Search results for: electroencephalogram signal
1626 ICanny: CNN Modulation Recognition Algorithm
Authors: Jingpeng Gao, Xinrui Mao, Zhibin Deng
Abstract:
Aiming at the low recognition rate on the composite signal modulation in low signal to noise ratio (SNR), this paper proposes a modulation recognition algorithm based on ICanny-CNN. Firstly, the radar signal is transformed into the time-frequency image by Choi-Williams Distribution (CWD). Secondly, we propose an image processing algorithm using the Guided Filter and the threshold selection method, which is combined with the hole filling and the mask operation. Finally, the shallow convolutional neural network (CNN) is combined with the idea of the depth-wise convolution (Dw Conv) and the point-wise convolution (Pw Conv). The proposed CNN is designed to complete image classification and realize modulation recognition of radar signal. The simulation results show that the proposed algorithm can reach 90.83% at 0dB and 71.52% at -8dB. Therefore, the proposed algorithm has a good classification and anti-noise performance in radar signal modulation recognition and other fields.Keywords: modulation recognition, image processing, composite signal, improved Canny algorithm
Procedia PDF Downloads 1911625 Cyclostationary Analysis of Polytime Coded Signals for LPI Radars
Authors: Metuku Shyamsunder, Kakarla Subbarao, P. Prasanna
Abstract:
In radars, an electromagnetic waveform is sent, and an echo of the same signal is received by the receiver. From this received signal, by extracting various parameters such as round trip delay, Doppler frequency it is possible to find distance, speed, altitude, etc. However, nowadays as the technology increases, intruders are intercepting transmitted signal as it reaches them, and they will be extracting the characteristics and trying to modify them. So there is a need to develop a system whose signal cannot be identified by no cooperative intercept receivers. That is why LPI radars came into existence. In this paper, a brief discussion on LPI radar and its modulation (polytime code (PT1)), detection (cyclostationary (DFSM & FAM) techniques such as DFSM, FAM are presented and compared with respect to computational complexity.Keywords: LPI radar, polytime codes, cyclostationary DFSM, FAM
Procedia PDF Downloads 4761624 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis
Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin
Abstract:
In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry
Procedia PDF Downloads 5461623 Sparse Signal Restoration Algorithm Based on Piecewise Adaptive Backtracking Orthogonal Least Squares
Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang
Abstract:
the traditional greedy compressed sensing algorithm needs to know the signal sparsity when recovering the signal, but the signal sparsity in the practical application can not be obtained as a priori information, and the recovery accuracy is low, which does not meet the needs of practical application. To solve this problem, this paper puts forward Piecewise adaptive backtracking orthogonal least squares algorithm. The algorithm is divided into two stages. In the first stage, the sparsity pre-estimation strategy is adopted, which can quickly approach the real sparsity and reduce time consumption. In the second stage iteration, the correction strategy and adaptive step size are used to accurately estimate the sparsity, and the backtracking idea is introduced to improve the accuracy of signal recovery. Through experimental simulation, the algorithm can accurately recover the estimated signal with fewer iterations when the sparsity is unknown.Keywords: compressed sensing, greedy algorithm, least square method, adaptive reconstruction
Procedia PDF Downloads 1471622 FPGA Implementation of a Marginalized Particle Filter for Delineation of P and T Waves of ECG Signal
Authors: Jugal Bhandari, K. Hari Priya
Abstract:
The ECG signal provides important clinical information which could be used to pretend the diseases related to heart. Accordingly, delineation of ECG signal is an important task. Whereas delineation of P and T waves is a complex task. This paper deals with the Study of ECG signal and analysis of signal by means of Verilog Design of efficient filters and MATLAB tool effectively. It includes generation and simulation of ECG signal, by means of real time ECG data, ECG signal filtering and processing by analysis of different algorithms and techniques. In this paper, we design a basic particle filter which generates a dynamic model depending on the present and past input samples and then produces the desired output. Afterwards, the output will be processed by MATLAB to get the actual shape and accurate values of the ranges of P-wave and T-wave of ECG signal. In this paper, Questasim is a tool of mentor graphics which is being used for simulation and functional verification. The same design is again verified using Xilinx ISE which will be also used for synthesis, mapping and bit file generation. Xilinx FPGA board will be used for implementation of system. The final results of FPGA shall be verified with ChipScope Pro where the output data can be observed.Keywords: ECG, MATLAB, Bayesian filtering, particle filter, Verilog hardware descriptive language
