Search results for: gene regulation
2780 Human Papillomavirus Type 16 E4 Gene Variation as Risk Factor for Cervical Cancer
Authors: Yudi Zhao, Ziyun Zhou, Yueting Yao, Shuying Dai, Zhiling Yan, Longyu Yang, Chuanyin Li, Li Shi, Yufeng Yao
Abstract:
HPV16 E4 gene plays an important role in viral genome amplification and release. Therefore, a variation of the E4 gene nucleic acid sequence may affect the carcinogenicity of HPV16. In order to understand the relationship between the variation of HPV16 E4 gene and cervical cancer, this study was to amplify and sequence the DNA sequences of E4 genes in 118 HPV16-positive cervical cancer patients and 151 HPV16-positive asymptomatic individuals. After obtaining E4 gene sequences, the phylogenetic trees were constructed by the Neighbor-joining method for gene variation analysis. The results showed that: 1) The distribution of HPV16 variants between the case group and the control group differed greatly (P = 0.015),and the Asian-American(AA)variant was likely to relate to the occurrence of cervical cancer. 2) DNA sequence analysis showed that there were significant differences in the distribution of 8 variants between the case group and the control group (P < 0.05). And 3) In European (EUR) variant, two variations, C3384T (L18L) and A3449G (P39P), were associated with the initiation and development of cervical cancer. The results suggested that the variation of HPV16 E4 gene may be a contributor affecting the occurrence as well as the development of cervical cancer, and different HPV16 variants may have different carcinogenic capability.Keywords: cervical cancer, HPV16, E4 gene, variations
Procedia PDF Downloads 1732779 Evolution of DNA-Binding With-One-Finger Transcriptional Factor Family in Diploid Cotton Gossypium raimondii
Authors: Waqas Shafqat Chattha, Muhammad Iqbal, Amir Shakeel
Abstract:
Transcriptional factors are proteins that play a vital role in regulating the transcription of target genes in different biological processes and are being widely studied in different plant species. In the current era of genomics, plant genomes sequencing has directed to the genome-wide identification, analyses and categorization of diverse transcription factor families and hence provide key insights into their structural as well as functional diversity. The DNA-binding with One Finger (DOF) proteins belongs to C2-C2-type zinc finger protein family. DOF proteins are plant-specific transcription factors implicated in diverse functions including seed maturation and germination, phytohormone signalling, light-mediated gene regulation, cotton-fiber elongation and responses of the plant to biotic as well as abiotic stresses. In this context, a genome-wide in-silico analysis of DOF TF family in diploid cotton species i.e. Gossypium raimondii has enabled us to identify 55 non-redundant genes encoding DOF proteins renamed as GrDofs (Gossypium raimondii Dof). Gene distribution studies have shown that all of the GrDof genes are unevenly distributed across 12 out of 13 G. raimondii chromosomes. The gene structure analysis illustrated that 34 out of 55 GrDof genes are intron-less while remaining 21 genes have a single intron. Protein sequence-based phylogenetic analysis of putative 55 GrDOFs has divided these proteins into 5 major groups with various paralogous gene pairs. Molecular evolutionary studies aided with the conserved domain as well as gene structure analysis suggested that segmental duplications were the principal contributors for the expansion of Dof genes in G. raimondii.Keywords: diploid cotton , G. raimondii, phylogenetic analysis, transcription factor
Procedia PDF Downloads 1502778 Social Support and Self-Regulation on Changes in Exercise Behavior Among Infertile Women: A Cross-Sectional Study to Comparison of External and Internal Factors
Authors: Babak Nemat
Abstract:
Background: Exercise behavior (EB) has a significant impact on infertility, but the magnitude of the effect is not easily determined. The aim of the present study was to assess the effect of social support and self-regulation, as external and internal factors, on changes in exercise behavior among infertile women. Methods: For a cross-sectional study conducted in Sanandaj (Iran) in 2023, we recruited infertile women (n=483) from 35 comprehensive healthcare centers by means of convenience sampling. Standardized face-to-face interviews were conducted using established and reliable instruments for the assessment of EB, social support, and self-regulation. Logistic regression models were applied to assess the association between EB, social support and self-regulation. Results: The majority of the participants (56.7%) had secondary infertility, while 70.8% of them did not perform any exercise. Self-regulation and social support were significantly higher in women with secondary infertility than in those with primary infertility (p < 0.01). Self-regulation was significantly lower in women whose height was below 160 centimeters (cm) (p<0.05). Social support was significantly higher among participants aged ≥ 35 years and weighing ≥ 60 kilograms (kg) (p < 0.01). The odds of EB adoption increased with self-regulation and social support (OR=1.05, 95% CI=1.02-1.09, p <0.01), (OR=1.06, 95% CI=1.02-1.11, p <0.01). Conclusion: Social support and self-regulation almost equally influenced EB in infertile women. Designing support and consultation programs can be considered in encouraging infertile women to exercise in future research.Keywords: social support, regulation, infertility, women
Procedia PDF Downloads 702777 Impact of Ocean Acidification on Gene Expression Dynamics during Development of the Sea Urchin Species Heliocidaris erythrogramma
Authors: Hannah R. Devens, Phillip L. Davidson, Dione Deaker, Kathryn E. Smith, Gregory A. Wray, Maria Byrne
Abstract:
Marine invertebrate species with calcifying larvae are especially vulnerable to ocean acidification (OA) caused by rising atmospheric CO₂ levels. Acidic conditions can delay development, suppress metabolism, and decrease the availability of carbonate ions in the ocean environment for skeletogenesis. These stresses often result in increased larval mortality, which may lead to significant ecological consequences including alterations to the larval settlement, population distribution, and genetic connectivity. Importantly, many of these physiological and developmental effects are caused by genetic and molecular level changes. Although many studies have examined the effect of near-future oceanic pH levels on gene expression in marine invertebrates, little is known about the impact of OA on gene expression in a developmental context. Here, we performed mRNA-sequencing to investigate the impact of environmental acidity on gene expression across three developmental stages in the sea urchin Heliocidaris erythrogramma. We collected RNA from gastrula, early larva, and 1-day post-metamorphic juvenile sea urchins cultured at present-day and predicted future oceanic pH levels (pH 8.1 and 7.7, respectively). We assembled an annotated reference transcriptome encompassing development from egg to ten days post-metamorphosis by combining these data with datasets from two previous developmental transcriptomic studies of H. erythrogramma. Differential gene expression and time course analyses between pH conditions revealed significant alterations to developmental transcription that are potentially associated with pH stress. Consistent with previous investigations, genes involved in biomineralization and ion transport were significantly upregulated under acidic conditions. Differences in gene expression between the two pH conditions became more pronounced post-metamorphosis, suggesting a