Search results for: walking trajectory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 797

Search results for: walking trajectory

797 Influence of Peripheral Vision Restrictions on the Walking Trajectory When Texting While Walking

Authors: Macky Kato, Takeshi Sato, Mizuki Nakajima

Abstract:

One major problem related to the use of smartphones is texting while simultaneously engaging in other things, resulting in serious road accidents. Apart from texting while driving being one of the most dangerous behaviors, texting while walking is also dangerous because it narrows the pedestrians’ field of vision. However, many of pedestrian text while walking very habitually. Smartphone users often overlook the potential harm associated with this behavior even while crossing roads. The successful texting while walking make them think that they are safe. The purpose of this study is to reveal of the influence of peripheral vision to the stability of walking trajectory with texting while walking. In total, 9 healthy male university students participated in the experiment. Their mean age was 21.4 years, and standard deviation was 0.7 years. They attempted to walk 10 m in three conditions. First one is the control (CTR) condition, with no phone and no restriction. The second one is the texting while walking (TWG) with no restrictions. The third one is restriction condition (PRS), with phone restricted by experimental peripheral goggles. The horizontal distances (HDS) and directions are measured as the scale of horizontal stability. The longitudinal distances (LDS) between the footprints were measured as the scale of the walking rhythm. The results showed that the HDS of the footprints from the straight line increased as the participants walked in the TWG and PRS conditions. In the PRS condition, this tendency was particularly remarkable. In addition, the LDS between the footprints decreased in the order of the CTR, TWG, and PRS conditions. The ANOVA results showed significant differences in the three conditions with respect to HDS. The differences among these conditions showed that the narrowing of the Pedestrian's vision because of smartphone use influences the walking trajectory and rhythm. It can be said that the pedestrians seem to use their peripheral vision marginally on texting while walking. Therefore, we concluded that the texting while walking narrows the peripheral vision so danger to increase the risk of the accidents.

Keywords: peripheral vision, stability, texting while walking, walking trajectory

Procedia PDF Downloads 218
796 Motion Performance Analyses and Trajectory Planning of the Movable Leg-Foot Lander

Authors: Shan Jia, Jinbao Chen, Jinhua Zhou, Jiacheng Qian

Abstract:

In response to the functional limitations of the fixed landers, those are to expand the detection range by the use of wheeled rovers with unavoidable path-repeatability in deep space exploration currently, a movable lander based on the leg-foot walking mechanism is presented. Firstly, a quadruped landing mechanism based on pushrod-damping is proposed. The configuration is of the bionic characteristics such as hip, knee and ankle joints, and the multi-function main/auxiliary buffers based on the crumple-energy absorption and screw-nut mechanism. Secondly, the workspace of the end of the leg-foot mechanism is solved by Monte Carlo method, and the key points on the desired trajectory of the end of the leg-foot mechanism are fitted by cubic spline curve. Finally, an optimal time-jerk trajectory based on weight coefficient is planned and analyzed by an adaptive genetic algorithm (AGA). The simulation results prove the rationality and stability of walking motion of the movable leg-foot lander in the star catalogue. In addition, this research can also provide a technical solution integrating of soft-landing, large-scale inspection and material transfer for future star catalogue exploration, and can even serve as the technical basis for developing the reusable landers.

Keywords: motion performance, trajectory planning, movable, leg-foot lander

Procedia PDF Downloads 102
795 The Application of Rhizophora Wood to Design a Walking Stick for Elderly

Authors: Noppadon Sangwalpetch

Abstract:

The objective of this research is to use Rhizophora wood to design a walking stick for elderly by applying its properties on strength and toughness. The research was conducted by studying the behavior and the type of walking sticks used by 70 elderly aged between 60-80 years in Pragnamdaeng Sub-District, Ampawa District, Samudsongkram Province. Questionnaires were used to collect data which were calculated to find percentage, mean, and standard deviation. The results are as follows: 1) most elderly use walking sticks due to the Osteoarthritis of the knees. 2) Most elderly need to use walking sticks because the walking sticks help to balance their positioning and prevent from stumble. 3) Most elderly agree that Rhizophora wood is suitable to make a walking stick because of its strength and toughness. In addition, it is a local plant which is available and cheap. 4) The design of the walking stick should be fine and practical with comfortable handle and the tip of the stick must not be slippery.

