Search results for: converting models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7012

Search results for: converting models

6952 A Comparative Analysis of E-Government Quality Models

Authors: Abdoullah Fath-Allah, Laila Cheikhi, Rafa E. Al-Qutaish, Ali Idri

Abstract:

Many quality models have been used to measure e-government portals quality. However, the absence of an international consensus for e-government portals quality models results in many differences in terms of quality attributes and measures. The aim of this paper is to compare and analyze the existing e-government quality models proposed in literature (those that are based on ISO standards and those that are not) in order to propose guidelines to build a good and useful e-government portals quality model. Our findings show that, there is no e-government portal quality model based on the new international standard ISO 25010. Besides that, the quality models are not based on a best practice model to allow agencies to both; measure e-government portals quality and identify missing best practices for those portals.

Keywords: e-government, portal, best practices, quality model, ISO, standard, ISO 25010, ISO 9126

Procedia PDF Downloads 558
6951 Archaeology Study of Soul Houses in Ancient Egypt on Five Models in the Grand Egyptian Museum

Authors: Ayman Aboelkassem, Mahmoud Ali

Abstract:

Introduction: The models of soul houses have appeared in the prehistory, old kingdom and middle kingdom period. These soul houses represented the imagination of the deceased about his house in the afterlife, some of these soul houses were two floors and the study will examine five models of soul houses which were discovered near Saqqara site by an Egyptian mission. These models had been transferred to The Grand Egyptian Museum (GEM) to be ready to display at the new museum. We focus on models of soul houses (GEM Numbers, 1276, 1280, 1281, 1282, 8711) these models of soul houses were related to the old kingdom period. These models were all made of pottery, the five models have an oval shape and were decorated with relief. Methodology: The study will focus on the development of soul houses during the different periods in ancient Egypt, the function of soul houses, the kind of offerings which were put in it and the symbolism of the offerings colors in ancient Egyptian believe. Conclusion: This study is useful for the heritage and ancient civilizations especially when we talk about opening new museums like The Grand Egyptian Museum which will display a new collection of soul houses. The study of soul houses and The kinds of offerings which put in it reflect the economic situation in the Egyptian society and kinds of oils which were famous in ancient Egypt.

Keywords: archaeology study, Grand Egyptian Museum, relief, soul houses

Procedia PDF Downloads 253
6950 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset

Authors: Gabriele Borg, Alexei Debono, Charlie Abela

Abstract:

There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.

Keywords: graph neural networks, traffic management, big data, mobile data patterns

Procedia PDF Downloads 127
6949 Turbulent Forced Convection of Cu-Water Nanofluid: CFD Models Comparison

Authors: I. Behroyan, P. Ganesan, S. He, S. Sivasankaran

Abstract:

This study compares the predictions of five types of Computational Fluid Dynamics (CFD) models, including two single-phase models (i.e. Newtonian and non-Newtonian) and three two-phase models (Eulerian-Eulerian, mixture and Eulerian-Lagrangian), to investigate turbulent forced convection of Cu-water nanofluid in a tube with a constant heat flux on the tube wall. The Reynolds (Re) number of the flow is between 10,000 and 25,000, while the volume fraction of Cu particles used is in the range of 0 to 2%. The commercial CFD package of ANSYS-Fluent is used. The results from the CFD models are compared with results from experimental investigations from literature. According to the results of this study, non-Newtonian single-phase model, in general, does not show a good agreement with Xuan and Li correlation in prediction of Nu number. Eulerian-Eulerian model gives inaccurate results expect for φ=0.5%. Mixture model gives a maximum error of 15%. Newtonian single-phase model and Eulerian-Lagrangian model, in overall, are the recommended models. This work can be used as a reference for selecting an appreciate model for future investigation. The study also gives a proper insight about the important factors such as Brownian motion, fluid behavior parameters and effective nanoparticle conductivity which should be considered or changed by the each model.