Procedia PDF Downloads 3671621 Numerical Experiments for the Purpose of Studying Space-Time Evolution of Various Forms of Pulse Signals in the Collisional Cold Plasma
Authors: N. Kh. Gomidze, I. N. Jabnidze, K. A. Makharadze
Abstract:
The influence of inhomogeneities of plasma and statistical characteristics on the propagation of signal is very actual in wireless communication systems. While propagating in the media, the deformation and evaluation of the signal in time and space take place and on the receiver we get a deformed signal. The present article is dedicated to studying the space-time evolution of rectangular, sinusoidal, exponential and bi-exponential impulses via numerical experiment in the collisional, cold plasma. The presented method is not based on the Fourier-presentation of the signal. Analytically, we have received the general image depicting the space-time evolution of the radio impulse amplitude that gives an opportunity to analyze the concrete results in the case of primary impulse.Keywords: collisional, cold plasma, rectangular pulse signal, impulse envelope
Procedia PDF Downloads 3831620 Recent Advancement in Fetal Electrocardiogram Extraction
Authors: Savita, Anurag Sharma, Harsukhpreet Singh
Abstract:
Fetal Electrocardiogram (fECG) is a widely used technique to assess the fetal well-being and identify any changes that might be with problems during pregnancy and to evaluate the health and conditions of the fetus. Various techniques or methods have been employed to diagnose the fECG from abdominal signal. This paper describes the facile approach for the estimation of the fECG known as Adaptive Comb. Filter (ACF). The ACF can adjust according to the temporal variations in fundamental frequency by itself that used for the estimation of the quasi periodic signal of ECG signal.Keywords: aECG, ACF, fECG, mECG
Procedia PDF Downloads 4081619 Signal Processing Approach to Study Multifractality and Singularity of Solar Wind Speed Time Series
Authors: Tushnik Sarkar, Mofazzal H. Khondekar, Subrata Banerjee
Abstract:
This paper investigates the nature of the fluctuation of the daily average Solar wind speed time series collected over a period of 2492 days, from 1st January, 1997 to 28th October, 2003. The degree of self-similarity and scalability of the Solar Wind Speed signal has been explored to characterise the signal fluctuation. Multi-fractal Detrended Fluctuation Analysis (MFDFA) method has been implemented on the signal which is under investigation to perform this task. Furthermore, the singularity spectra of the signals have been also obtained to gauge the extent of the multifractality of the time series signal.Keywords: detrended fluctuation analysis, generalized hurst exponent, holder exponents, multifractal exponent, multifractal spectrum, singularity spectrum, time series analysis
Procedia PDF Downloads 3931618 Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction
Authors: Najmeh Mohsenifar, Narjes Mohsenifar, Abbas Kargar
Abstract:
In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %.Keywords: electrocardiogram, RBF artificial neural network, PSO algorithm, predict, accuracy
Procedia PDF Downloads 6261617 Analysis of Epileptic Electroencephalogram Using Detrended Fluctuation and Recurrence Plots
Authors: Mrinalini Ranjan, Sudheesh Chethil
Abstract:
Epilepsy is a common neurological disorder characterised by the recurrence of seizures. Electroencephalogram (EEG) signals are complex biomedical signals which exhibit nonlinear and nonstationary behavior. We use two methods 1) Detrended Fluctuation Analysis (DFA) and 2) Recurrence Plots (RP) to capture this complex behavior of EEG signals. DFA considers fluctuation from local linear trends. Scale invariance of these signals is well captured in the multifractal characterisation using detrended fluctuation analysis (DFA). Analysis of long-range correlations is vital for understanding the dynamics of EEG signals. Correlation properties in the EEG signal are quantified by the calculation of a scaling exponent. We report the existence of two scaling behaviours in the epileptic EEG signals which quantify short and long-range correlations. To illustrate this, we perform DFA on extant ictal (seizure) and interictal (seizure free) datasets of different patients in different channels. We compute the short term and long scaling exponents and report a decrease in short range scaling exponent during seizure as compared to pre-seizure and a subsequent increase during post-seizure period, while the long-term scaling exponent shows an increase during