development-dependent effect of OA on gene expression. Furthermore, many differences in gene expression later in development appeared to be a result of broad downregulation at pH 7.7: of 539 genes differentially expressed at the juvenile stage, 519 of these were lower in the acidic condition. Time course comparisons between pH 8.1 and 7.7 samples also demonstrated over 500 genes were more lowly expressed in pH 7.7 samples throughout development. Of the genes exhibiting stage-dependent expression level changes, over 15% of these diverged from the expected temporal pattern of expression in the acidic condition. Through these analyses, we identify novel candidate genes involved in development, metabolism, and transcriptional regulation that are possibly affected by pH stress. Our results demonstrate that pH stress significantly alters gene expression dynamics throughout development. A large number of genes differentially expressed between pH conditions in juveniles relative to earlier stages may be attributed to the effects of acidity on transcriptional regulation, as a greater proportion of mRNA at this later stage has been nascent transcribed rather than maternally loaded. Also, the overall downregulation of many genes in the acidic condition suggests that OA-induced developmental delay manifests as suppressed mRNA expression, possibly from lower transcription rates or increased mRNA degradation in the acidic environment. Further studies will be necessary to determine in greater detail the extent of OA effects on early developing marine invertebrates.Keywords: development, gene expression, ocean acidification, RNA-sequencing, sea urchins
Procedia PDF Downloads 1692776 Effects of Social Support and Self-Regulation on Changes in Exercise Behavior Among Infertile Women: A Cross-Sectional Study to Comparison of External and Internal Factors
Authors: Arezoo Fallahi
Abstract:
Background: Exercise behavior (EB) has a significant impact on infertility, but the magnitude of the effect is not easily determined. The aim of the present study was to assess the effect of social support and self-regulation, as external and internal factors, on changes in exercise behavior among infertile women. Methods: For a cross-sectional study conducted in Sanandaj (Iran) in 2020, we recruited infertile women (n=483) from 35 comprehensive healthcare centers by means of convenience sampling. Standardized face-to-face interviews were conducted using established and reliable instruments for the assessment of EB, social support, and self-regulation. Logistic regression models were applied to assess the association between EB, social support and self-regulation. Results: The majority of the participants (56.7%) had secondary infertility, while 70.8% of them did not perform any exercise. Self-regulation and social support were significantly higher in women with secondary infertility than in those with primary infertility (p < 0.01). Self-regulation was significantly lower in women whose height was below 160 centimeters (cm) (p<0.05). Social support was significantly higher among participants aged ≥ 35 years and weighing ≥ 60 kilograms (kg) (p < 0.01). The odds of EB adoption increased with self-regulation and social support (OR=1.05, 95% CI=1.02-1.09, p <0.01), (OR=1.06, 95% CI=1.02-1.11, p <0.01). Conclusion: Social support and self-regulation almost equally influenced EB in infertile women. Designing support and consultation programs can be considered in encouraging infertile women to do exercise in future research.Keywords: social support, regulation, infertility, women, exercise
Procedia PDF Downloads 992775 A Systematic Review Emotion Regulation through Music in Children, Adults, and Elderly
Authors: Fabiana Ribeiro, Ana Moreno, Antonio Oliveira, Patricia Oliveira-Silva
Abstract:
Music is present in our daily lives, and to our knowledge music is often used to change the emotions in the listeners. For this reason, the objective of this study was to explore and synthesize results examining the use and effects of music on emotion regulation in children, adults, and elderly, and clarify if the music is effective across ages to promote emotion regulation. A literature search was conducted using ISI Web of Knowledge, Pubmed, PsycINFO, and Scopus, inclusion criteria comprised children, adolescents, young, and old adults, including health population. Articles applying musical intervention, specifically musical listening, and assessing the emotion regulation directly through reports or neurophysiological measures were included in this review. Results showed age differences in the function of musical listening; initially, adolescents revealed age increments in emotional listening compared to children, and young adults in comparison to older adults, in which the first use music aiming to emotion regulation and social connection, while older adults also utilize music as emotion regulation searching for personal growth. Moreover, some of the studies showed that personal characteristics also would determine the efficiency of the emotion regulation strategy. In conclusion, it was observed that music could beneficiate all ages investigated, however, this review detected a necessity to develop adequate paradigms to explore the use of music for emotion regulation.Keywords: music, emotion, regulation, musical listening
Procedia PDF Downloads 1762774 Effect of Hypoxia on AOX2 Expression in Chlamydomonas reinhardtii
Authors: Maria Ostroukhova, Zhanneta Zalutskaya, Elena Ermilova
Abstract:
The alternative oxidase (AOX) mediates cyanide-resistant respiration, which bypasses proton-pumping complexes III and IV of the cytochrome pathway to directly transfer electrons from reduced ubiquinone to molecular oxygen. In Chlamydomonas reinhardtii, AOX is a monomeric protein that is encoded by two genes of discrete subfamilies, AOX1 and AOX2. Although AOX has been proposed to play essential roles in stress tolerance of organisms, the role of subfamily AOX2 is largely unknown. In C. reinhardtii, AOX2 was initially identified as one of constitutively low expressed genes. Like other photosynthetic organisms C. reinhardtii cells frequently experience periods of hypoxia. To examine AOX2 transcriptional regulation and role of AOX2 in hypoxia adaptation, real-time PCR analysis and artificial microRNA method were employed. Two experimental approaches have been used to induce the anoxic conditions: dark-anaerobic and light-anaerobic conditions. C. reinhardtii cells exposed to the oxygen deprivation have shown increased AOX2 mRNA levels. By contrast, AOX1 was not an anoxia-responsive gene. In C. reinhardtii, a subset of genes is regulated by transcription factor CRR1 in anaerobic conditions. Notable, the AOX2 promoter region contains the potential motif for CRR1 binding. Therefore, the role of CRR1 in the control of AOX2 transcription was tested. The CRR1-underexpressing strains, that were generated and characterized in this work, exhibited low levels of AOX2 transcripts under anoxic conditions. However, the transformants still slightly induced AOX2 gene expression in the darkness. These confirmed our suggestions that darkness is a regulatory stimulus for AOX genes in C. reinhardtii. Thus, other factors must contribute to AOX2 promoter activity under dark-anoxic conditions. Moreover, knock-down of CRR1 caused a complete reduction of AOX2 expression under light-anoxic conditions. These results indicate that (1) CRR1 is required for AOX2 expression during hypoxia, and (2) AOX2 gene is regulated by CRR1 together with yet-unknown regulatory factor(s). In addition, the AOX2-underexpressing strains were generated. The analysis of amiRNA-AOX2 strains suggested a role of this alternative oxidase in hypoxia adaptation of the alga. In conclusion, the results reported here show that C. reinhardtii AOX2 gene is stress inducible. CRR1 transcriptional factor is involved in the regulation of the AOX2 gene expression in the absence of oxygen. Moreover, AOX2 but not AOX1 functions under oxygen deprivation. This work was supported by Russian Science Foundation (research grant № 16-14-10004).Keywords: alternative oxidase 2, artificial microRNA approach, chlamydomonas reinhardtii, hypoxia