Keywords: rhizophora wood, the design of a walking stick, elderly, visual arts

Procedia PDF Downloads 204
794 Cepstrum Analysis of Human Walking Signal

Authors: Koichi Kurita

Abstract:

In this study, we propose a real-time data collection technique for the detection of human walking motion from the charge generated on the human body. This technique is based on the detection of a sub-picoampere electrostatic induction current, generated by the motion, flowing through the electrode of a wireless portable sensor attached to the subject. An FFT analysis of the wave-forms of the electrostatic induction currents generated by the walking motions showed that the currents generated under normal and restricted walking conditions were different. Moreover, we carried out a cepstrum analysis to detect any differences in the walking style. Results suggest that a slight difference in motion, either due to the individual’s gait or a splinted leg, is directly reflected in the electrostatic induction current generated by the walking motion. The proposed wireless portable sensor enables the detection of even subtle differences in walking motion.

Keywords: human walking motion, motion measurement, current measurement, electrostatic induction

Procedia PDF Downloads 307
793 Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components

Authors: Masahiro Yoneda

Abstract:

The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge.

Keywords: simplified method, human walking vertical force, higher component, pedestrian bridge vibration

Procedia PDF Downloads 401
792 A Review on Robot Trajectory Optimization and Process Validation through off-Line Programming in Virtual Environment Using Robcad

Authors: Ashwini Umale

Abstract:

Trajectory planning and optimization is a fundamental problem in articulated robotics. It is often viewed as a two phase problem of initial feasible path planning around obstacles and subsequent optimization of a trajectory satisfying dynamical constraints. An optimized trajectory of multi-axis robot is important and directly influences the Performance of the executing task. Optimal is defined to be the minimum time to transition from the current speed to the set speed. In optimization of trajectory through virtual environment explores the most suitable way to represent robot motion from virtual environment to real environment. This paper aims to review the research of trajectory optimization in virtual environment using simulation software Robcad. Improvements are to be expected in trajectory optimization to generate smooth and collision free trajectories with minimization of overall robot cycle time.

Keywords: trajectory optimization, forward kinematics and reverse kinematics, dynamic constraints, robcad simulation software

Procedia PDF Downloads 461
791 Factors Influencing Walking in Bandar Baru Bangi, Malaysia

Authors: Zeinab Aliyas

Abstract:

Walking is known as the most common type of physical activity that helps mental and physical health of people. In the recent years, promoting walking activity in neighborhood areas and cities become as one of the important issues in terms of sustainable cities. Therefore the study aimed to investigate the influence of fear of crime and personal barriers as social and personal factor respectively on neighborhood walking. 464 questionnaires in Bandar Baru Bangi in Malaysia was distributed to collect data, and finally, 424 questionnaires were qualified to be used in the study. The Smart-PLS was used to analyze the data. The findings of the study revealed that individual barriers and fear of crime both have significant influence on the level of walking behavior in the neighborhood area. It was found that fear of crime has higher influence on walking behavior in comparison to individual factors. The finding of this study can help urban researcher and planner to know the significant influence of crime safety and individual attitudes on the level of walking activity.

Keywords: fear of crime, neighborhood walking, personal barriers, residential neighborhood

Procedia PDF Downloads 145
790 Exploring the Charm of Chongqing City based on the Regional Characteristics of Mountain Walking Space: A Case Study of Yuzhong Peninsula

Authors: Liu Danping

Abstract:

Walking space has very important historical and cultural value in ancient and even modern urban development. As far as the footpath itself is concerned, it reflects the spatial organization mode and traditional architectural construction characteristics of mountain cities. In terms of the spatial nature of streets, traditional streets contain the history of urban development and the most primitive urban life. The slow walking speed allows people to carefully perceive the space and scenery along the way. The real city life in the streets often makes people feel the cultural connotation and unique charm of the city. According to the regional characteristics of pedestrian traffic in the main urban area of Chongqing, the charm of chongqing is discussed. Based on the study of chongqing characteristic walking space elements, this paper summarizes the characteristics of Chongqing urban walking traffic, analyzes the existing problems of mountain city walking traffic, and takes Yuzhong Peninsula as an example to analyze the charm promotion strategy of urban walking traffic.

