pre-service training. As this study is a part of an ongoing PhD research, the qualitative data through semi-structured interviews will be analyzed through using Bronfenbrenner’s ecological systems theory as a theoretical framework in order to provide a holistic view regarding the role of specialist teachers particularly in facilitating curriculum access for pupils with vision impairments in England and Turkey. However, the initial findings broadly illustrate that specialist teachers who work in special school settings have different understanding regarding their roles compared to specialist teachers who work in mainstream settings in relation to promoting independence for pupils with vision impairments. The initial findings also imply that specialist teachers in England and Turkey have different perception about their roles in relation to providing specialist advice and guidance for families of pupils. With the completion of the analysis of the study, it is hoped that the findings will provide an insight into the role of specialist teachers in order to provide implication for programmes which prepare specialist teachers of pupils with vision impairments.

Keywords: curriculum access, pupils with vision impairments, specialist teachers, special education

Procedia PDF Downloads 232
3720 Functional Vision of Older People with Cognitive Impairment Living in Galician Nursing Homes

Authors: C. Vázquez, L. M. Gigirey, C. P. del Oro, S. Seoane

Abstract:

Poor vision is common among older people, and several studies show connections between visual impairment and cognitive function. 15 older adult live in Galician Government nursing homes, and cognitive decline is one of the main reasons of admission. Objectives: (1) To evaluate functional far and near vision of older people with cognitive impairment. (2) To determine connections between visual and cognitive state of “our” residents. Methodology: A total of 364 older adults (aged 65 years or more) underwent a visual and cognitive screening. We tested presenting visual acuity (binocular visual acuity with habitual correction if warn) for distance and near vision (E-Snellen, usual working distance for near vision). Binocular presenting visual acuity less than 0.3 was used as cut point for diagnosis of visual impairment. Exclusion criteria included immobilized residents unable to reach the USC Dual Sensory Loss Unit for visual screening. To screen cognition we employed the mini-mental examination test (Spanish version). Analysis of categorical variables was performed using chi-square tests. We utilized Pearson and Spearman correlation tests and the variance analysis to determine differences between groups of interest (SPSS 19.0 version). Results: the percentage of residents with cognitive decline reaches 32.2% Prevalence of visual impairment for distance and near vision increases among those subjects with cognitive impairment respect those with normal cognition. Shift correlation exists between distance visual acuity and mini-mental test (age and sex controlled), and moderate association was found in case of near vision (p<0.01). Conclusion: First results shows that people with cognitive impairment have poor functional distance and near vision than those with normal cognition. Next step will be to analyse the individual contribution of distance and near vision loss on cognition.

Keywords: visual impairment, cognition, aging, nursing homes

Procedia PDF Downloads 428
3719 The Corporate Vision Effect on Rajabhat University Brand Building in Thailand

Authors: Pisit Potjanajaruwit

Abstract:

This study aims to (1) investigate the corporate vision factor influencing Rajabhat University brand building in Thailand and (2) explore influences of brand building upon Rajabhat University stakeholders’ loyalty, and the research method will use mixed methods to conduct qualitative research with the quantitative research. The qualitative will approach by Indebt-interview the executive of Rathanagosin Rajabhat University group for 6 key informants and the quantitative data was collected by questionnaires distributed to stakeholder including instructors, staff, students and parents of the Rathanagosin Rajabhat University group for 400 sampling were selected by multi-stage sampling method. Data was analyzed by Structural Equation Modeling: SEM and also provide the focus group interview for confirming the model. Findings corporate vision had a direct and positive influence on Rajabhat University brand building were showed direct and positive influence on stakeholder’s loyalty and stakeholder’s loyalty was indirectly influenced by corporate vision through Rajabhat University brand building.

Keywords: brand building, corporate vision, Rajabhat University, stakeholder‘s loyalty

Procedia PDF Downloads 215
3718 Floodnet: Classification for Post Flood Scene with a High-Resolution Aerial Imaginary Dataset

Authors: Molakala Mourya Vardhan Reddy, Kandimala Revanth, Koduru Sumanth, Beena B. M.