seizure activity. Our calculation of long-term scaling exponent yields a value between 0.5 and 1, thus pointing to power law behaviour of long-range temporal correlations (LRTC). We perform this analysis for multiple channels and report similar behaviour. We find an increase in the long-term scaling exponent during seizure in all channels, which we attribute to an increase in persistent LRTC during seizure. The magnitude of the scaling exponent and its distribution in different channels can help in better identification of areas in brain most affected during seizure activity. The nature of epileptic seizures varies from patient-to-patient. To illustrate this, we report an increase in long-term scaling exponent for some patients which is also complemented by the recurrence plots (RP). RP is a graph that shows the time index of recurrence of a dynamical state. We perform Recurrence Quantitative analysis (RQA) and calculate RQA parameters like diagonal length, entropy, recurrence, determinism, etc. for ictal and interictal datasets. We find that the RQA parameters increase during seizure activity, indicating a transition. We observe that RQA parameters are higher during seizure period as compared to post seizure values, whereas for some patients post seizure values exceeded those during seizure. We attribute this to varying nature of seizure in different patients indicating a different route or mechanism during the transition. Our results can help in better understanding of the characterisation of epileptic EEG signals from a nonlinear analysis.Keywords: detrended fluctuation, epilepsy, long range correlations, recurrence plots
Procedia PDF Downloads 1761616 Empirical Mode Decomposition Based Denoising by Customized Thresholding
Authors: Wahiba Mohguen, Raïs El’hadi Bekka
Abstract:
This paper presents a denoising method called EMD-Custom that was based on Empirical Mode Decomposition (EMD) and the modified Customized Thresholding Function (Custom) algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode functions (IMFs). Then, all the noisy IMFs got threshold by applying the presented thresholding function to suppress noise and to improve the signal to noise ratio (SNR). The method was tested on simulated data and real ECG signal, and the results were compared to the EMD-Based signal denoising methods using the soft and hard thresholding. The results showed the superior performance of the proposed EMD-Custom denoising over the traditional approach. The performances were evaluated in terms of SNR in dB, and Mean Square Error (MSE).Keywords: customized thresholding, ECG signal, EMD, hard thresholding, soft-thresholding
Procedia PDF Downloads 3011615 Analysis of the Impact of Refractivity on Ultra High Frequency Signal Strength over Gusau, North West, Nigeria
Authors: B. G. Ayantunji, B. Musa, H. Mai-Unguwa, L. A. Sunmonu, A. S. Adewumi, L. Sa'ad, A. Kado
Abstract:
For achieving reliable and efficient communication system, both terrestrial and satellite communication, surface refractivity is critical in planning and design of radio links. This study analyzed the impact of atmospheric parameters on Ultra High Frequency (UHF) signal strength over Gusau, North West, Nigeria. The analysis exploited meteorological data measured simultaneously with UHF signal strength for the month of June 2017 using a Davis Vantage Pro2 automatic weather station and UHF signal strength measuring devices respectively. The instruments were situated at the premise of Federal University, Gusau (6° 78' N, 12° 13' E). The refractivity values were computed using ITU-R model. The result shows that the refractivity value attained the highest value of 366.28 at 2200hr and a minimum value of 350.66 at 2100hr local time. The correlation between signal strength and refractivity is 0.350; Humidity is 0.532 and a negative correlation of -0.515 for temperature.Keywords: refractivity, UHF (ultra high frequency) signal strength, free space, automatic weather station
Procedia PDF Downloads 1971614 Wavelet Based Signal Processing for Fault Location in Airplane Cable
Authors: Reza Rezaeipour Honarmandzad
Abstract:
Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal
Procedia PDF Downloads 5241613 A Combined Feature Extraction and Thresholding Technique for Silence Removal in Percussive Sounds
Authors: B. Kishore Kumar, Pogula Rakesh, T. Kishore Kumar
Abstract:
The music analysis is a part of the audio content analysis used to analyze the music by using the different features of audio signal. In music analysis, the first step is to divide the music signal to different sections based on the feature profiles of the music signal. In this paper, we present a music segmentation technique that will effectively segmentize the signal and thresholding technique to remove silence from the percussive sounds produced by percussive instruments, which uses two features of music, namely signal energy and spectral centroid. The proposed method impose thresholds on both the features which will vary depends on the music signal. Depends on the threshold, silence part is removed and the segmentation is done. The effectiveness of the proposed method is analyzed using MATLAB.Keywords: percussive sounds, spectral centroid, spectral energy, silence removal, feature extraction
