Search results for: fracture behavior
6868 Fracture Toughness Characterizations of Single Edge Notch (SENB) Testing Using DIC System
Authors: Amr Mohamadien, Ali Imanpour, Sylvester Agbo, Nader Yoosef-Ghodsi, Samer Adeeb
Abstract:
The fracture toughness resistance curve (e.g., J-R curve and crack tip opening displacement (CTOD) or δ-R curve) is important in facilitating strain-based design and integrity assessment of oil and gas pipelines. This paper aims to present laboratory experimental data to characterize the fracture behavior of pipeline steel. The influential parameters associated with the fracture of API 5L X52 pipeline steel, including different initial crack sizes, were experimentally investigated for a single notch edge bend (SENB). A total of 9 small-scale specimens with different crack length to specimen depth ratios were conducted and tested using single edge notch bending (SENB). ASTM E1820 and BS7448 provide testing procedures to construct the fracture resistance curve (Load-CTOD, CTOD-R, or J-R) from test results. However, these procedures are limited by standard specimens’ dimensions, displacement gauges, and calibration curves. To overcome these limitations, this paper presents the use of small-scale specimens and a 3D-digital image correlation (DIC) system to extract the parameters required for fracture toughness estimation. Fracture resistance curve parameters in terms of crack mouth open displacement (CMOD), crack tip opening displacement (CTOD), and crack growth length (∆a) were carried out from test results by utilizing the DIC system, and an improved regression fitting resistance function (CTOD Vs. crack growth), or (J-integral Vs. crack growth) that is dependent on a variety of initial crack sizes was constructed and presented. The obtained results were compared to the available results of the classical physical measurement techniques, and acceptable matchings were observed. Moreover, a case study was implemented to estimate the maximum strain value that initiates the stable crack growth. This might be of interest to developing more accurate strain-based damage models. The results of laboratory testing in this study offer a valuable database to develop and validate damage models that are able to predict crack propagation of pipeline steel, accounting for the influential parameters associated with fracture toughness.Keywords: fracture toughness, crack propagation in pipeline steels, CTOD-R, strain-based damage model
Procedia PDF Downloads 636867 Maxillofacial Trauma: A Case of Diacapitular Condylar Fracture
Authors: Krishna Prasad Regmi, Jun-Bo Tu, Cheng-Qun Hou, Li-Feng Li
Abstract:
Maxillofacial trauma in a pediatric group of patients is particularly challenging, as these patients have significant differences from adults as far as the facial skeleton is concerned. Mandibular condylar fractures are common presentations to hospitals across the globe and remain the most important cause of temporomandibular joint (TMJ) ankylosis. The etiology and epidemiology of pediatric trauma involving the diacapitular condylar fractures (DFs) have been reported in a large series of patients. Nevertheless, little is known about treatment protocols for DFs in children. Accordingly, the treatment modalities for the management of pediatric fractures also differ. We suggest following the PDA and intracapsular ABC classification of condylar fracture to increase the overall postoperative satisfaction level that bypasses the change of subjective feelings of patients’ from preoperative to the postoperative condition. At the same time, use of 3-D technology and surgical navigation may also increase treatment accuracy.Keywords: maxillofacial trauma, diacapitular fracture, condylar fracture, PDA classification
Procedia PDF Downloads 2716866 Prediction of Crack Propagation in Bonded Joints Using Fracture Mechanics
Authors: Reza Hedayati, Meysam Jahanbakhshi
Abstract:
In this work, Fracture Mechanics is used to predict crack propagation in the adhesive jointing aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate. Therefore 2*3=6 cases are considered and their results are compared. The debonding initiation load, complete debonding load, crack face profile and load-displacement diagram have been compared for the six cases.Keywords: fracture, adhesive joint, debonding, APDL, LEFM
Procedia PDF Downloads 4136865 A Study on Effect of Dynamic Loading Speed on the Fracture Toughness of Equivalent Stress Gradient (ESG) Specimen
Authors: Moon Byung Woo, Seok Chang-Sung, Koo Jae-Mean, Kim Sang-Young, Choi Jae Gu, Huh Nam-Su
Abstract:
Recently, the occurrence of the earthquake has increased sharply and many of the casualties have occurred worldwide, due to the influence of earthquakes. Especially, the Fukushima nuclear power plant accident which was caused by the earthquake in 2011 has significantly increased the fear of people and the demand for the safety of the nuclear power plant. Thus, in order to prevent the earthquake accident at nuclear power plant, it is important to evaluate the fracture toughness considering the seismic loading rate. To obtain fracture toughness for the safety evaluation of nuclear power plant, it is desirable to perform experiments with a real scale pipe which is expensive and hard to perform. Therefore, many researchers have proposed various test specimens to replicate the fracture toughness of a real scale pipe. Since such specimens have several problems, the equivalent stress gradient (ESG) specimen has been recently suggested. In this study, in order to consider the effects of the dynamic loading speed on fracture toughness, the experiment was conducted by applying five different kinds of test speeds using an ESG specimen. In addition, after we performed the fracture toughness test under dynamic loading with different speeds using an ESG specimen and a standard specimen, we compared them with the test results under static loading.Keywords: dynamic loading speed, fracture toughness, load-ratio-method, equivalent stress gradient (ESG) specimen