Keywords: mountain city, walking space, urban charm, urban renewal, regional culture

Procedia PDF Downloads 59
789 Reduction in the Metabolic Cost of Human Walking Gaits Using Quasi-Passive Upper Body Exoskeleton

Authors: Nafiseh Ebrahimi, Gautham Muthukumaran, Amir Jafari

Abstract:

Human walking gait is considered to be the most efficient biped walking gait. There are various types of gait human follows during locomotion and arm swing is one of the most important factors which controls and differentiates human gaits. Earlier studies declared a 7% reduction in the metabolic cost due to the arm swing. In this research, we compared different types of arm swings in terms of metabolic cost reduction and then suggested, designed, fabricated and tested a quasi-passive upper body exoskeleton to study the metabolic cost reduction in the folded arm walking gate scenarios. Our experimental results validate a 10% reduction in the metabolic cost of walking aided by the application of the proposed exoskeleton.

Keywords: arm swing, MET (metabolic equivalent of a task), calorimeter, oxygen consumption, upper body quasi-passive exoskeleton

Procedia PDF Downloads 120
788 Motion Planning of SCARA Robots for Trajectory Tracking

Authors: Giovanni Incerti

Abstract:

The paper presents a method for a simple and immediate motion planning of a SCARA robot, whose end-effector has to move along a given trajectory; the calculation procedure requires the user to define in analytical form or by points the trajectory to be followed and to assign the curvilinear abscissa as function of the time. On the basis of the geometrical characteristics of the robot, a specifically developed program determines the motion laws of the actuators that enable the robot to generate the required movement; this software can be used in all industrial applications for which a SCARA robot has to be frequently reprogrammed, in order to generate various types of trajectories with different motion times.

Keywords: motion planning, SCARA robot, trajectory tracking, analytical form

Procedia PDF Downloads 279
787 Object Trajectory Extraction by Using Mean of Motion Vectors Form Compressed Video Bitstream

Authors: Ching-Ting Hsu, Wei-Hua Ho, Yi-Chun Chang

Abstract:

Video object tracking is one of the popular research topics in computer graphics area. The trajectory can be applied in security, traffic control, even the sports training. The trajectory for sports training can be utilized to analyze the athlete’s performance without traditional sensors. There are many relevant works which utilize mean shift algorithm with background subtraction. This kind of the schemes should select a kernel function which may affect the accuracy and performance. In this paper, we consider the motion information in the pre-coded bitstream. The proposed algorithm extracts the trajectory by composing the motion vectors from the pre-coded bitstream. We gather the motion vectors from the overlap area of the object and calculate mean of the overlapped motion vectors. We implement and simulate our proposed algorithm in H.264 video codec. The performance is better than relevant works and keeps the accuracy of the object trajectory. The experimental results show that the proposed trajectory extraction can extract trajectory form the pre-coded bitstream in high accuracy and achieve higher performance other relevant works.

Keywords: H.264, video bitstream, video object tracking, sports training

Procedia PDF Downloads 393
786 Non-Contact Human Movement Monitoring Technique for Security Control System Based 2n Electrostatic Induction

Authors: Koichi Kurita

Abstract:

In this study, an effective non-contact technique for the detection of human physical activity is proposed. The technique is based on detecting the electrostatic induction current generated by the walking motion under non-contact and non-attached conditions. A theoretical model for the electrostatic induction current generated because of a change in the electric potential of the human body is proposed. By comparing the obtained electrostatic induction current with the theoretical model, it becomes obvious that this model effectively explains the behavior of the waveform of the electrostatic induction current. The normal walking motions are recorded using a portable sensor measurement located in a passageway of office building. The obtained results show that detailed information regarding physical activity such as a walking cycle can be estimated using our proposed technique. This suggests that the proposed technique which is based on the detection of the walking signal, can be successfully applied to the detection of human walking motion in a secured building.