Procedia PDF Downloads 5931612 EEG Signal Processing Methods to Differentiate Mental States
Authors: Sun H. Hwang, Young E. Lee, Yunhan Ga, Gilwon Yoon
Abstract:
EEG is a very complex signal with noises and other bio-potential interferences. EOG is the most distinct interfering signal when EEG signals are measured and analyzed. It is very important how to process raw EEG signals in order to obtain useful information. In this study, the EEG signal processing techniques such as EOG filtering and outlier removal were examined to minimize unwanted EOG signals and other noises. The two different mental states of resting and focusing were examined through EEG analysis. A focused state was induced by letting subjects to watch a red dot on the white screen. EEG data for 32 healthy subjects were measured. EEG data after 60-Hz notch filtering were processed by a commercially available EOG filtering and our presented algorithm based on the removal of outliers. The ratio of beta wave to theta wave was used as a parameter for determining the degree of focusing. The results show that our algorithm was more appropriate than the existing EOG filtering.Keywords: EEG, focus, mental state, outlier, signal processing
Procedia PDF Downloads 2831611 Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection
Authors: Olesya Bolkhovskaya, Alexander Maltsev
Abstract:
Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signal is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work.Keywords: GLRT, Neumann-Pearson’s criterion, Test-statistics, degradation, spatial processing, multielement antenna array
Procedia PDF Downloads 3851610 An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals
Authors: Miljan B. Petrović, Dušan B. Petrović, Goran S. Nikolić
Abstract:
This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful.Keywords: noise, signal-to-noise ratio, stochastic signals, variance estimation
Procedia PDF Downloads 3861609 The Principle Probabilities of Space-Distance Resolution for a Monostatic Radar and Realization in Cylindrical Array
Authors: Anatoly D. Pluzhnikov, Elena N. Pribludova, Alexander G. Ryndyk
Abstract:
In conjunction with the problem of the target selection on a clutter background, the analysis of the scanning rate influence on the spatial-temporal signal structure, the generalized multivariate correlation function and the quality of the resolution with the increase pulse repetition frequency is made. The possibility of the object space-distance resolution, which is conditioned by the range-to-angle conversion with an increased scanning rate, is substantiated. The calculations for the real cylindrical array at high scanning rate are presented. The high scanning rate let to get the signal to noise improvement of the order of 10 dB for the space-time signal processing.Keywords: antenna pattern, array, signal processing, spatial resolution
Procedia PDF Downloads 1801608 Lab Bench for Synthetic Aperture Radar Imaging System
Authors: Karthiyayini Nagarajan, P. V. Ramakrishna
Abstract:
Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar (SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System (Lab Bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.Keywords: synthetic aperture radar, radio reflection model, lab bench, imaging engineering
Procedia PDF Downloads 4971607 An Ultrasonic Signal Processing System for Tomographic Imaging of Reinforced Concrete Structures
Authors: Edwin Forero-Garcia, Jaime Vitola, Brayan Cardenas, Johan Casagua
Abstract:
This research article presents the integration of electronic and computer systems, which developed an ultrasonic signal processing system that performs the capture, adaptation, and analog-digital conversion to later carry out its processing and visualization. The capture and adaptation of the signal were carried out from the design and implementation of an analog electronic system distributed in stages: 1. Coupling of impedances; 2. Analog filter; 3. Signal amplifier. After the signal conditioning was carried out, the ultrasonic information was digitized using a digital microcontroller to carry out its respective processing. The digital processing of the signals was carried out in MATLAB software for the elaboration of A-Scan, B and D-Scan types of ultrasonic images. Then, advanced processing was performed using the SAFT technique to improve the resolution of the Scan-B-type images. Thus, the information from the ultrasonic images was displayed in a user interface developed in .Net with Visual Studio. For the validation of the system, ultrasonic signals were acquired, and in this way, the non-invasive inspection of the structures was carried out and thus able to identify the existing pathologies in them.Keywords: acquisition, signal processing, ultrasound, SAFT, HMI