Procedia PDF Downloads 3096864 Numerical Prediction of Effects of Location of Across-the-Width Laminations on Tensile Properties of Rectangular Wires
Authors: Kazeem K. Adewole
Abstract:
This paper presents the finite element analysis numerical investigation of the effects of the location of across-the-width lamination on the tensile properties of rectangular wires for civil engineering applications. FE analysis revealed that the presence of the mid-thickness across-the-width lamination changes the cup and cone fracture shape exhibited by the lamination-free wire to a V-shaped fracture shape with an opening at the bottom/pointed end of the V-shape at the location of the mid-thickness across-the-width lamination. FE analysis also revealed that the presence of the mid-width across-the-thickness lamination changes the cup and cone fracture shape of the lamination-free wire without an opening to a cup and cone fracture shape with an opening at the location of the mid-width across-the-thickness lamination. The FE fracture behaviour prediction approach presented in this work serves as a tool for failure analysis of wires with lamination at different orientations which cannot be conducted experimentally.Keywords: across-the-width lamination, tensile properties, lamination location, wire
Procedia PDF Downloads 4746863 Mode II Fracture Toughness of Hybrid Fiber Reinforced Concrete
Authors: H. S. S Abou El-Mal, A. S. Sherbini, H. E. M. Sallam
Abstract:
Mode II fracture toughness (KIIc) of fiber reinforced concrete has been widely investigated under various patterns of testing geometries. The effect of fiber type, concrete matrix properties, and testing mechanisms were extensively studied. The area of hybrid fiber addition shows a lake of reported research data. In this paper an experimental investigation of hybrid fiber embedded in high strength concrete matrix is reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns, (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction (Vf) of 1.5%. The concrete matrix properties were kept the same for all hybrid fiber reinforced concrete patterns. In an attempt to estimate a fairly accepted value of fracture toughness KIIc, four testing geometries and loading types are employed in this investigation. Four point shear, Brazilian notched disc, double notched cube, and double edge notched specimens are investigated in a trial to avoid the limitations and sensitivity of each test regarding geometry, size effect, constraint condition, and the crack length to specimen width ratio a/w. The addition of all hybridization patterns of fiber reduced the compressive strength and increased mode II fracture toughness in pure mode II tests. Mode II fracture toughness of concrete KIIc decreased with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness KIIc is found to be sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness (KIIc). Four point shear (4PS) test set up reflects the most reliable values of mode II fracture toughness KIIc of concrete. Mode II fracture toughness KIIc of concrete couldn’t be assumed as a real material property.Keywords: fiber reinforced concrete, Hybrid fiber, Mode II fracture toughness, testing geometry
Procedia PDF Downloads 3276862 Experimental and Numerical Analysis on Enhancing Mechanical Properties of CFRP Adhesive Joints Using Hybrid Nanofillers
Authors: Qiong Rao, Xiongqi Peng
Abstract:
In this work, multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs) were dispersed into epoxy adhesive to investigate their synergy effects on the shear properties, mode I and mode II fracture toughness of unidirectional composite bonded joints. Testing results showed that the incorporation of MWCNTs and GNPs significantly improved the shear strength, the mode I and mode II fracture toughness by 36.6%, 45% and 286%, respectively. In addition, the fracture surfaces of the bonding area as well as the toughening mechanism of nanofillers were analyzed. Finally, a nonlinear cohesive/friction coupled model for delamination analysis of adhesive layer under shear and normal compression loadings was proposed and implemented in ABAQUS/Explicit via user subroutine VUMAT.Keywords: nanofillers, adhesive joints, fracture toughness, cohesive zone model
Procedia PDF Downloads 1336861 Effect of Hydroxyl Functionalization on the Mechanical and Fracture Behaviour of Monolayer Graphene
Authors: Akarsh Verma, Avinash Parashar
Abstract:
The aim of this article is to study the effects of hydroxyl functional group on the mechanical strength and fracture toughness of graphene. This functional group forms the backbone of intrinsic atomic structure of graphene oxide (GO). Molecular dynamics-based simulations were performed in conjunction with reactive force field (ReaxFF) parameters to capture the mode-I fracture toughness of hydroxyl functionalised graphene. Moreover, these simulations helped in concluding that spatial distribution and concentration of hydroxyl functional group significantly affects the fracture morphology of graphene nanosheet. In contrast to literature investigations, atomistic simulations predicted a transition in the failure morphology of hydroxyl functionalised graphene from brittle to ductile as a function of its spatial distribution on graphene sheet.Keywords: graphene, graphene oxide, ReaxFF, molecular dynamics
Procedia PDF Downloads 1796860 Thermomechanical Damage Modeling of F114 Carbon Steel
Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi
Abstract:
The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.Keywords: thermo-mechanical fatigue, failure, numerical simulation, fracture, damage