Keywords: human walking motion, access control, electrostatic induction, alarm monitoring

Procedia PDF Downloads 322
785 Rehabilitative Walking: The Development of a Robotic Walking Training Device Using Functional Electrical Stimulation for Treating Spinal Cord Injuries and Lower-Limb Paralysis

Authors: Chung Hyun Goh, Armin Yazdanshenas, X. Neil Dong, Yong Tai Wang

Abstract:

Physical rehabilitation is a necessary step in regaining lower body function after a partial paralysis caused by a spinal cord injury or a stroke. The purpose of this paper is to present the development and optimization of a training device that accurately recreates the motions in a gait cycle with the goal of rehabilitation for individuals with incomplete spinal cord injuries or who are victims of a stroke. A functional electrical stimulator was used in conjunction with the training device to stimulate muscle groups pertaining to rehabilitative walking. The feasibility and reliability of the design are presented. To validate the design functionality, motion analyses of the knee and ankle gait paths were made using motion capture systems. Key results indicate that the robotic walking training device provides a viable mode of physical rehabilitation.

Keywords: functional electrical stimulation, rehabilitative walking, robotic walking training device, spinal cord injuries

Procedia PDF Downloads 109
784 Pedestrian Behavior at Signalized Intersections in Izmir, Turkey

Authors: Pelin Onelcin, Yalcin Alver

Abstract:

This paper investigates the walking speed and delays of pedestrians at two signalized intersections where the vehicle speed limits are different. Data was collected during afternoon and evening peak hours on November 15, 2013 and on December 6, 2013. Observational surveys were conducted by video recording technique. Pedestrians were categorized according to their gender, group size, stuff carrying condition and age. Results showed that individuals walked fastest when the group size is taken into consideration. The smallest 15th percentile walking speed was seen in the oldest age group (over 60 years old). Pedestrians experienced high delays both at roadsides and at medians. Factors affecting the pedestrian walking speed were analyzed by ANOVA.

Keywords: pedestrian delay, pedestrian walking speed, signalized crosswalk, ANOVA

Procedia PDF Downloads 360
783 Walking Progression in Ambulatory Individuals with Spinal Cord Injury Who Daily Walked with a Walking Device

Authors: Makamas Kumprou, Pipatana Amatachaya, Sugalya Amatachaya, Thiwabhorn Thaweewannakij, Preeda Arayawichanon

Abstract:

Many individuals with spinal cord injury (SCI) need an ambulatory assistive device (AAD) to promote their independence and experience of task-specific walking practice. Without a periodic follow-up for their walking progression, however, many individuals may use the same AAD even though up to 66% of them had the potential to progress walking ability. This may distort their optimal ability and increase the possibility of having negative impacts due to the long-lasting used of an AAD. However, these findings were cross-sectionally collected without data confirmation for the benefit or negative impacts of those who changed the types of AAD used. Therefore, this study prospectively assessed the proportion of ambulatory individuals with SCI who were able to progress their walking ability as determined using a type of AAD, and the changes of their functional ability as well as the incidence of falls over 6 months. Twenty-four subjects with SCI who daily walked with an AAD were involved in the study for 2 visits over 6 months. At the first visit (baseline assessments), the subjects were assessed for their spatiotemporal variables (i.e., cadence, step length, stride length, and step symmetry) and walking ability using the 10-meter walk test (10MWT). Then, they were assessed for the possibility of their walking progression as determined using the ability of walking with the least support AAD with no more than contact guarding assist. Those who were capable of changing an AAD were trained for the ability to walk with a new AAD. Thereafter, all subjects were monthly monitored for incidence of fall over 6 months. At the second visit (after 6 months followed-up), subjects were reassessed for their spatiotemporal variables and 10MWT. The findings indicated that, of all 24 subjects, 8 subjects (33.3%) were able to walk with less support AAD than their usual one. The walking cadence, step length symmetry, and walking ability of these subjects improved significantly greater than those who walked with the same AAD (p < 0.05). Among these subjects, one subject (12.5%) reported fell (3 times) during the follow-up period, whereas 5 subjects (31.3%) who walked with the same AAD experienced at least one fall (range 1 – 16 times). The findings indicated that a large proportion of ambulatory individuals with SCI who daily walked with an AAD could progress their walking ability, whereby their walking ability and safety also significantly improved after they walked with an optimal AAD. The findings suggest the need for a periodic follow-up for an appropriate AAD used for these individuals.