Procedia PDF Downloads 1071606 Design and Implementation of a Lab Bench for Synthetic Aperture Radar Imaging System
Authors: Karthiyayini Nagarajan, P. V. RamaKrishna
Abstract:
Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar(SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System(lab bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.Keywords: synthetic aperture radar, radio reflection model, lab bench
Procedia PDF Downloads 4681605 Realization of a Temperature Based Automatic Controlled Domestic Electric Boiling System
Authors: Shengqi Yu, Jinwei Zhao
Abstract:
This paper presents a kind of analog circuit based temperature control system, which is mainly composed by threshold control signal circuit, synchronization signal circuit and trigger pulse circuit. Firstly, the temperature feedback signal function is realized by temperature sensor TS503F3950E. Secondly, the main control circuit forms the cycle controlled pulse signal to control the thyristor switching model. Finally two reverse paralleled thyristors regulate the output power by their switching state. In the consequence, this is a modernized and energy-saving domestic electric heating system.Keywords: time base circuit, automatic control, zero-crossing trigger, temperature control
Procedia PDF Downloads 4811604 Rapid Algorithm for GPS Signal Acquisition
Authors: Fabricio Costa Silva, Samuel Xavier de Souza
Abstract:
A Global Positioning System (GPS) receiver is responsible to determine position, velocity and timing information by using satellite information. To get this information are necessary to combine an incoming and a locally generated signal. The procedure called acquisition need to found two information, the frequency and phase of the incoming signal. This is very time consuming, so there are several techniques to reduces the computational complexity, but each of then put projects issues in conflict. I this papers we present a method that can reduce the computational complexity by reducing the search space and paralleling the search.Keywords: GPS, acquisition, complexity, parallelism
Procedia PDF Downloads 5381603 Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal
Authors: Israa Sh. Tawfic, Sema Koc Kayhan
Abstract:
Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals.Keywords: compressed sensing, lest support orthogonal matching pursuit, partial knowing support, restricted isometry property, signal reconstruction
Procedia PDF Downloads 2401602 Rapid Parallel Algorithm for GPS Signal Acquisition
Authors: Fabricio Costa Silva, Samuel Xavier de Souza
Abstract:
A Global Positioning System (GPS) receiver is responsible to determine position, velocity and timing information by using satellite information. To get this information's are necessary to combine an incoming and a locally generated signal. The procedure called acquisition need to found two information, the frequency and phase of the incoming signal. This is very time consuming, so there are several techniques to reduces the computational complexity, but each of then put projects issues in conflict. I this papers we present a method that can reduce the computational complexity by reducing the search space and paralleling the search.Keywords: GPS, acquisition, low complexity, parallelism
Procedia PDF Downloads 5001601 Path loss Signals Determination in a Selected Buildings in Kazaure
Authors: Musefiu Aderinola, F. A. Amuda
Abstract:
Outages of GSM signals may be experienced at some indoor locations even when there are strong outdoor receptions. This is often traced to the building penetration loss, which account for increased attenuation of received GSM signals level when a mobile signal device is moved indoor from outdoor. In this work, measurement of two existing GSM operators signal level were made outside and inside two selected buildings- mud and block which represent the prevalent building types in Kazaure, Jigawa State, Nigeria. A gionee P2 mobile phone with RF signal tracker software installed in it was used and the result shows that an average loss of 10.62dBm and 4.25dBm for mud and block buildings respectively.Keywords: penetration loss, outdoor reception, Gionee P2, RF signal tracker, mud and block building
Procedia PDF Downloads 3021600 Feature Extraction of MFCC Based on Fisher-Ratio and Correlated Distance Criterion for Underwater Target Signal
Authors: Han Xue, Zhang Lanyue
Abstract:
In order to seek more effective feature extraction technology, feature extraction method based on MFCC combined with vector hydrophone is exposed in the paper. The sound pressure signal and particle velocity signal of two kinds of ships are extracted by using MFCC and its evolution form, and the extracted features are fused by using fisher-ratio and correlated distance criterion. The features are then identified by BP neural network. The results showed that MFCC, First-Order Differential MFCC and Second-Order Differential MFCC features can be used as effective features for recognition of underwater targets, and the fusion feature can improve the recognition rate. Moreover, the results also showed that the recognition rate of the particle velocity signal is higher than that of the sound pressure signal, and it reflects the superiority of vector signal processing.Keywords: vector information, MFCC, differential MFCC, fusion feature, BP neural network
Procedia PDF Downloads 5291599 Denoising Convolutional Neural Network Assisted Electrocardiogram Signal Watermarking for Secure Transmission in E-Healthcare Applications
Authors: Jyoti Rani, Ashima Anand, Shivendra Shivani
Abstract:
In recent years, physiological signals obtained in telemedicine have been stored independently from patient information. In addition, people have increasingly turned to mobile devices for information on health-related topics. Major authentication and security issues may arise from this storing, degrading the reliability of diagnostics. This study introduces an approach to reversible watermarking, which ensures security by utilizing the electrocardiogram (ECG) signal as a carrier for embedding patient information. In the proposed work, Pan-Tompkins++ is employed to convert the 1D ECG signal into a 2D signal. The frequency subbands of a signal are extracted using RDWT(Redundant discrete wavelet transform), and then one of the subbands is subjected to MSVD (Multiresolution singular valued decomposition for masking. Finally, the encrypted watermark is embedded within the signal. The experimental results show that the watermarked signal obtained is indistinguishable from the original signals, ensuring the preservation of all diagnostic information. In addition, the DnCNN (Denoising convolutional neural network) concept is used to denoise the retrieved watermark for improved accuracy. The proposed ECG signal-based watermarking method is supported by experimental results and evaluations of its effectiveness. The results of the robustness tests demonstrate that the watermark is susceptible to the most prevalent watermarking attacks.Keywords: ECG, VMD, watermarking, PanTompkins++, RDWT, DnCNN, MSVD, chaotic encryption, attacks
Procedia PDF Downloads 1011598 A Self-Adaptive Stimulus Artifacts Removal Approach for Electrical Stimulation Based Muscle Rehabilitation
Authors: Yinjun Tu, Qiang Fang, Glenn I. Matthews, Shuenn-Yuh Lee
Abstract:
This paper reports an efficient and rigorous self-adaptive stimulus artifacts removal approach for a mixed surface EMG (Electromyography) and stimulus signal during muscle stimulation. The recording of EMG and the stimulation of muscles were performing simultaneously. It is difficult to generate muscle fatigue feature from the mixed signal, which can be further used in closed loop system. A self-adaptive method is proposed in this paper, the stimulation frequency was calculated and verified firstly. Then, a mask was created based on this stimulation frequency to remove the undesired stimulus. 20 EMG signal recordings were analyzed, and the ANOVA (analysis of variance) approach illustrated that the decreasing trend of median power frequencies was successfully generated from the 'cleaned' EMG signal.Keywords: EMG, FES, stimulus artefacts, self-adaptive
Procedia PDF Downloads 3991597 Signal Processing of Barkhausen Noise Signal for Assessment of Increasing Down Feed in Surface Ground Components with Poor Micro-Magnetic Response
Authors: Tanmaya Kumar Dash, Tarun Karamshetty, Soumitra Paul
Abstract:
The Barkhausen Noise Analysis (BNA) technique has been utilized to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal with Fast Fourier transforms while Wavelet transforms has been used to remove noise from the BN signal, with judicious choice of the ‘threshold’ value, when the micro-magnetic response of the work material is poor. In the present study, the effect of down feed induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with an ultrasonically cleaned, wet polished and a sample ground with spark out technique for benchmarking. Moreover, the FFT analysis has been established, at different sets of applied voltages and applied frequency and the pattern of the BN signal in the frequency domain is analyzed. The study also depicts the wavelet transforms technique with different levels of decomposition and different mother wavelets, which has been used to reduce the noise value in BN signal of materials with poor micro-magnetic response, in order to standardize the procedure for all BN signals depending on the frequency of the applied voltage.Keywords: barkhausen noise analysis, grinding, magnetic properties, signal processing, micro-magnetic response
Procedia PDF Downloads 667