Procedia PDF Downloads 3936859 Practical Method for Failure Prediction of Mg Alloy Sheets during Warm Forming Processes
Authors: Sang-Woo Kim, Young-Seon Lee
Abstract:
An important concern in metal forming, even at elevated temperatures, is whether a desired deformation can be accomplished without any failure of the material. A detailed understanding of the critical condition for crack initiation provides not only the workability limit of a material but also a guide-line for process design. This paper describes the utilization of ductile fracture criteria in conjunction with the finite element method (FEM) for predicting the onset of fracture in warm metal working processes of magnesium alloy sheets. Critical damage values for various ductile fracture criteria were determined from uniaxial tensile tests and were expressed as the function of strain rate and temperature. In order to find the best criterion for failure prediction, Erichsen cupping tests under isothermal conditions and FE simulations combined with ductile fracture criteria were carried out. Based on the plastic deformation histories obtained from the FE analyses of the Erichsen cupping tests and the critical damage value curves, the initiation time and location of fracture were predicted under a bi-axial tensile condition. The results were compared with experimental results and the best criterion was recommended. In addition, the proposed methodology was used to predict the onset of fracture in non-isothermal deep drawing processes using an irregular shaped blank, and the results were verified experimentally.Keywords: magnesium, AZ31 alloy, ductile fracture, FEM, sheet forming, Erichsen cupping test
Procedia PDF Downloads 3736858 Seismic Data Analysis of Intensity, Orientation and Distribution of Fractures in Basement Rocks for Reservoir Characterization
Authors: Mohit Kumar
Abstract:
Natural fractures are classified in two broad categories of joints and faults on the basis of shear movement in the deposited strata. Natural fracture always has high structural relationship with extensional or non-extensional tectonics and sometimes the result is seen in the form of micro cracks. Geological evidences suggest that both large and small-scale fractures help in to analyze the seismic anisotropy which essentially contribute into characterization of petro physical properties behavior associated with directional migration of fluid. We generally question why basement study is much needed as historically it is being treated as non-productive and geoscientist had no interest in exploration of these basement rocks. Basement rock goes under high pressure and temperature, and seems to be highly fractured because of the tectonic stresses that are applied to the formation along with the other geological factors such as depositional trend, internal stress of the rock body, rock rheology, pore fluid and capillary pressure. Sometimes carbonate rocks also plays the role of basement and igneous body e.g basalt deposited over the carbonate rocks and fluid migrate from carbonate to igneous rock due to buoyancy force and adequate permeability generated by fracturing. So in order to analyze the complete petroleum system, FMC (Fluid Migration Characterization) is necessary through fractured media including fracture intensity, orientation and distribution both in basement rock and county rock. Thus good understanding of fractures can lead to project the correct wellbore trajectory or path which passes through potential permeable zone generated through intensified P-T and tectonic stress condition. This paper deals with the analysis of these fracture property such as intensity, orientation and distribution in basement rock as large scale fracture can be interpreted on seismic section, however, small scale fractures show ambiguity in interpretation because fracture in basement rock lies below the seismic wavelength and hence shows erroneous result in identification. Seismic attribute technique also helps us to delineate the seismic fracture and subtle changes in fracture zone and these can be inferred from azimuthal anisotropy in velocity and amplitude and spectral decomposition. Seismic azimuthal anisotropy derives fracture intensity and orientation from compressional wave and converted wave data and based on variation of amplitude or velocity with azimuth. Still detailed analysis of fractured basement required full isotropic and anisotropic analysis of fracture matrix and surrounding rock matrix in order to characterize the spatial variability of basement fracture which support the migration of fluid from basement to overlying rock.Keywords: basement rock, natural fracture, reservoir characterization, seismic attribute
Procedia PDF Downloads 1976857 Bone Fracture Detection with X-Ray Images Using Mobilenet V3 Architecture
Authors: Ashlesha Khanapure, Harsh Kashyap, Abhinav Anand, Sanjana Habib, Anupama Bidargaddi
Abstract:
Technologies that are developing quickly are being developed daily in a variety of disciplines, particularly the medical field. For the purpose of detecting bone fractures in X-ray pictures of different body segments, our work compares the ResNet-50 and MobileNetV3 architectures. It evaluates accuracy and computing efficiency with X-rays of the elbow, hand, and shoulder from the MURA dataset. Through training and validation, the models are evaluated on normal and fractured images. While ResNet-50 showcases superior accuracy in fracture identification, MobileNetV3 showcases superior speed and resource optimization. Despite ResNet-50’s accuracy, MobileNetV3’s swifter inference makes it a viable choice for real-time clinical applications, emphasizing the importance of balancing computational efficiency and accuracy in medical imaging. We created a graphical user interface (GUI) for MobileNet V3 model bone fracture detection. This research underscores MobileNetV3’s potential to streamline bone fracture diagnoses, potentially revolutionizing orthopedic medical procedures and enhancing patient care.Keywords: CNN, MobileNet V3, ResNet-50, healthcare, MURA, X-ray, fracture detection