Keywords: walking device, walker, crutches, cane, rehabilitation

Procedia PDF Downloads 93
782 Biomarkers, A Reliable Tool for Delineating Spill Trajectory

Authors: Okpor Victor, Selegha Abrakasa

Abstract:

Oil (Petroleum) spill occur frequently and in this era of a higher degree of awareness, it is pertinent that the trajectory of the spill is properly defined, to make certain of the area of impact by the spill. In this study, biomarkers that are known as the custodians of paleo information in oils are suggested to be used as reliable tools for defining the pathway of a spill. Samples were collected as tills alongside the GPS coordinates of the sample points suspected to have been impacted by a spill. Oils in the samples were extracted and analyzed as whole oil using GC–MS. Some biomarker parametric ratios were derived, and the ratio showed consistency of values along the sample trail from sample 1 to sample 20. The consistency of the values indicates that the oils at each sample point are the same hence the same value. This method can be used to validate the trajectory/pathway of a spill and also to define or establish a suspected pathway for a spill. The Oleanane/C30Hopane ratio showed good consistency and was suggested as a reliable parameter for establishing the trajectory of an oil spill.

Keywords: spill, biomarkers, trajectory, pathway

Procedia PDF Downloads 22
781 Assessing the Walkability and Urban Design Qualities of Campus Streets

Authors: Zhehao Zhang

Abstract:

Walking has become an indispensable and sustainable way of travel for college students in their daily lives; campus street is an important carrier for students to walk and take part in a variety of activities, improving the walkability of campus streets plays an important role in optimizing the quality of campus space environment, promoting the campus walking system and inducing multiple walking behaviors. The purpose of this paper is to explore the effect of campus layout, facility distribution, and location site selection on the walkability of campus streets, and assess the street design qualities from the elements of imageability, enclosure, complexity, transparency, and human scale, and further examines the relationship between street-level urban design perceptual qualities and walkability and its effect on walking behavior in the campus. Taking Tianjin University as the research object, this paper uses the optimized walk score method based on walking frequency, variety, and distance to evaluate the walkability of streets from a macro perspective and measures the urban design qualities in terms of the calculation of street physical environment characteristics, as well as uses behavior annotation and street image data to establish temporal and spatial behavior database to analyze walking activity from the microscopic view. In addition, based on the conclusions, the improvement and design strategy will be presented from the aspects of the built walking environment, street vitality, and walking behavior.

Keywords: walkability, streetscapes, pedestrian activity, walk score

Procedia PDF Downloads 107
780 Iterative Dynamic Programming for 4D Flight Trajectory Optimization

Authors: Kawser Ahmed, K. Bousson, Milca F. Coelho

Abstract:

4D flight trajectory optimization is one of the key ingredients to improve flight efficiency and to enhance the air traffic capacity in the current air traffic management (ATM). The present paper explores the iterative dynamic programming (IDP) as a potential numerical optimization method for 4D flight trajectory optimization. IDP is an iterative version of the Dynamic programming (DP) method. Due to the numerical framework, DP is very suitable to deal with nonlinear discrete dynamic systems. The 4D waypoint representation of the flight trajectory is similar to the discretization by a grid system; thus DP is a natural method to deal with the 4D flight trajectory optimization. However, the computational time and space complexity demanded by the DP is enormous due to the immense number of grid points required to find the optimum, which prevents the use of the DP in many practical high dimension problems. On the other hand, the IDP has shown potentials to deal successfully with high dimension optimal control problems even with a few numbers of grid points at each stage, which reduces the computational effort over the traditional DP approach. Although the IDP has been applied successfully in chemical engineering problems, IDP is yet to be validated in 4D flight trajectory optimization problems. In this paper, the IDP has been successfully used to generate minimum length 4D optimal trajectory avoiding any obstacle in its path, such as a no-fly zone or residential areas when flying in low altitude to reduce noise pollution.