Procedia PDF Downloads 2432773 Correlation between Polysaccharides Molecular Weight Changes and Pectinases Gene Expression during Papaya Ripening
Authors: Samira B. R. Prado, Paulo R. Melfi, Beatriz T. Minguzzi, João P. Fabi
Abstract:
Fruit softening is the main change that occurs during papaya (Carica papaya L.) ripening. It is characterized by the depolymerization of cell wall polysaccharides, especially the pectic fractions, which causes cell wall disassembling. However, it is uncertain how the modification of the two main pectin polysaccharides fractions (water-soluble – WSF, and oxalate-soluble fractions - OSF) accounts for fruit softening. The aim of this work was to correlate molecular weight changes of WSF and OSF with the gene expression of pectin-solubilizing enzymes (pectinases) during papaya ripening. Papaya fruits obtained from a producer were harvest and storage under specific conditions. The fruits were divided in five groups according to days after harvesting. Cell walls from all groups of papaya pulp were isolated and fractionated (WSF and OSF). Expression profiles of pectinase genes were achieved according to the MIQE guidelines (Minimum Information for publication of Quantitative real-time PCR Experiments). The results showed an increased yield and a decreased molecular weight throughout ripening for WSF and OSF. Gene expression data support that papaya softening is achieved by polygalacturonases (PGs) up-regulation, in which their actions might have been facilitated by the constant action of pectinesterases (PMEs). Moreover, BGAL1 gene was up-regulated during ripening with a simultaneous galactose release, suggesting that galactosidases (GALs) could also account for pulp softening. The data suggest that a solubilization of galacturonans and a depolymerization of cell wall components were caused mainly by the action of PGs and GALs.Keywords: carica papaya, fruit ripening, galactosidases, plant cell wall, polygalacturonases
Procedia PDF Downloads 4252772 Evaluation of the Spatial Regulation of Hydrogen Sulphide Producing Enzymes in the Placenta during Labour
Authors: F. Saleh, F. Lyall, A. Abdulsid, L. Marks
Abstract:
Background: Labour in human is a complex biological process that involves interactions of neurological, hormonal and inflammatory pathways, with the placenta being a key regulator of these pathways. It is known that uterine contractions and labour pain cause physiological changes in gene expression in maternal and fetal blood, and in placenta during labour. Oxidative and inflammatory stress pathways are implicated in labour and they may cause alteration of placental gene expression. Additionally, in placental tissues, labour increases the expression of genes involved in placental oxidative stress, inflammatory cytokines, angiogenic regulators and apoptosis. Recently, Hydrogen Sulphide (H2S) has been considered as an endogenous gaseous mediator which promotes vasodilation and exhibits cytoprotective anti-inflammatory properties. The endogenous H2S is synthesised predominantly by two enzymes: cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). As the H2S pathway has anti-oxidative and anti-inflammatory characteristics thus, we hypothesised that the expression of CBS and CSE in placental tissues would alter during labour. Methods: CBS and CSE expressions were examined in placentas using western blotting and RT-PCR in inner, middle and outer placental zones in placentas obtained from healthy non labouring women who delivered by caesarian section. These were compared with the equivalent zone of placentas obtained from women who had uncomplicated labour and delivered vaginally. Results: No differences in CBS and CSE mRNA or protein levels were found between the different sites within placentas in either the labour or non-labour group. There were no significant differences in either CBS or CSE expression between the two groups at the inner site and middle site. However, at the outer site there was a highly significant decrease in CBS protein expression in the labour group when compared to the non-labour group (p = 0.002). Conclusion: To the best of author’s knowledge, this is the first report to suggest that, CBS is expressed in a spatial manner within the human placenta. Further work is needed to clarify the precise function and mechanism of this spatial regulation although it is likely that inflammatory pathways regulation is a complex process in which this plays a role.Keywords: anti-inflammatory, hydrogen sulphide, labour, oxidative stress
Procedia PDF Downloads 2452771 Analysis of OPG Gene Polymorphism T245G (rs3134069) in Slovak Postmenopausal Women
Authors: I. Boroňová, J. Bernasovská, J. Kľoc, Z. Tomková, E. Petrejčíková, S. Mačeková, J. Poráčová, M. M. Blaščáková
Abstract:
Osteoporosis is a common multifactorial disease with a strong genetic component characterized by reduced bone mass and increased risk of fractures. Genetic factors play an important role in the pathogenesis of osteoporosis. The aim of our study was to identify the genotype and allele distribution of T245G polymorphism in OPG gene in Slovak postmenopausal women. A total of 200 unrelated Slovak postmenopausal women with diagnosed osteoporosis and 200 normal controls were genotyped for T245G (rs3134069) polymorphism of OPG gene. Genotyping was performed using the Custom Taqman®SNP Genotyping assays. Genotypes and alleles frequencies showed no significant differences (p=0.5551; p=0.6022). The results of the present study confirm the importance of T245G polymorphism in OPG gene in the pathogenesis of osteoporosis.Keywords: OPG gene, T245G polymorphism, osteoporosis, T245G polymorphism, real-time PCR
Procedia PDF Downloads 4142770 Construction of a Fusion Gene Carrying E10A and K5 with 2A Peptide-Linked by Using Overlap Extension PCR
Authors: Tiancheng Lan
Abstract:
E10A is a kind of replication-defective adenovirus which carries the human endostatin gene to inhibit the growth of tumors. Kringle 5(K5) has almost the same function as angiostatin to also inhibit the growth of tumors since they are all the byproduct of the proteolytic cleavage of plasminogen. Tumor size increasing can be suppressed because both of the endostatin and K5 can restrain the angiogenesis process. Therefore, in order to improve the treatment effect on tumor, 2A peptide is used to construct a fusion gene carrying both E10A and K5. Using 2A peptide is an ideal strategy when a fusion gene is expressed because it can avoid many problems during the expression of more than one kind of protein. The overlap extension PCR is also used to connect 2A peptide with E10A and K5. The final construction of fusion gene E10A-2A-K5 can provide a possible new method of the anti-angiogenesis treatment with a better expression performance.Keywords: E10A, Kringle 5, 2A peptide, overlap extension PCR
Procedia PDF Downloads 1542769 SCANet: A Workflow for Single-Cell Co-Expression Based Analysis
Authors: Mhaned Oubounyt, Jan Baumbach
Abstract:
Differences in co-expression networks between two or multiple cells (sub)types across conditions is a pressing problem in single-cell RNA sequencing (scRNA-seq). A key challenge is to define those co-variations that differ between or among cell types and/or conditions and phenotypes to examine small regulatory networks that can explain mechanistic differences. To this end, we developed SCANet, an all-in-one Python package that uses state-of-the-art algorithms to facilitate the workflow of a combined single-cell GCN (Gene Correlation Network) and GRN (Gene Regulatory Networks) pipeline, including inference of gene co-expression modules from scRNA-seq, followed by trait and cell type associations, hub gene detection, co-regulatory networks, and drug-gene interactions. In an example case, we illustrate how SCANet can be applied to identify regulatory drivers behind a cytokine storm associated with mortality in patients with acute respiratory illness. SCANet is available as a free, open-source, and user-friendly Python package that can be easily integrated into systems biology pipelines.Keywords: single-cell, co-expression networks, drug-gene interactions, co-regulatory networks
Procedia PDF Downloads 1592768 A C/T Polymorphism at the 5’ Untranslated Region of CD40 Gene in Patients Associated with Graves’ Disease in Kumaon Region
Authors: Sanjeev Kumar Shukla, Govind Singh, Prabhat Pant Shahzad Ahmad
Abstract:
Background: Graves’ disease is an autoimmune disorder with a genetic predisposition, and CD40 plays a pathogenic role in various autoimmune diseases. A single nucleotide polymorphism at position –1 of the Kozak sequence of the 5 untranslated regions of the CD40 gene of exon 1 has been reported to be associated with the development of Graves’ Disease. Objective: The aim of the present study was to investigate whether CD40 gene polymorphism confers susceptibility to Graves’ disease in the Kumaon region. CD40 gene polymorphisms were studied in Graves’ Disease patients (n=50) and healthy control subjects without anti-thyroid autoantibodies or a family history of autoimmune disorders (n=50). Material and Method: CD40 gene polymorphisms were studied in fifty Graves’ Disease patients and fifty healthy control subjects. All samples were collected from STG Hospital, Haldwani, Nainital. A C/T polymorphism at position –1 of the CD40 gene was measured using the polymerase chain reaction-restriction fragment length polymorphism. Results: There was no significant difference in allele or genotype frequency of the CD40 SNP between Graves’ Disease and control subjects. There was a significant decrease in the TT genotype frequency in the Graves’ Disease patients who developed Graves’ Disease after 40 years old than those under 40 years of age. These data suggest that the SNP of the CD40 gene is associated with susceptibility to the later onset of Graves’ Disease. Conclusion: The CD40 gene was a different susceptibility gene for Graves’ Disease within certain families because it was both linked and associated with Graves’ Disease.Keywords: autoimmune diseases, pathogenesis, diagnosis, therapy
Procedia PDF Downloads 582767 Dys-Regulation of Immune and Inflammatory Response in in vitro Fertilization Implantation Failure Patients under Ovarian Stimulation
Authors: Amruta D. S. Pathare, Indira Hinduja, Kusum Zaveri
Abstract:
Implantation failure (IF) even after the good-quality embryo transfer (ET) in the physiologically normal endometrium is the main obstacle in in vitro fertilization (IVF). Various microarray studies have been performed worldwide to elucidate the genes requisite for endometrial receptivity. These studies have included the population based on different phases of menstrual cycle during natural cycle and stimulated cycle in normal fertile women. Additionally, the literature is also available in recurrent implantation failure patients versus oocyte donors in natural cycle. However, for the first time, we aim to study the genomics of endometrial receptivity in IF patients under controlled ovarian stimulation (COS) during which ET is generally practised in IVF. Endometrial gene expression profiling in IF patients (n=10) and oocyte donors (n=8) were compared during window of implantation under COS by whole genome microarray (using Illumina platform). Enrichment analysis of microarray data was performed to determine dys-regulated biological functions and pathways using Database for Annotation, Visualization and Integrated Discovery, v6.8 (DAVID). The enrichment mapping was performed with the help of Cytoscape software. Microarray results were validated by real-time PCR. Localization of genes related to immune response (Progestagen-Associated Endometrial Protein (PAEP), Leukaemia Inhibitory Factor (LIF), Interleukin-6 Signal Transducer (IL6ST) was detected by immunohistochemistry. The study revealed 418 genes downregulated and 519 genes upregulated in IF patients compared to healthy fertile controls. The gene ontology, pathway analysis and enrichment mapping revealed significant downregulation in activation and regulation of immune and inflammation response in IF patients under COS. The lower expression of Progestagen Associated Endometrial Protein (PAEP), Leukemia Inhibitory Factor (LIF) and Interleukin 6 Signal Transducer (IL6ST) in cases compared to controls by real time and immunohistochemistry suggests the functional importance of these genes. The study was proved useful to uncover the probable reason of implantation failure being imbalance of immune and inflammatory regulation in our group of subjects. Based on the present study findings, a panel of significant dysregulated genes related to immune and inflammatory pathways needs to be further substantiated in larger cohort in natural as well as stimulated cycle. Upon which these genes could be screened in IF patients during window of implantation (WOI) before going for embryo transfer or any other immunological treatment. This would help to estimate the regulation of specific immune response during WOI in a patient. The appropriate treatment of either activation of immune response or suppression of immune response can be then attempted in IF patients to enhance the receptivity of endometrium.Keywords: endometrial receptivity, immune and inflammatory response, gene expression microarray, window of implantation
Procedia PDF Downloads 1592766 Self-Regulation in Composition Writing: The Case of Variation of Self-Regulation Dispositions in Opinion Essay and Technical Writing
Authors: Dave Kenneth Tayao Cayado, Carlo P. Magno, Venice Cristine Dangaran
Abstract:
The present study determines whether there will be differences in the self-regulation dispositions that learners utilize when writing different types of composition. There were 7 self-regulation factors that were used to develop a scale in this study such as memory strategy, goal setting, self-evaluation, seeking assistance, learning responsibility, environmental structuring, and organizing. The scale was made specific for writing a composition. The researcher-made scale was administered to 150 participants who all came from a university in the Philippines. The participants were asked to write two compositions namely opinion essay and research introduction/review of related literature. The zero-order correlation revealed that all the factors of self-regulation are correlated with one another. However, only seeking assistance and self-evaluation are correlated with opinion essay and technical writing is not correlated to any of the self-regulation factors. However, when path analysis was used, it was shown that seeking assistance can predict opinion essay scores whereas memory strategy, self-evaluation, and organizing can predict technical writing scores.Keywords: opinion essay, self-regulation, technical writing, writing skills
Procedia PDF Downloads 1852765 Corruption in the Financial Services Industry: Is Regulation the Panacea?