Procedia PDF Downloads 656856 Study of Hydraulic and Tectonic Fracturation within Zemlet El Beidha Area (North Chott Range)
Authors: Nabil Abaab, Dhaou Akrout, Riadh Ahmadi, Mabrouk Montacer
Abstract:
The study of fluid pressure and its evolution have a critical importance as they lead to understanding the tectonic history of the region. Therefore, the present work focuses on a microtectonic study of tectonic and hydraulic fracture at the anticline structure of Zemlet El Beidha (North Chott range). The study and the analysis of several stations of tectonic and hydraulic fracture allow revealing the witnesses of a paléosurpression in the deposits of Lower Cretaceous (Bouhedma Formation). In fact, we noticed that the overpressure is directly involved in the creation of various types of fractures as evidenced by the different measures and the stereographic projections. Thus, the orientations of fibers of mineralization that fills the Beefs type fracture have the same direction as the main constraint. Furthermore, we discussed the different overpressure build-up mechanisms. The results showed that tectonics is likely, responsible for this anomaly. This is confirmed by the description of the fibers and the projection of the different measurements of Beefs. The mineralization transformation from gypsum to anhydrite is heavily involved in this stress regime especially in the presence of all necessary conditions of dehydration of gypsum.Keywords: Zemlet El Beidha, overpressure, tectonic fracture, hydraulic fracture, gypsum beefs
Procedia PDF Downloads 2866855 About the Interface Bonding Safety of Adhesively Bonded Concrete Joints Under Cracking: A Fracture Energetic Approach
Authors: Brandtner-Hafner Martin
Abstract:
Adhesives are increasingly being used in the construction sector. On the one hand, this concerns dowel reinforcements using chemical anchors. On the other hand, the sealing and repair of cracks in structural concrete components are still on the rise. In the field of bonding, the interface between the joined materials is the most critical area. Therefore, it is of immense importance to characterize and investigate this section sufficiently by fracture analysis. Since standardized mechanical test methods are not sufficiently capable of doing this, recourse is made to an innovative concept based on fracture energy. Therefore, a series of experimental tests were performed using the so-called GF-principle to study the interface bonding safety of adhesively bonded concrete joints. Several different structural adhesive systems based on epoxy, CA/A hybrid, PUR, MS polymer, dispersion, and acrylate were selected for bonding concrete substrates. The results show that stable crack propagation and prevention of uncontrolled failure in bonded concrete joints depend very much on the adhesive system used, and only fracture analytical evaluation methods can provide empirical information on this.Keywords: interface bonding safety, adhesively bonded concrete joints, GF-principle, fracture analysis
Procedia PDF Downloads 3056854 Discrete Element Simulations of Composite Ceramic Powders
Authors: Julia Cristina Bonaldo, Christophe L. Martin, Severine Romero Baivier, Stephane Mazerat
Abstract:
Alumina refractories are commonly used in steel and foundry industries. These refractories are prepared through a powder metallurgy route. They are a mixture of hard alumina particles and graphite platelets embedded into a soft carbonic matrix (binder). The powder can be cold pressed isostatically or uniaxially, depending on the application. The compact is then fired to obtain the final product. The quality of the product is governed by the microstructure of the composite and by the process parameters. The compaction behavior and the mechanical properties of the fired product depend greatly on the amount of each phase, on their morphology and on the initial microstructure. In order to better understand the link between these parameters and the macroscopic behavior, we use the Discrete Element Method (DEM) to simulate the compaction process and the fracture behavior of the fired composite. These simulations are coupled with well-designed experiments. Four mixes with various amounts of Al₂O₃ and binder were tested both experimentally and numerically. In DEM, each particle is modelled and the interactions between particles are taken into account through appropriate contact or bonding laws. Here, we model a bimodal mixture of large Al₂O₃ and small Al₂O₃ covered with a soft binder. This composite is itself mixed with graphite platelets. X-ray tomography images are used to analyze the morphologies of the different components. Large Al₂O₃ particles and graphite platelets are modelled in DEM as sets of particles bonded together. The binder is modelled as a soft shell that covers both large and small Al₂O₃ particles. When two particles with binder indent each other, they first interact through this soft shell. Once a critical indentation is reached (towards the end of compaction), hard Al₂O₃ - Al₂O₃ contacts appear. In accordance with experimental data, DEM simulations show that the amount of Al₂O₃ and the amount of binder play a major role for the compaction behavior. The graphite platelets bend and break during the compaction, also contributing to the macroscopic stress. Firing step is modeled in DEM by ascribing bonds to particles which contact each other after compaction. The fracture behavior of the compacted mixture is also simulated and compared with experimental data. Both diametrical tests (Brazilian tests) and triaxial tests are carried out. Again, the link between the amount of Al₂O₃ particles and the fracture behavior is investigated. The methodology described here can be generalized to other particulate materials that are used in the ceramic industry.Keywords: cold compaction, composites, discrete element method, refractory materials, x-ray tomography