Keywords: 4D waypoint navigation, iterative dynamic programming, obstacle avoidance, trajectory optimization

Procedia PDF Downloads 120
779 Passenger Movement Pattern during Ship Evacuation Considering the Combined Effect of Ship Heeling and Trim

Authors: Jinlu Sun, Shouxiang Lu, Siuming Lo

Abstract:

Large passenger ship, especially luxury cruise, is one of the most prevalent means of marine transportation and tourism nowadays. In case of an accident, an effective evacuation would be the ultimate way to minimize the consequence. Ship heeling and trim has a considerable influence on passenger walking speed and posture during ship evacuation. To investigate passenger movement pattern under the combined effect of ship heeling and trim, a ship corridor simulator was developed. Both fast and freely individual walking experiments by male and female experimental subjects under heeling and trim conditions were conducted and recorded therein. It is found that routes of experimental subjects would change due to the heeling and trim angles, although they always walk along the right side because of cultural factors. Experimental subjects would also change their posture to adapt the combined heeling and trim conditions, such as leaning forward, adopting larger arm swaying, shorter and more frequent steps. While for individual walking speed, the speed would decrease with the increasing heeling and trim angles. But the maximum individual walking speed is achieved at heeling angle of 0° with trim angle ranging from -15° to -5 °, instead of on level ground, which may be attributable to the effect of the gravitational acceleration. Female is approximately 10% slower than male due to the discrepancy in physical quality. Besides, individual walking speed shows similar trends in both fast and freely walking modes, and the speed value in freely walking mode is about 78% of that in fast walking mode under each experimental condition. Furthermore, to designate the movement pattern of passengers in heeling and trim conditions, a model of the walking speed reduction was proposed. This work would provide guidance on the development of evacuation models and the design of evacuation facilities on board.

Keywords: evacuation, heeling, individual walking speed, ship corridor simulator, trim

Procedia PDF Downloads 217
778 Tracking Trajectory of a Cable-Driven Robot for Lower Limb Rehabilitation

Authors: Hachmia Faqihi, Maarouf Saad, Khalid Benjelloun, Mohammed Benbrahim, M. Nabil Kabbaj

Abstract:

This paper investigates and presents a cable-driven robot to lower limb rehabilitation use in sagittal plane. The presented rehabilitation robot is used for a trajectory tracking in joint space. The paper covers kinematic and dynamic analysis, which reveals the tensionability of the used cables as being the actuating source to provide a rehabilitation exercises of the human leg. The desired trajectory is generated to be used in the control system design in joint space. The obtained simulation results is showed to be efficient in this kind of application.

Keywords: cable-driven multi-body system, computed-torque controller, lower limb rehabilitation, tracking trajectory

Procedia PDF Downloads 354
777 Real-Time Path Planning for Unmanned Air Vehicles Using Improved Rapidly-Exploring Random Tree and Iterative Trajectory Optimization

Authors: A. Ramalho, L. Romeiro, R. Ventura, A. Suleman

Abstract:

A real-time path planning framework for Unmanned Air Vehicles, and in particular multi-rotors is proposed. The framework is designed to provide feasible trajectories from the current UAV position to a goal state, taking into account constraints such as obstacle avoidance, problem kinematics, and vehicle limitations such as maximum speed and maximum acceleration. The framework computes feasible paths online, allowing to avoid new, unknown, dynamic obstacles without fully re-computing the trajectory. These features are achieved using an iterative process in which the robot computes and optimizes the trajectory while performing the mission objectives. A first trajectory is computed using a modified Rapidly-Exploring Random Tree (RRT) algorithm, that provides trajectories that respect a maximum curvature constraint. The trajectory optimization is accomplished using the Interior Point Optimizer (IPOPT) as a solver. The framework has proven to be able to compute a trajectory and optimize to a locally optimal with computational efficiency making it feasible for real-time operations.