Authors: Maria Krambia-Kapardis, Elisavet Charalambous
Abstract:
Corruption has given rise to extensive discussion due to its notorious consequences. It undermines democracy, brings in inequalities and imbalances and weakens governance. With the recent financial turmoil pinpointing that corruption has played a vital part, lessons have to be learned and actions have to be taken. Regulation can be the means for doing so as it advances transparency and accountability, leaving no space for corruption to flourish. Much depends though on the culture of a state and how determined it is to mark the end of corruption.Keywords: banking regulation, corruption, culture, European Union
Procedia PDF Downloads 5232764 The Identification of Combined Genomic Expressions as a Diagnostic Factor for Oral Squamous Cell Carcinoma
Authors: Ki-Yeo Kim
Abstract:
Trends in genetics are transforming in order to identify differential coexpressions of correlated gene expression rather than the significant individual gene. Moreover, it is known that a combined biomarker pattern improves the discrimination of a specific cancer. The identification of the combined biomarker is also necessary for the early detection of invasive oral squamous cell carcinoma (OSCC). To identify the combined biomarker that could improve the discrimination of OSCC, we explored an appropriate number of genes in a combined gene set in order to attain the highest level of accuracy. After detecting a significant gene set, including the pre-defined number of genes, a combined expression was identified using the weights of genes in a gene set. We used the Principal Component Analysis (PCA) for the weight calculation. In this process, we used three public microarray datasets. One dataset was used for identifying the combined biomarker, and the other two datasets were used for validation. The discrimination accuracy was measured by the out-of-bag (OOB) error. There was no relation between the significance and the discrimination accuracy in each individual gene. The identified gene set included both significant and insignificant genes. One of the most significant gene sets in the classification of normal and OSCC included MMP1, SOCS3 and ACOX1. Furthermore, in the case of oral dysplasia and OSCC discrimination, two combined biomarkers were identified. The combined genomic expression achieved better performance in the discrimination of different conditions than in a single significant gene. Therefore, it could be expected that accurate diagnosis for cancer could be possible with a combined biomarker.Keywords: oral squamous cell carcinoma, combined biomarker, microarray dataset, correlated genes
Procedia PDF Downloads 4262763 Correlation of P53 Gene Expression With Serum Alanine Transaminase Levels and Hepatitis B Viral Load in Cirrhosis and Hepatocellular Carcinoma Patients
Authors: Umme Shahera, Saifullah Munshi, Munira Jahan, Afzalun Nessa, Shahinul Alam, Shahina Tabassum
Abstract:
The development of HCC is a multi-stage process. Several extrinsic factors, such as aflatoxin, HBV, nutrition, alcohol, and trace elements are thought to initiate or/and promote the hepatocarcinogenesis. Alteration of p53 status is an important intrinsic factor in this process as p53 is essential for preventing inappropriate cell proliferation and maintaining genome integrity following genotoxic stress. This study was designed to assess the correlation of p53 gene expression with HBV-DNA and serum Alanine transaminase (ALT) in patients with cirrhosis and HCC. The study was conducted among 60 patients. The study population were divided into four groups (15 in each groups)-HBV positive cirrhosis, HBV negative cirrhosis, HBV positive HCC and HBV negative HCC. Expression of p53 gene was observed using real time PCR. P53 gene expressions in the above mentioned groups were correlated with serum ALT level and HBV viral load. p53 gene was significantly higher in HBV-positive patients with HCC than HBV-positive cirrhosis. Similarly, the expression of p53 was significantly higher in HBV-positive HCC than HBV-negative HCC patients. However, the expression of p53 was reduced in HBV-positive cirrhosis in comparison with HBV-negative cirrhosis. P53 gene expression in liver was not correlated with the serum levels of ALT in any of the study groups. HBV- DNA load also did not correlated with p53 gene expression in HBV positive HCC and HBV positive cirrhosis patients. This study shows that there was no significant change with the expression of p53 gene in any of the study groups with ALT level or viral load, though differential expression of p53 gene were observed in cirrhosis and HCC patients.Keywords: P53, ALT, HBV-DNA, liver cirrhosis, hepatocellular carcinoma
Procedia PDF Downloads 992762 Systematic Identification of Noncoding Cancer Driver Somatic Mutations
Authors: Zohar Manber, Ran Elkon
Abstract:
Accumulation of somatic mutations (SMs) in the genome is a major driving force of cancer development. Most SMs in the tumor's genome are functionally neutral; however, some cause damage to critical processes and provide the tumor with a selective growth advantage (termed cancer driver mutations). Current research on functional significance of SMs is mainly focused on finding alterations in protein coding sequences. However, the exome comprises only 3% of the human genome, and thus, SMs in the noncoding genome significantly outnumber those that map to protein-coding regions. Although our understanding of noncoding driver SMs is very rudimentary, it is likely that disruption of regulatory elements in the genome is an important, yet largely underexplored mechanism by which somatic mutations contribute to cancer development. The expression of most human genes is controlled by multiple enhancers, and therefore, it is conceivable that regulatory SMs are distributed across different enhancers of the same target gene. Yet, to date, most statistical searches for regulatory SMs have considered each regulatory element individually, which may reduce statistical power. The first challenge in considering the cumulative activity of all the enhancers of a gene as a single unit is to map enhancers to their target promoters. Such mapping defines for each gene its set of regulating enhancers (termed "set of regulatory elements" (SRE)). Considering multiple enhancers of each gene as one unit holds great promise for enhancing the identification of driver regulatory SMs. However, the success of this approach is greatly dependent on the availability of comprehensive and accurate enhancer-promoter (E-P) maps. To date, the discovery of driver regulatory SMs has been hindered by insufficient sample sizes and statistical analyses that often considered each regulatory element separately. In this study, we analyzed more