Abstract:

Emergency response and recovery operations are severely hampered by natural catastrophes, especially floods. Understanding post-flood scenarios is essential to disaster management because it facilitates quick evaluation and decision-making. To this end, we introduce FloodNet, a brand-new high-resolution aerial picture collection created especially for comprehending post-flood scenes. A varied collection of excellent aerial photos taken during and after flood occurrences make up FloodNet, which offers comprehensive representations of flooded landscapes, damaged infrastructure, and changed topographies. The dataset provides a thorough resource for training and assessing computer vision models designed to handle the complexity of post-flood scenarios, including a variety of environmental conditions and geographic regions. Pixel-level semantic segmentation masks are used to label the pictures in FloodNet, allowing for a more detailed examination of flood-related characteristics, including debris, water bodies, and damaged structures. Furthermore, temporal and positional metadata improve the dataset's usefulness for longitudinal research and spatiotemporal analysis. For activities like flood extent mapping, damage assessment, and infrastructure recovery projection, we provide baseline standards and evaluation metrics to promote research and development in the field of post-flood scene comprehension. By integrating FloodNet into machine learning pipelines, it will be easier to create reliable algorithms that will help politicians, urban planners, and first responders make choices both before and after floods. The goal of the FloodNet dataset is to support advances in computer vision, remote sensing, and disaster response technologies by providing a useful resource for researchers. FloodNet helps to create creative solutions for boosting communities' resilience in the face of natural catastrophes by tackling the particular problems presented by post-flood situations.

Keywords: image classification, segmentation, computer vision, nature disaster, unmanned arial vehicle(UAV), machine learning.

Procedia PDF Downloads 76
3717 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.

Keywords: data science, fraud detection, machine learning, supervised learning

Procedia PDF Downloads 194
3716 3D Biomechanics Analysis of Tennis Elbow Factors & Injury Prevention Using Computer Vision and AI

Authors: Aaron Yan

Abstract:

Tennis elbow has been a leading injury and problem among amateur and even professional players. Many factors contribute to tennis elbow. In this research, we apply state of the art sensor-less computer vision and AI technology to study the biomechanics of a player’s tennis movements during training and competition as they relate to the causes of tennis elbow. We provide a framework for the analysis of key biomechanical parameters and their correlations with specific tennis stroke and movements that can lead to tennis elbow or elbow injury. We also devise a method for using AI to automatically detect player’s forms that can lead to tennis elbow development for on-court injury prevention.

Keywords: Tennis Elbow, Computer Vision, AI, 3DAT

Procedia PDF Downloads 45
3715 Size Reduction of Images Using Constraint Optimization Approach for Machine Communications

Authors: Chee Sun Won

Abstract:

This paper presents the size reduction of images for machine-to-machine communications. Here, the salient image regions to be preserved include the image patches of the key-points such as corners and blobs. Based on a saliency image map from the key-points and their image patches, an axis-aligned grid-size optimization is proposed for the reduction of image size. To increase the size-reduction efficiency the aspect ratio constraint is relaxed in the constraint optimization framework. The proposed method yields higher matching accuracy after the size reduction than the conventional content-aware image size-reduction methods.

Keywords: image compression, image matching, key-point detection and description, machine-to-machine communication

Procedia PDF Downloads 417
3714 Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems

Authors: Diego Tancara, Raul Coto, Ariel Norambuena, Hoseein T. Dinani, Felipe Fanchini

Abstract:

Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models.

Keywords: quantum, machine learning, kernel, non-markovianity

Procedia PDF Downloads 178
3713 Analysis of Public Space Usage Characteristics Based on Computer Vision Technology - Taking Shaping Park as an Example

Authors: Guantao Bai

Abstract:

Public space is an indispensable and important component of the urban built environment. How to more accurately evaluate the usage characteristics of public space can help improve its spatial quality. Compared to traditional survey methods, computer vision technology based on deep learning has advantages such as dynamic observation and low cost. This study takes the public space of Shaping Park as an example and, based on deep learning computer vision technology, processes and analyzes the image data of the public space to obtain the spatial usage characteristics and spatiotemporal characteristics of the public space. Research has found that the spontaneous activity time in public spaces is relatively random with a relatively short average activity time, while social activities have a relatively stable activity time with a longer average activity time. Computer vision technology based on deep learning can effectively describe the spatial usage characteristics of the research area, making up for the shortcomings of traditional research methods and providing relevant support for creating a good public space.

Keywords: computer vision, deep learning, public spaces, using features

Procedia PDF Downloads 69
3712 Enabling Non-invasive Diagnosis of Thyroid Nodules with High Specificity and Sensitivity

Authors: Sai Maniveer Adapa, Sai Guptha Perla, Adithya Reddy P.