Keywords: interior point optimization, multi-rotors, online path planning, rapidly exploring random trees, trajectory optimization

Procedia PDF Downloads 104
776 Static vs. Stream Mining Trajectories Similarity Measures

Authors: Musaab Riyadh, Norwati Mustapha, Dina Riyadh

Abstract:

Trajectory similarity can be defined as the cost of transforming one trajectory into another based on certain similarity method. It is the core of numerous mining tasks such as clustering, classification, and indexing. Various approaches have been suggested to measure similarity based on the geometric and dynamic properties of trajectory, the overlapping between trajectory segments, and the confined area between entire trajectories. In this article, an evaluation of these approaches has been done based on computational cost, usage memory, accuracy, and the amount of data which is needed in advance to determine its suitability to stream mining applications. The evaluation results show that the stream mining applications support similarity methods which have low computational cost and memory, single scan on data, and free of mathematical complexity due to the high-speed generation of data.

Keywords: global distance measure, local distance measure, semantic trajectory, spatial dimension, stream data mining

Procedia PDF Downloads 359
775 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm

Authors: Haozhe Xiang

Abstract:

With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.

Keywords: deep learning, graph convolutional network, attention mechanism, LSTM

Procedia PDF Downloads 13
774 Investigation of Riders' Path on Horizontal Curves

Authors: Lemonakis Panagiotis, Eliou Nikos, Karakasidis Theodoros, Botzoris George

Abstract:

It is well known that trajectory along with speed are two of the most important contributing factors in road accidents. Trajectory is meant as the "line“, usually different from the center-line that a driver traverses through horizontal curves which depends on the characteristics of the road environment (especially the curvature), the vehicle and the driver himself. Drivers and especially riders, tend to broaden their paths in order to succeed greater path radiuses and hence, reduce the applied centrifugal force enhancing safety. The objective of the present research is to investigate riders’ path on horizontal curves. Within the context of the research, field measurements were conducted on a rural two lane highway, with the participation of eight riders and the use of an instrumented motorcycle. The research has shown that the trajectory of the riders is correlated to the radius and the length of the horizontal curve as well.

Keywords: trajectory, path, riders, horizontal curves

Procedia PDF Downloads 308
773 Agent-Based Modeling of Pedestrian Corridor Congestion on the Characteristics of Physical Space Form

Authors: Sun Shi, Sun Cheng

Abstract:

The pedestrian corridor is the most crowded area in the public space. The crowded severity has been focused on the field of evacuation strategies of the entrance in large public spaces. The aim of this paper is to analyze the walking efficiency in different spaces of pedestrian corridor with the variation of spatial parameters. The congestion condition caused by the variation of walking efficiency is modeled as well. This study established the space model of the walking corridor by setting the width, slope, turning form and turning angle of the pedestrian corridor. The pedestrian preference of walking mode varied with the difference of the crowded severity, walking speed, field of vision, sight direction and the expected destination, which is influenced by the characters of physical space form. Swarm software is applied to build Agent model. According to the output of the Agent model, the relationship between the pedestrian corridor width, ground slope, turning forms, turning angle and the walking efficiency, crowded severity is acquired. The results of the simulation can be applied to pedestrian corridor design in order to reduce the crowded severity and the potential safety risks caused by crowded people.

Keywords: crowded severity, multi-agent, pedestrian preference, urban space design

Procedia PDF Downloads 182
772 Trajectory Tracking of a 2-Link Mobile Manipulator Using Sliding Mode Control Method

Authors: Abolfazl Mohammadijoo

Abstract:

In this paper, we are investigating the sliding mode control approach for trajectory tracking of a two-link-manipulator with a wheeled mobile robot in its base. The main challenge of this work is the dynamic interaction between mobile base and manipulator, which makes trajectory tracking more difficult than n-link manipulators with a fixed base. Another challenging part of this work is to avoid from chattering phenomenon of sliding mode control that makes lots of damages for actuators in real industrial cases. The results show the effectiveness of the sliding mode control approach for the desired trajectory.

Keywords: mobile manipulator, sliding mode control, dynamic interaction, mobile robotics

Procedia PDF Downloads 146
771 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language

Authors: Daleesha M. Viswanathan, Sumam Mary Idicula

Abstract:

Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.