than 2,500 whole-genome sequence (WGS) samples provided by The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC) in order to identify such driver regulatory SMs. Our analyses took into account the combinatorial aspect of gene regulation by considering all the enhancers that control the same target gene as one unit, based on E-P maps from three genomics resources. The identification of candidate driver noncoding SMs is based on their recurrence. We searched for SREs of genes that are "hotspots" for SMs (that is, they accumulate SMs at a significantly elevated rate). To test the statistical significance of recurrence of SMs within a gene's SRE, we used both global and local background mutation rates. Using this approach, we detected - in seven different cancer types - numerous "hotspots" for SMs. To support the functional significance of these recurrent noncoding SMs, we further examined their association with the expression level of their target gene (using gene expression data provided by the ICGC and TCGA for samples that were also analyzed by WGS).Keywords: cancer genomics, enhancers, noncoding genome, regulatory elements
Procedia PDF Downloads 1062761 Function Study of IrMYB55 in Regulating Synthesis of Terpenoids in Isodon Rubescens
Authors: Qingfang Guo
Abstract:
Isodon rubescens is rich in a variety of terpenes such as oridonin. It has important medicinal value. MYB transcription factors are involved in the regulation of plant secondary metabolic pathways. The combined transcriptomics and metabolomics analysis revealed that IrMYB55 might be involved in the regulation of the synthesis of terpenes. The function of IrMYB55 was further verified by establishing of a genetic transformation system by CRISPR/Cas9. Obtaining a virus-mediated Isodon rubescens gene silencing material. The main research results are as follows: (1) Screening IrMYB which can regulate the synthesis of terpenes. Metabolomics and transcriptomics analyses of materials with high (TJ)-and low (FL)-content populations which revealed significant differences in terpene content and IrMYB55 expression. Correlation analysis showed that the expression level of IrMYB55 had a significant correlation with the content of terpenes. (2) Establishment of a genetic transformation system of Isodon rubescens. The IrPDS gene could be knocked out by injection of Isodon rubescens cotyledon, and the transformed material showed obvious albino phenotype. Subsequently, IrMYB55 conversion material was obtained by this method. (3) The IrMYB55 silencing material was obtained. Subcellular localization indicated that IrMYB55 was located in the nucleus, indicating that it might regulate the synthesis of terpenoids through transcription. In summary, IrMYB55 that may regulate the synthesis of oridonin was dug out from the transcriptome and metabolome data. In this study, a genetic transformation system of Isodon rubescens was successfully established. Further studies showed that IrMYB55 regulated the transcription level of genes related to the synthesis of terpenoids, thereby promoting the accumulation of oridonin.Keywords: isodon rubescens, MYB, oridonin, CRISPR/Cas9
Procedia PDF Downloads 342760 Employing Motivation, Enjoyment and Self-Regulation to Predict Aural Vocabulary Knowledge
Authors: Seyed Mohammad Reza Amirian, Seyedeh Khadije Amirian, Maryam Sabouri
Abstract:
The present study aimed to investigate second language (L2) motivation, enjoyment, and self-regulation as the main variables for explaining variance in the process, and to find out the outcome of L2 Aural Vocabulary Knowledge (AVK) development by focusing on the Iranian EFL students at Hakim Sabzevari University. To this end, 122 EFL students (86 females) and (36 males) participated in this study. The students filled out the Motivation Questionnaire, Foreign Language Enjoyment Questionnaire, and Self-Regulation Questionnaire and also took Aural Vocabulary Knowledge (AVK) Test. Using SPSS software, the data were analyzed through multiple regressions and path analysis. A preliminary Pearson correlation analysis revealed that 2 out of 3 independent variables were significantly linked to AVK. According to the obtained regression model, self-regulation was a significant predictor of aural vocabulary knowledge test. Finally, the results of the mediation analysis showed that the indirect effect of enjoyment on AVK through self- regulation was significant. These findings are discussed, and implications are offered.Keywords: aural vocabulary knowledge, enjoyment, motivation, self-regulation
Procedia PDF Downloads 1562759 CCR5 as an Ideal Candidate for Immune Gene Therapy and Modification for the Induced Resistance to HIV-1 Infection
Authors: Alieh Farshbaf, Tayyeb Bahrami
Abstract:
Introduction: Cc-chemokine receptor-5 (CCR5) is known as a main co-receptor in human immunodeficiency virus type-1 (HIV-1) infection. Many studies showed 32bp deletion (Δ32) in CCR5 gene, provide natural resistance to HIV-1 infection in homozygous individuals. Inducing the resistance mechanism by CCR5 in HIV-1 infected patients eliminated many problems of highly-active-anti retroviral therapy (HAART) drugs like as low safety, side-effects and virus rebounding from latent reservoirs. New treatments solved some restrictions that are based on gene modification and cell therapy. Literature review: The stories of the “Berlin and Boston patients” showed autologous hematopoietic stem cells transplantation (HSCT) could provide effective cure of HIV-1 infected patients. Furthermore, gene modification by zinc finger nuclease (ZFN) demonstrated another successful result again. Despite the other studies for gene therapy by ∆32 genotype, there is another mutation -CCR5 ∆32/m303- that provides HIV-1 resistant. It is a heterozygote genotype for ∆32 and T→A point mutation at nucleotide 303. These results approved the key role of CCR5 gene. Conclusion: Recent studies showed immune gene therapy and cell therapy could provide effective cure for refractory disease like as HIV. Eradication of HIV-1 from immune system was not observed by HAART, because of reloading virus genome from latent reservoirs after stopping them. It is showed that CCR5 could induce natural resistant to HIV-1 infection by the new approaches based on stem cell transplantation and gene modifying.Keywords: CCR5, HIV-1, stem cell, immune gene therapy, gene modification
Procedia PDF Downloads 2942758 Pattern Of Polymorphism SLC22A1 Gene In Children With Diabetes Mellitus Type 2
Authors: Elly Usman, S. Dante, Diah Purnamasari
Abstract:
Type 2 diabetes mellitus ( T2DM ) is a syndrome characterized by a state of increased blood sugar levels due to chronic disorders of insulin secretion by pancreatic beta cells and insulin action or a combination of both. The organic cation transporter 1, encoded by the SLC22A1 gene, responsible for the uptake of the antihyperglycemic drug, metformin, in the hepatocyte. We assessed whether a genetic variation in the SLC22A1 gene was associated with the glucose - lowering effect of metformin. Method case study research design. Samples are children with type 2 diabetes mellitus who meet the inclusion criteria. The results proportions SLC22A1 gene polymorphisms in children with diabetes mellitus type 2 amounted to 52.04 % at position 400T/C, there is one heterozygous and one at position 595T/C Conclusion The presence of SLC22A1 gene polymorphisms in children with diabetes mellitus type 2.Keywords: diabetes Mellitus type 2, metformin, organic cation transporter 1, pharmacogenomics
Procedia PDF Downloads 4322757 The Effectiveness of Dialectical Behavior Therapy in Developing Emotion Regulation Skill for Adolescent with Intellectual Disability
Authors: Shahnaz Safitri, Rose Mini Agoes Salim, Pratiwi Widyasari
Abstract:
Intellectual disability is characterized by significant limitations in intellectual functioning and adaptive behavior that appears before the age of 18 years old. The prominent impacts of intellectual disability in adolescents are failure to establish interpersonal relationships as socially expected and lower academic achievement. Meanwhile, it is known that emotion regulation skills have a role in supporting the functioning of individual, either by nourishing the development of social skills as well as by facilitating the process of learning and adaptation in school. This study aims to look for the effectiveness of Dialectical Behavior Therapy (DBT) in developing emotion regulation skills for adolescents with intellectual disability. DBT's special consideration toward clients’ social environment and their biological condition is foreseen to be the key for developing emotion regulation capacity for subjects with intellectual disability. Through observations on client's behavior, conducted before and after the completion of DBT intervention program, it was found that there is an improvement in client's knowledge and attitudes related to the mastery of emotion regulation skills. In addition, client's consistency to actually practice emotion regulation techniques over time is largely influenced by the support received from the client's social circles.Keywords: adolescent, dialectical behavior therapy, emotion regulation, intellectual disability
Procedia PDF Downloads 3112756 In Silico Analysis of Small Heat Shock Protein Gene Family by RNA-Seq during Tomato Fruit Ripening
Authors: Debora P. Arce, Flavia J. Krsticevic, Marco R. Bertolaccini, Joaquín Ezpeleta, Estela M. Valle, Sergio D. Ponce, Elizabeth Tapia
Abstract:
Small Heat Shock Proteins (sHSPs) are low molecular weight chaperones that play an important role during stress response and development in all living organisms. Fruit maturation and oxidative stress can induce sHSP synthesis both in Arabidopsis and tomato plants. RNA-Seq technology is becoming widely used in various transcriptomics studies; however, analyzing and interpreting the RNA-Seq data face serious challenges. In the present work, we de novo assembled the Solanum lycopersicum transcriptome for three different maturation stages (mature green, breaker and red ripe). Differential gene expression analysis was carried out during tomato fruit development. We identified 12 sHSPs differentially expressed that might be involved in breaker and red ripe fruit maturation. Interestingly, these sHSPs have different subcellular localization and suggest a complex regulation of the fruit maturation network process.Keywords: sHSPs, maturation, tomato, RNA-Seq, assembly
Procedia PDF Downloads 4852755 Identification of Conserved Domains and Motifs for GRF Gene Family
Authors: Jafar Ahmadi, Nafiseh Noormohammadi, Sedegeh Fabriki Ourang
Abstract:
GRF, Growth regulating factor, genes encode a novel class of plant-specific transcription factors. The GRF proteins play a role in the regulation of cell numbers in young and growing tissues and may act as transcription activations in growth and development of plants. Identification of GRF genes and their expression are important in plants to performance of the growth and development of various organs. In this study, to better understanding the structural and functional differences of GRFs family, 45 GRF proteins sequences in A. thaliana, Z. mays, O. sativa, B. napus, B. rapa, H. vulgare, and S. bicolor, have been collected and analyzed through bioinformatics data mining. As a result, in secondary structure of GRFs, the number of alpha helices was more than beta sheets and in all of them QLQ domains were completely in the biggest alpha helix. In all GRFs, QLQ, and WRC domains were completely protected except in AtGRF9. These proteins have no trans-membrane domain and due to have nuclear localization signals act in nuclear and they are component of unstable proteins in the test tube.Keywords: domain, gene family, GRF, motif
Procedia PDF Downloads 4622754 Long Non-Coding RNAs Mediated Regulation of Diabetes in Humanized Mouse
Authors: Md. M. Hossain, Regan Roat, Jenica Christopherson, Colette Free, Zhiguang Guo
Abstract:
Long noncoding RNA (lncRNA) mediated post-transcriptional gene regulation, and their epigenetic landscapes have been shown to be involved in many human diseases. However, their regulation in diabetes through governing islet’s β-cell function and survival needs to be elucidated. Due to the technical and ethical constraints, it is difficult to study their role in β-cell function and survival in human under in vivo condition. In this study, humanized mice have been developed through transplanting human pancreatic islet under the kidney capsule of NOD.SCID mice and induced β-cell death leading to diabetes condition to study lncRNA mediated regulation. For this, human islets from 3 donors (3000 IEQ, purity > 80%) were transplanted under the kidney capsule of STZ induced diabetic NOD.scid mice. After at least 2 weeks of normoglycecemia, lymphocytes from diabetic NOD mice were adoptively transferred and islet grafts were collected once blood glucose reached > 200 mg/dl. RNA from human donor islets, islet grafts from humanized mice with either adoptive lymphocyte transfer (ALT) or PBS control (CTL) were ribodepleted; barcoded fragment libraries were constructed and sequenced on the Ion Proton sequencer. lncRNA expression in isolated human islets, islet grafts from humanized mice with and without induced β-cell death and their regulation in human islets function in vitro under glucose challenge, cytokine mediated inflammation and induced apoptotic condition were investigated. Out of 3155 detected lncRNAs, 299 that highly expressed in islets were found to be significantly