Procedia PDF Downloads 1386853 Investigation of Steel Infill Panels under Blast Impulsive Loading
Authors: Seyed M. Zahrai, Saeid Lotfi
Abstract:
If an infill panel does not have enough ductility against the loading, it breaks and gets damaged before depreciation and load transfer. As steel infill panel has appropriate ductility before fracture, it can be used as an alternative to typical infill panels under blast loading. Concerning enough ductility of out-of-plane behavior the infill panel, the impact force enters the horizontal diaphragm and is distributed among the lateral elements which can be made from steel infill panels. This article investigates the behavior of steel infill panels with different thickness and stiffeners using finite element analysis with geometric and material nonlinearities for optimization of the steel plate thickness and stiffeners arrangement to obtain more efficient design for its out-of-plane behavior.Keywords: blast loading, ductility, maximum displacement, steel infill panel
Procedia PDF Downloads 2776852 Structural Safety of Biocomposites under Cracking: A Fracture Analytical Approach using the Gғ-Concept
Authors: Brandtner-Hafner Martin
Abstract:
Biocomposites have established themselves as a sustainable material class in the industry. Their advantages include lower density, lower price, and easier recycling compared to conventional materials. Now there are a variety of ways to measure their technical performance. One possibility is mechanical tests, which are widely used and standardized. However, these provide only very limited insights into damage capacity, which is particularly problematic under cracking conditions. To overcome such shortcomings, experimental tests were performed applying the fracture energetically GF-concept to study the structural safety of the interface under crack opening (mode-I loading). Two different types of biocomposites based on extruded henequen-fibers (NFRP) and wood-particles (WPC) in an HDPE matrix were evaluated. The results show that the fracture energy values obtained are higher than those given in the literature. This suggests that alternatives to previous linear elastic testing methods are needed to perform authentic safety evaluations of green plastics.Keywords: biocomposites, structural safety, Gғ-concept, fracture analysis
Procedia PDF Downloads 1596851 Keying Effect During Fracture of Stainless Steel
Authors: Farej Ahmed Emhmmed
Abstract:
Fracture of duplex stainless steels (DSS) was investigated in air and in 3.5 wt % NaCl solution. Tow sets of fatigued specimens were heat treated at 475ºC for different times and pulled to failure either in air or after kept in 3.5% NaCl with polarization of -900 mV/ SCE. Fracture took place in general by ferrite cleavage and austenite ductile fracture in transgranular mode. Specimens measured stiffness (Ms) was affected by the aging time, with higher values measured for specimens aged for longer times. Microstructural features played a role in "blocking" the crack propagation process leading to lower the CTOD values specially for specimens aged for short times. Unbroken ligaments/ austenite were observed at the crack wake. These features may exerted a bridging stress, blocking effect, at the crack tip giving resistance to the crack propagation process i.e the crack mouth opening was reduced. Higher stress intensity factor Kıc values were observed with increased amounts of crack growth suggesting longer zone of unbroken ligaments in the crack wake. The bridging zone was typically several mm in length. Attempt to model the bridge stress was suggested to understand the role of ligaments/unbroken austenite in increasing the fracture toughness factor.Keywords: stainless steels, fracture toughness, crack keying effect, ligaments
Procedia PDF Downloads 3606850 Impact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy
Authors: Woei-Shyan Lee, Hao-Chien Kao
Abstract:
The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are significantly dependent on the strain rate and temperature. The flow stress, work hardening rate and strain rate sensitivity all increase with increasing strain rate or decreasing temperature. It is shown that the impact response of the Haynes 188 specimens is adequately described by the Zerilli-Armstrong fcc model. The fracture analysis results indicate that the Haynes 188 specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed Haynes 188 specimens are characterised by dimple- and / or cleavage-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point.Keywords: Haynes 188 alloy, impact, strain rate and temperature effect, adiabatic shearing
Procedia PDF Downloads 3596849 Study on Comparison Between Acoustic Emission Behavior and Strain on Concrete Surface During Rebar Corrosion in Reinforced Concrete
Authors: Ejazulhaq Rahimi
Abstract:
The development of techniques evaluating deterioration on concrete structures is vital for structural health monitoring (SHM). One of the main reasons for reinforced concrete structure's deterioration is the corroding of embedded rebars. It is a natural process that begins when the rebar starts to rust. It occurs when the protective layer on the rebar is destroyed. The rebar in concrete is usually protected against corrosion by the high pH of the surrounding cement paste. However, there are chemicals that can destroy the protective layer, making it susceptible to corrosion. It is very destructive for the lifespan and durability of the concrete structure. Corrosion products which are 3 to 6 times voluminous than the rebar stress its surrounding concrete and lead to fracture as cracks even peeling off the cover concrete over the rebar. As is clear that concrete shows limit elastic behavior in its stress strain property, so corrosion product stresses can be detected as strains from the concrete surface. It means that surface strains have a relation with the situation and amount of corrosion products and related concrete fractures inside reinforced concrete. In this paper, a comparative study of surface strains due to corrosion products detected by strain gauges and acoustic emission (AE) testing under periodic accelerated corrosion in the salty environment with 3% NaCl is reported. From the results, three different stages of strains were clearly observed based on the type and rate of strains in each corrosion situation and related fracture types. AE parameters which mostly are related to fracture and their shapes, describe the same phases. It is confirmed that there is a great agreement to the result of each other and describes three phases as generation and expansion of corrosion products and initiation and propagation of corrosion-induced cracks, and surface cracks. In addition, the strain on the concrete surface was rapidly increased before the cracks arrived at the surface of the concrete.Keywords: acoustic emission, monitoring, rebar corrosion, reinforced concrete, strain
Procedia PDF Downloads 1806848 Probabilistic Fracture Evaluation of Reactor Pressure Vessel Subjected to Pressurized Thermal Shock
Authors: Jianguo Chen, Fenggang Zang, Yu Yang, Liangang Zheng
Abstract:
Reactor Pressure Vessel (RPV) is an important security barrier in nuclear power plant. Crack like defects may be produced on RPV during the whole operation lifetime due to the harsh operation condition and irradiation embrittlement. During the severe loss of coolant accident, thermal shock happened as the injection of emergency cooling water into RPV, which results in re-pressurization of the vessel and very high tension stress on the vessel wall, this event called Pressurized Thermal Shock (PTS). Crack on the vessel wall may propagate even penetrate the vessel, so the safety of the RPV would undergo great challenge. Many assumptions in structure integrity evaluation make the result of deterministic fracture mechanics very conservative, which affect the operation lifetime of the plant. Actually, many parameters in the evaluation process, such as fracture toughness and nil-ductility transition temperature, have statistical distribution characteristics. So it is necessary to assess the structural integrity of RPV subjected to PTS event by means of Probabilistic Fracture Mechanics (PFM). Structure integrity evaluation methods of RPV subjected to PTS event are summarized firstly, then evaluation method based on probabilistic fracture mechanics are presented by considering the probabilistic characteristics of material and structure parameters. A comprehensive analysis example is carried out at last. The results show that the probability of crack penetrates through wall increases gradually with the growth of fast neutron irradiation flux. The results give advice for reactor life extension.Keywords: fracture toughness, integrity evaluation, pressurized thermal shock, probabilistic fracture mechanics, reactor pressure vessel
Procedia PDF Downloads 2516847 An Criterion to Minimize FE Mesh-Dependency in Concrete Plate Subjected to Impact Loading
Authors: Kwak, Hyo-Gyung, Gang, Han Gul
Abstract:
In the context of an increasing need for reliability and safety in concrete structures under blast and impact loading condition, the behavior of concrete under high strain rate condition has been an important issue. Since concrete subjected to impact loading associated with high strain rate shows quite different material behavior from that in the static state, several material models are proposed and used to describe the high strain rate behavior under blast and impact loading. In the process of modelling, in advance, mesh dependency in the used finite element (FE) is the key problem because simulation results under high strain-rate condition are quite sensitive to applied FE mesh size. It means that the accuracy of simulation results may deeply be dependent on FE mesh size in simulations. This paper introduces an improved criterion which can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept, and HJC (Holmquist Johnson Cook), CSC (Continuous Surface Cap) and K&C (Karagozian & Case) models are examined to trace their relative sensitivity to the used FE mesh size. To coincide with the purpose of the penetration test with a concrete plate under a projectile (bullet), the residual velocities of projectile after penetration are compared. The correlation studies between analytical results and the parametric studies associated with them show that the variation of residual velocity with the used FE mesh size is quite reduced by applying a unique failure strain value determined according to the proposed criterion.Keywords: high strain rate concrete, penetration simulation, failure strain, mesh-dependency, fracture energy
Procedia PDF Downloads 5206846 Internal Corrosion Rupture of a 6-in Gas Line Pipe
Authors: Fadwa Jewilli
Abstract:
A sudden leak of a 6-inch gas line pipe after being in service for one year was observed. The pipe had been designed to transport dry gas. The failure had taken place in 6 o’clock position at the stage discharge of the flow process. Laboratory investigations were conducted to find out the cause of the pipe rupture. Visual and metallographic observations confirmed that the pipe split was due to a crack initiated in circumferential and then turned into longitudinal direction. Sever wall thickness reduction was noticed on the internal pipe surface. Scanning electron microscopy observations at the fracture surface revealed features of ductile fracture mode. Corrosion product analysis showed the traces of iron carbonate and iron sulphate. The laboratory analysis resulted in the conclusion that the pipe failed due to the effect of wet fluid (condensate) caused severe wall thickness dissolution resulted in pipe could not stand the continuation at in-service working condition.Keywords: gas line pipe, corrosion prediction ductile fracture, ductile fracture, failure analysis
Procedia PDF Downloads 846845 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission
Authors: Ramin Khamedi, Isa Ahmadi
Abstract:
In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).Keywords: acoustic emission, dual phase steels, deformation, failure, fracture
Procedia PDF Downloads 4036844 Telling the Truth to Patients Before Hip Fracture Surgery
Authors: Rawan Masarwa, Merav Ben Natan, Yaron Berkovich
Abstract:
Background: Hip fracture repair surgery carries a certain mortality risk, yet evidence suggests that orthopedic surgeons often refrain from discussing this issue with patients prior to surgery. Aim: This study aims to examine whether orthopedic surgeons address the issue of one-year post-surgery mortality before hip fracture repair surgery and to explore the factors influencing this decision. Method: The study uses a cross-sectional design, administering validated digital questionnaires to 150 orthopedic surgeons. Results: A minority of orthopedic surgeons reported consistently informing patients about the risk of mortality in the year following hip fracture surgery. The primary reasons for not discussing this risk were a desire to avoid frightening patients, time constraints, and concerns about undermining patient hope. Surgeons reported a medium-high level of perceived self-efficacy, with higher self-efficacy linked to a reduced likelihood of discussing one-year mortality risk. In contrast, older age and holding a specialist status in orthopedic surgery were associated with a higher likelihood of discussing this risk with patients. Conclusions: The findings suggest a need for interventions to address communication barriers and ensure consistent provision of essential information to patients undergoing hip fracture surgery. Additionally, they emphasize the importance of considering individual factors such as self-efficacy, age, and expertise in developing strategies to enhance patient-provider communication in orthopedic care settings.Keywords: orthopedic surgeons, hip fracture surgery, mortality risk communication, patient information
Procedia PDF Downloads 256843 Optimization of Multi-Zone Unconventional (Shale) Gas Reservoir Using Hydraulic Fracturing Technique
Authors: F. C. Amadi, G. C. Enyi, G. G. Nasr
Abstract:
Hydraulic fracturing is one of the most important stimulation techniques available to the petroleum engineer to extract hydrocarbons in tight gas sandstones. It allows more oil and gas production in tight reservoirs as compared to conventional means. The main aim of the study is to optimize the hydraulic fracturing as technique and for this purpose three multi-zones layer formation is considered and fractured contemporaneously. The three zones are named as Zone1 (upper zone), Zone2 (middle zone) and Zone3 (lower zone) respectively and they all occur in shale rock. Simulation was performed with Mfrac integrated software which gives a variety of 3D fracture options. This simulation process yielded an average fracture efficiency of 93.8%for the three respective zones and an increase of the average permeability of the rock system. An average fracture length of 909 ft with net height (propped height) of 210 ft (average) was achieved. Optimum fracturing results was also achieved with maximum fracture width of 0.379 inches at an injection rate of 13.01 bpm with 17995 Mscf of gas production.Keywords: hydraulic fracturing, optimisation, shale, tight reservoir
Procedia PDF Downloads 4286842 The Neutrophil-to-Lymphocyte Ratio after Surgery for Hip Fracture in a New, Simple, and Objective Score to Predict Postoperative Mortality
Authors: Philippe Dillien, Patrice Forget, Harald Engel, Olivier Cornu, Marc De Kock, Jean Cyr Yombi
Abstract:
Introduction: Hip fracture precedes commonly death in elderly people. Identification of high-risk patients may contribute to target patients in whom optimal management, resource allocation and trials efficiency is needed. The aim of this study is to construct a predictive score of mortality after hip fracture on the basis of the objective prognostic factors available: Neutrophil-to-lymphocyte ratio (NLR), age, and sex. C-Reactive Protein (CRP), is also considered as an alternative to the NLR. Patients and methods: After the IRB approval, we analyzed our prospective database including 286 consecutive patients with hip fracture. A score was constructed combining age (1 point per decade above 74 years), sex (1 point for males), and NLR at postoperative day+5 (1 point if >5). A receiver-operating curve (ROC) curve analysis was performed. Results: From the 286 patients included, 235 were analyzed (72 males and 163 females, 30.6%/69.4%), with a median age of 84 (range: 65 to 102) years, mean NLR values of 6.47+/-6.07. At one year, 82/280 patients died (29.3%). Graphical analysis and log-rank test confirm a highly statistically significant difference (P<0.001). Performance analysis shows an AUC of 0.72 [95%CI 0.65-0.79]. CRP shows no advantage on NLR. Conclusion: We have developed a score based on age, sex and the NLR to predict the risk of mortality at one year in elderly patients after surgery for a hip fracture. After external validation, it may be included in clinical practice as in clinical research to stratify the risk of postoperative mortality.Keywords: neutrophil-to-lymphocyte ratio, hip fracture, postoperative mortality, medical and health sciences