Abstract:

Thyroid nodules can often be diagnosed with ultrasound imaging, although differentiating between benign and malignant nodules can be challenging for medical professionals. This work suggests a novel approach to increase the precision of thyroid nodule identification by combining machine learning and deep learning. The new approach first extracts information from the ultrasound pictures using a deep learning method known as a convolutional autoencoder. A support vector machine, a type of machine learning model, is then trained using these features. With an accuracy of 92.52%, the support vector machine can differentiate between benign and malignant nodules. This innovative technique may decrease the need for pointless biopsies and increase the accuracy of thyroid nodule detection.

Keywords: thyroid tumor diagnosis, ultrasound images, deep learning, machine learning, convolutional auto-encoder, support vector machine

Procedia PDF Downloads 57
3711 Conceptual Design of a Customer Friendly Variable Volume and Variable Spinning Speed Washing Machine

Authors: C. A. Akaash Emmanuel Raj, V. R. Sanal Kumar

Abstract:

In this paper using smart materials we have proposed a specially manufactured variable volume spin tub for loading clothes for negating the vibration to a certain extent for getting better operating performance. Additionally, we have recommended a variable spinning speed rotor for handling varieties of garments for an efficient washing, aiming for increasing the life span of both the garments and the machine. As a part of the conflicting dynamic constraints and demands of the customer friendly design optimization of a lucrative and cosmetic washing machine we have proposed a drier and a desalination system capable to supply desirable heat and a pleasing fragrance to the garments. We thus concluded that while incorporating variable volume and variable spinning speed tub integrated with a drier and desalination system, the washing machine could meet the varieties of domestic requirements of the customers cost-effectively.

Keywords: customer friendly washing machine, drier design, quick cloth cleaning, variable tub volume washing machine, variable spinning speed washing machine

Procedia PDF Downloads 255
3710 Influence of Peripheral Vision Restrictions on the Walking Trajectory When Texting While Walking

Authors: Macky Kato, Takeshi Sato, Mizuki Nakajima

Abstract:

One major problem related to the use of smartphones is texting while simultaneously engaging in other things, resulting in serious road accidents. Apart from texting while driving being one of the most dangerous behaviors, texting while walking is also dangerous because it narrows the pedestrians’ field of vision. However, many of pedestrian text while walking very habitually. Smartphone users often overlook the potential harm associated with this behavior even while crossing roads. The successful texting while walking make them think that they are safe. The purpose of this study is to reveal of the influence of peripheral vision to the stability of walking trajectory with texting while walking. In total, 9 healthy male university students participated in the experiment. Their mean age was 21.4 years, and standard deviation was 0.7 years. They attempted to walk 10 m in three conditions. First one is the control (CTR) condition, with no phone and no restriction. The second one is the texting while walking (TWG) with no restrictions. The third one is restriction condition (PRS), with phone restricted by experimental peripheral goggles. The horizontal distances (HDS) and directions are measured as the scale of horizontal stability. The longitudinal distances (LDS) between the footprints were measured as the scale of the walking rhythm. The results showed that the HDS of the footprints from the straight line increased as the participants walked in the TWG and PRS conditions. In the PRS condition, this tendency was particularly remarkable. In addition, the LDS between the footprints decreased in the order of the CTR, TWG, and PRS conditions. The ANOVA results showed significant differences in the three conditions with respect to HDS. The differences among these conditions showed that the narrowing of the Pedestrian's vision because of smartphone use influences the walking trajectory and rhythm. It can be said that the pedestrians seem to use their peripheral vision marginally on texting while walking. Therefore, we concluded that the texting while walking narrows the peripheral vision so danger to increase the risk of the accidents.

Keywords: peripheral vision, stability, texting while walking, walking trajectory

Procedia PDF Downloads 257
3709 Essentiality of Core Strategic Vision in Continuous Cost Reduction Management

Authors: Lai Ving Kam

Abstract:

Many markets are maturing, consumer buying powers are weakening and customer preferences change rapidly. To survive, many adopt fast paced continuous cost reduction and competitive pricing to remain relevance. Marketers desire to push for more sales to increase revenues have intensified competitions at time cannibalize the product and market. The amazing technologies changes have created both hope and despair to the industries. The pressure to constantly reduce cost, on the one hand, create and market new products in cheaper prices and shorter life cycles, on the other has become a continuous endeavour. The twin trends appear irreconcilable. Can core strategic vision provides and adapts new directions in continuous cost reduction? This study investigates core strategic vision able to meet this need, for firms to survive and stay profitable. Under current uncertainty market, are firms falling back on their core strategic visions to take them out of the unfavourable positions?

Keywords: core strategy vision, continuous cost reduction, fashionable products industry, competitive pricing

Procedia PDF Downloads 320
3708 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 388