Keywords: orientation features, discrete feature vector, HMM., Indian sign language

Procedia PDF Downloads 333
770 Trajectory Planning Algorithms for Autonomous Agricultural Vehicles

Authors: Caner Koc, Dilara Gerdan Koc, Mustafa Vatandas

Abstract:

The fundamental components of autonomous agricultural robot design, such as having a working understanding of coordinates, correctly constructing the desired route, and sensing environmental elements, are the most important. A variety of sensors, hardware, and software are employed by agricultural robots to find these systems.These enable the fully automated driving system of an autonomous vehicle to simulate how a human-driven vehicle would respond to changing environmental conditions. To calculate the vehicle's motion trajectory using data from the sensors, this automation system typically consists of a sophisticated software architecture based on object detection and driving decisions. In this study, the software architecture of an autonomous agricultural vehicle is compared to the trajectory planning techniques.

Keywords: agriculture 5.0, computational intelligence, motion planning, trajectory planning

Procedia PDF Downloads 39
769 Effect of Pole Weight on Nordic Walking

Authors: Takeshi Sato, Mizuki Nakajima, Macky Kato, Shoji Igawa

Abstract:

The purpose of study was to investigate the effect of varying pole weights on energy expenditure, upper limb and lower limb muscle activity as Electromyogram during Nordic walking (NW). Four healthy men [age = 22.5 (±1.0) years, body mass = 61.4 (±3.6) kg, height = 170.3 (±4.3) cm] and three healthy women [age = 22.7 (±2.9) years, body mass = 53.0 (±1.7) kg, height = 156.7 (±4.5) cm] participated in the experiments after informed consent. Seven healthy subjects were tested on the treadmill, walking, walking (W) with Nordic Poles (NW) and walking with 1kg weight Nordic Poles (NW+1). Walking speed was 6 km per hours in all trials. Eight EMG activities were recorded by bipolar surface methods in biceps brachii, triceps brachii, trapezius, deltoideus, tibialis anterior, medial gastrocnemius, rectus femoris and biceps femoris muscles. And heart rate (HR), oxygen uptake (VO2), and rate of perceived exertion (RPE) were measured. The level of significance was set at a = 0.05, with p < 0.05 regarded as statistically significant. Our results confirmed that use of NW poles increased HR at a given upper arm muscle activity but decreased lower limb EMGs in comparison with W. Moreover NW was able to increase more step lengths with hip joint extension during NW rather than W. Also, EMG revealed higher activation of upper limb for almost all NW and 1kgNW tests plus added masses compared to W (p < 0.05). Therefore, it was thought either of NW and 1kgNW were to have benefit as a physical exercise for safe, feasible, and readily training for a wide range of aged people in the quality of daily life. However, there was no significant effected in leg muscles activity by using 1kgNW except for upper arm muscle activity during Nordic pole walking.

Keywords: Nordic walking, electromyogram, heart rate, RPE

Procedia PDF Downloads 203
768 Factors That Influence Choice of Walking Mode in Work Trips: Case Study of Rasht, Iran

Authors: Nima Safaei, Arezoo Masoud, Babak Safaei

Abstract:

In recent years, there has been a growing emphasis on the role of urban planning in walking capability and the effects of individual and socioeconomic factors on the physical activity levels of city dwellers. Although considerable number of studies are conducted about walkability and for identifying the effective factors in walking mode choice in developed countries, to our best knowledge, literature lacks in the study of factors affecting choice of walking mode in developing countries. Due to the high importance of health aspects of human societies and in order to make insights and incentives for reducing traffic during rush hours, many researchers and policy makers in the field of transportation planning have devoted much attention to walkability studies; they have tried to improve the effective factors in the choice of walking mode in city neighborhoods. In this study, effective factors in walkability that have proven to have significant impact on the choice of walking mode, are studied at the same time in work trips. The data for the study is collected from the employees in their workplaces by well-instructed people using questionnaires; the statistical population of the study consists of 117 employed people who commute daily from work to home in Rasht city of Iran during the beginning of spring 2015. Results of the study which are found through the linear regression modeling, show that people who do not have freedom of choice for choosing their living locations and need to be present at their workplaces in certain hours have lower levels of walking. Additionally, unlike some of the previous studies which were conducted in developed countries, coincidental effects of Body Mass Index (BMI) and the income level of employees, do not have a significant effect on the walking level in work travels.

Keywords: BMI, linear regression, transportation, walking, work trips

Procedia PDF Downloads 160