Keywords: heat transfer, nanofluid, single-phase models, two-phase models

Procedia PDF Downloads 482
6948 Design and Performance Evaluation of Plasma Spouted Bed Reactor for Converting Waste Plastic into Green Hydrogen

Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Gartzen Lopez, Martin Olazar

Abstract:

Average calorific value of a mixure of waste plastic is approximately 38 MJ/kg. Present work aims to extract maximum possible energy from a mixure of waste plastic using a DC thermal plasma in a spouted bed reactor. Plasma pyrolysis and steam reforming process has shown a potential to generate hydrogen from plastic with much below of legal limit of producing dioxins and furans as the carcinogenic gases. A spouted bed pyrolysis rector can continuously process plastic beads to produce organic volatiles, which later react with steam in presence of catalyst to results in syngas. lasma being the fourth state of matter, can carry high impact electrons to favour the activation energy of any chemical reactions. Computational Fluid Dynamic (CFD) simulation using COMSOL Multiphysics software has been performed to evaluate performance of a plasma spouted bed reactor in producing contamination free hydrogen as a green energy from waste plastic beads. The simulation results will showcase a design of a plasma spouted bed reactor for converting plastic waste into green hydrogen in a single step process. The high temperature hydrodynamics of spouted bed with plastic beads and the corresponding temperature distribution inside the reaction chamber will be critically examined for it’s near future installation of demonstration plant.

Keywords: green hydrogen, plastic waste, synthetic gas, pyrolysis, steam reforming, spouted bed, reactor design, plasma, dc palsma, cfd simulation

Procedia PDF Downloads 109
6947 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device

Authors: Muthana A. M. Jameel Al-Jaboori

Abstract:

In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.

Keywords: water wave, models, Wells turbine, MATLAB program

Procedia PDF Downloads 360
6946 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia PDF Downloads 196
6945 Cantilever Secant Pile Constructed in Sand: Capping Beam Analysis and Design - Part I

Authors: Khaled R. Khater

Abstract:

The paper theme is soil retaining structures. Cantilever secant-pile wall is triggering scientific point of curiosity. Specially the capping beams structural analysis and its interaction with secant piles as one integrated matrix. It is believed that straining actions of this integrated matrix are most probably induced due to a combination of induced line load and non-uniform horizontal pile tips displacement. The strategy that followed throughout this study starts by converting the pile head horizontal displacements generated by Plaxis-2D model to a system of concentrated line load acting per meter run along the capping beam. Then, those line loads are the input data of Staad-Pro 3D-model. Those models tailored to allow the capping beam and the secant piles interacting as one matrix, i.e. a unit. It is believed that the suggested strategy presents close to real structural simulation. The above is the paper thought and methodology. Three sand densities, one pile rigidity and one excavation depth, “h = 4.0-m,” are completely sufficient to achieve the paper’s objective.

Keywords: secant piles, capping beam, analysis, design, plaxis 2D, staad pro 3D

Procedia PDF Downloads 105
6944 The Promotion Effects for a Supply Chain System with a Dominant Retailer

Authors: Tai-Yue Wang, Yi-Ho Chen

Abstract:

In this study, we investigate a two-echelon supply chain with two suppliers and three retailers among which one retailer dominates other retailers. A price competition demand function is used to model this dominant retailer, which is leading market. The promotion strategies and negotiation schemes are integrated to form decision-making models under different scenarios. These models are then formulated into different mathematical programming models. The decision variables such as promotional costs, retailer prices, wholesale price, and order quantity are included in these models. At last, the distributions of promotion costs under different cost allocation strategies are discussed. Finally, an empirical example used to validate our models. The results from this empirical example show that the profit model will create the largest profit for the supply chain but with different profit-sharing results. At the same time, the more risk a member can take, the more profits are distributed to that member in the utility model.

Keywords: supply chain, price promotion, mathematical models, dominant retailer

Procedia PDF Downloads 399
6943 The Effect of Institutions on Economic Growth: An Analysis Based on Bayesian Panel Data Estimation

Authors: Mohammad Anwar, Shah Waliullah

Abstract:

This study investigated panel data regression models. This paper used Bayesian and classical methods to study the impact of institutions on economic growth from data (1990-2014), especially in developing countries. Under the classical and Bayesian methodology, the two-panel data models were estimated, which are common effects and fixed effects. For the Bayesian approach, the prior information is used in this paper, and normal gamma prior is used for the panel data models. The analysis was done through WinBUGS14 software. The estimated results of the study showed that panel data models are valid models in Bayesian methodology. In the Bayesian approach, the effects of all independent variables were positively and significantly affected by the dependent variables. Based on the standard errors of all models, we must say that the fixed effect model is the best model in the Bayesian estimation of panel data models. Also, it was proved that the fixed effect model has the lowest value of standard error, as compared to other models.