Procedia PDF Downloads 4136841 Experimental Research on the Elastic Modulus of Bones at the Lamellar Level under Fatigue Loading
Authors: Xianjia Meng, Chuanyong Qu
Abstract:
Compact bone produces fatigue damage under the inevitable physiological load. The accumulation of fatigue damage can change the bone’s micro-structure at different scales and cause the catastrophic failure eventually. However, most tests were limited to the macroscopic modulus of bone and there is a need to assess the microscopic modulus during fatigue progress. In this paper, nano-identation was used to investigate the bone specimen subjected to four point bending. The microscopic modulus of the same area were measured at different degrees of damage including fracture. So microscopic damage can be divided into three stages: first, the modulus decreased rapidly and then They fell slowly, before fracture the decline became fast again. After fracture, the average modulus decreased by 20%. The results of inner and outer planes explained the influence of compressive and tensile loads on modulus. Both the compressive and tensile moduli decreased with the accumulation of damage. They reached the minimum at ending and increased after fracture. The modulus evolution under different strains were revealed by the side. They all fell slowly and then fast with the accumulation of damage. The fractured results indicated that the elastic modulus decreased obviously at the high strain while decreased less at the low strain. During the fatigue progress, there was a significant difference in modulus at low degree of damage. However, the dispersed modulus tended to be similar at high degree of damage, but they became different again after the failure.Keywords: fatigue damage, fracture, microscopic modulus, bone, nano-identation
Procedia PDF Downloads 1656840 The Bespoke ‘Hybrid Virtual Fracture Clinic’ during the COVID-19 Pandemic: A Paradigm Shift?
Authors: Anirudh Sharma
Abstract:
Introduction: The Covid-19 pandemic necessitated a change in the manner outpatient fracture clinics are conducted due to the need to reduce footfall in hospital. While studies regarding virtual fracture clinics have shown these to be useful and effective, they focus exclusively on remote consultations. However, our service was bespoke to the patient – either a face-to-face or telephone consultation depending on patient need – a ‘hybrid virtual clinic (HVC).’ We report patient satisfaction and outcomes with this novel service. Methods: Patients booked onto our fracture clinics during the first 2 weeks of national lockdown were retrospectively contacted to assess the mode of consultations (virtual, face-to-face, or hybrid), patient experience, and outcome. Patient experience was assessed using the net promoter (NPS), customer effort (CES) and customer satisfaction scores (CSS), and their likelihood of using the HVC in the absence of a pandemic. Patient outcomes were assessed using the components of the EQ5D score. Results: Of 269 possible patients, 140 patients responded to the questionnaire. Of these, 66.4% had ‘hybrid’ consultations, 27.1% had only virtual consultations, and 6.4% had only face-to-face consultations. The mean overall NPS, CES, and CSS (on a scale of 1-10) were 7.27, 7.25, and 7.37, respectively. The mean likelihood of patients using the HVC in the absence of a pandemic was 6.5/10. Patients who had ‘hybrid’ consultations showed better effort scores and greater overall satisfaction than those with virtual consultations only and also reported superior EQ5D outcomes (mean 79.27 vs. 72.7). Patients who did not require surgery reported increased satisfaction (mean 7.51 vs. 7.08) and were more likely to use the HVC in the absence of a pandemic. Conclusion: Our study indicates that a bespoke HVC has good overall patient satisfaction and outcomes and is a better format of fracture clinic service than virtual consultations alone. It may be the preferred mode for fracture clinics in similar situations in the future. Further analysis needs to be conducted in order to explore the impact on resources and clinician experience of HVC in order to appreciate this new paradigm shift.Keywords: hybrid virtual clinic, coronavirus, COVID-19, fracture clinic, remote consultation
Procedia PDF Downloads 1366839 The Use of Regional Blocks Versus IV Opioid Analgesics for Acute Traumatic Pain Management in the Emergency Department
Authors: Lajeesh Jabbar, Shibu T. Varghese
Abstract:
Being under pain is a very distressing factor that it prolongs the healing of any kind of trauma and add to the post traumatic stressful state. Alleviating the pain from acute traumatic conditions like fracture, degloving injury etc will help in faster recovery and also decrease the incidence of post traumatic stress disorder. Most of the emergency departments in INDIA are using IV opioid analgesics to relieve the patient from pain in cases of acute traumatic injuries. None of the Emergency Departments practice regional blocks in the country. In this study, we are comparing the efficacy of Regional Blocks in relieving the pain in lower limb fractures versus the use of IV analgesics for the same in the emergency department. The site of study is Malabar Institute Of Medical Sciences in Calicut in Kerala in India and is a place which receives approximately 10-20 traumatic fracture cases per day. The fracture sites used for the study purpose are femur fracture and phalangeal fractures.Keywords: regional blocks, IV analgesia, acute traumatic pain, femur fractures, phalanx fractures
Procedia PDF Downloads 417