downregulated and 224 upregulated in ALT compared to CTL. Most of these are found to be collocated within 5 kb upstream and 1 kb downstream of 788 up- and 624 down-regulated mRNAs. Genomic Regions Enrichment of Annotations Analysis revealed deregulated and collocated genes are related to pancreas endocrine development; insulin synthesis, processing, and secretion; pancreatitis and diabetes. Many of them, that found to be located within enhancer domains for islet specific gene activity, are associated to the deregulation of known islet/βcell specific transcription factors and genes that are important for β-cell differentiation, identity, and function. RNA sequencing analysis revealed aberrant lncRNA expression which is associated to the deregulated mRNAs in β-cell function as well as in molecular pathways related to diabetes. A distinct set of candidate lncRNA isoforms were identified as highly enriched and specific to human islets, which are deregulated in human islets from donors with different BMIs and with type 2 diabetes. These RNAs show an interesting regulation in cultured human islets under glucose stimulation and with induced β-cell death by cytokines. Aberrant expression of these lncRNAs was detected in the exosomes from the media of islets cultured with cytokines. Results of this study suggest that the islet specific lncRNAs are deregulated in human islet with β-cell death, hence important in diabetes. These lncRNAs might be important for human β-cell function and survival thus could be used as biomarkers and novel therapeutic targets for diabetes.Keywords: β-cell, humanized mouse, pancreatic islet, LncRNAs
Procedia PDF Downloads 1662753 Hsa-miR-192-5p, and Hsa-miR-129-5p Prominent Biomarkers in Regulation Glioblastoma Cancer Stem Cells Genes Microenvironment
Authors: Rasha Ahmadi
Abstract:
Glioblastoma is one of the most frequent brain malignancies, having a high mortality rate and limited survival in individuals with this malignancy. Despite different treatments and surgery, recurrence of glioblastoma cancer stem cells may arise as a subsequent tumor. For this reason, it is crucial to research the markers associated with glioblastoma stem cells and specifically their microenvironment. In this study, using bioinformatics analysis, we analyzed and nominated genes in the microenvironment pathways of glioblastoma stem cells. In this study, an appropriate database was selected for analysis by referring to the GEO database. This dataset comprised gene expression patterns in stem cells derived from glioblastoma patients. Gene clusters were divided as high and low expression. Enrichment databases such as Enrichr, STRING, and GEPIA were utilized to analyze the data appropriately. Finally, we extracted the potential genes 2700 high-expression and 1100 low-expression genes are implicated in the metabolic pathways of glioblastoma cancer progression. Cellular senescence, MAPK, TNF, hypoxia, zimosterol biosynthesis, and phosphatidylinositol metabolism pathways were substantially expressed and the metabolic pathways were downregulated. After assessing the association between protein networks, MSMP, SOX2, FGD4 ,and CNTNAP3 genes with high expression and DMKN and SBSN genes with low were selected. All of these genes were observed in the survival curve, with a survival of fewer than 10 percent over around 15 months. hsa-mir-192-5p, hsa-mir-129-5p, hsa-mir-215-5p, hsa-mir-335-5p, and hsa-mir-340-5p played key function in glioblastoma cancer stem cells microenviroments. We introduced critical genes through integrated and regular bioinformatics studies by assessing the amount of gene expression profile data that can play an important role in targeting genes involved in the energy and microenvironment of glioblastoma cancer stem cells. Have. This study indicated that hsa-mir-192-5p, and hsa-mir-129-5p are appropriate candidates for this.Keywords: Glioblastoma, Cancer Stem Cells, Biomarker Discovery, Gene Expression Profiles, Bioinformatics Analysis, Tumor Microenvironment
Procedia PDF Downloads 1502752 The Impact of Corporate Governance Regulation in the Nigerian Banking Sector
Authors: Simisola I. Akintoye, Sunday K. Iyaniwura
Abstract:
Recent global corporate failures have called for increase in the need to regulate corporate governance across the world. In Nigeria, the impact of corporate governance regulation in the banking sector has reached epidemic levels contributing to the country’s economic depression. This study critically evaluates Nigeria’s corporate governance regime and explores how weak regulation has impacted on the banking sector. By adopting a socio legal methodology, the study analyses both theoretical and empirical works from a socio-scientific point of view to examine the role of Nigeria’s legal, cultural and social arrangements in corporate governance regulation. The study reveals that Nigeria’s institutional arrangement has contributed to its weak system of corporate governance regulation with adverse effects on the banking sector. The research mainly impacts on current global corporate governance literature in sub-Saharan Africa by contributing to knowledge of the peculiarities of corporate governance regulation in different institutional jurisdictions. The particular focus on emerging economies such as Nigeria expands on the need for countries to develop a bespoke system of corporate governance regulation that takes into consideration the peculiarities of individual countries devoid of external influence.Keywords: banks, corporate governance, emerging economies, Nigeria
Procedia PDF Downloads 3272751 Cloning and Expression of the ansZ Gene from Bacillus sp. CH11 Isolated from Chilca salterns in Peru
Authors: Stephy Saavedra, Annsy C. Arredondo, Gisele Monteiro, Adalberto Pessoa Jr, Carol N. Flores-Fernandez, Amparo I. Zavaleta
Abstract:
L-asparaginase from bacterial sources is used in leukemic treatment and food industry. This enzyme is classified based on its affinity towards L-asparagine and L-glutamine. Likewise, ansZ genes express L-asparaginase with higher affinity to L-asparagine. The aim of this work was to clone and express of ansZ gene from Bacillus sp. CH11 isolated from Chilca salterns in Peru. The gene encoding L-asparaginase was cloned into pET15b vector and transformed in Escherichia coli BL21 (DE3) pLysS. The expression was carried out in a batch culture using LB broth and 0.5 mM IPTG. The recombinant L-asparaginase showed a molecular weight of ~ 39 kDa by SDS PAGE and a specific activity of 3.19 IU/mg of protein. The cloning and expression of ansZ gene from this halotolerant Bacillus sp. CH11 allowed having a biological input to improve a future scaling-up.Keywords: ansZ gene, Bacillus sp, Chilca salterns, recombinant L-asparaginase
Procedia PDF Downloads 184