Keywords: Bayesian approach, common effect, fixed effect, random effect, Dynamic Random Effect Model

Procedia PDF Downloads 67
6942 Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Models

Authors: Alam Ali, Ashok Kumar Pathak

Abstract:

Path analysis is a statistical technique used to evaluate the direct and indirect effects of variables in path models. One or more structural regression equations are used to estimate a series of parameters in path models to find the better fit of data. However, sometimes the assumptions of classical regression models, such as ordinary least squares (OLS), are violated by the nature of the data, resulting in insignificant direct and indirect effects of exogenous variables. This article aims to explore the effectiveness of a copula-based regression approach as an alternative to classical regression, specifically when variables are linked through an elliptical copula.

Keywords: path analysis, copula-based regression models, direct and indirect effects, k-fold cross validation technique

Procedia PDF Downloads 39
6941 Management of Cultural Heritage: Bologna Gates

Authors: Alfonso Ippolito, Cristiana Bartolomei

Abstract:

A growing demand is felt today for realistic 3D models enabling the cognition and popularization of historical-artistic heritage. Evaluation and preservation of Cultural Heritage is inextricably connected with the innovative processes of gaining, managing, and using knowledge. The development and perfecting of techniques for acquiring and elaborating photorealistic 3D models, made them pivotal elements for popularizing information of objects on the scale of architectonic structures.

Keywords: cultural heritage, databases, non-contact survey, 2D-3D models

Procedia PDF Downloads 421
6940 Data-Centric Anomaly Detection with Diffusion Models

Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu

Abstract:

Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.

Keywords: diffusion models, anomaly detection, data-centric, generative AI

Procedia PDF Downloads 81
6939 Copula Markov Switching Multifractal Models for Forecasting Value-at-Risk

Authors: Giriraj Achari, Malay Bhattacharyya

Abstract:

In this paper, the effectiveness of Copula Markov Switching Multifractal (MSM) models at forecasting Value-at-Risk of a two-stock portfolio is studied. The innovations are allowed to be drawn from distributions that can capture skewness and leptokurtosis, which are well documented empirical characteristics observed in financial returns. The candidate distributions considered for this purpose are Johnson-SU, Pearson Type-IV and α-Stable distributions. The two univariate marginal distributions are combined using the Student-t copula. The estimation of all parameters is performed by Maximum Likelihood Estimation. Finally, the models are compared in terms of accurate Value-at-Risk (VaR) forecasts using tests of unconditional coverage and independence. It is found that Copula-MSM-models with leptokurtic innovation distributions perform slightly better than Copula-MSM model with Normal innovations. Copula-MSM models, in general, produce better VaR forecasts as compared to traditional methods like Historical Simulation method, Variance-Covariance approach and Copula-Generalized Autoregressive Conditional Heteroscedasticity (Copula-GARCH) models.

Keywords: Copula, Markov Switching, multifractal, value-at-risk

Procedia PDF Downloads 163
6938 Magnetic Cellulase/Halloysite Nanotubes as Biocatalytic System for Converting Agro-Waste into Value-Added Product

Authors: Devendra Sillu, Shekhar Agnihotri

Abstract:

The 'nano-biocatalyst' utilizes an ordered assembling of enzyme on to nanomaterial carriers to catalyze desirable biochemical kinetics and substrate selectivity. The current study describes an inter-disciplinary approach for converting agriculture waste, sugarcane bagasse into D-glucose exploiting halloysite nanotubes (HNTs) decorated cellulase enzyme as nano-biocatalytic system. Cellulase was successfully immobilized on HNTs employing polydopamine as an eco-friendly crosslinker while iron oxide nanoparticles were attached to facilitate magnetic recovery of material. The characterization studies (UV-Vis, TEM, SEM, and XRD) displayed the characteristic features of both cellulase and magnetic HNTs in the resulting nanocomposite. Various factors (i.e., working pH, temp., crosslinker conc., enzyme conc.) which may influence the activity of biocatalytic system were investigated. The experimental design was performed using Response Surface Methodology (RSM) for process optimization. Analyses data demonstrated that the nanobiocatalysts retained 80.30% activity even at elevated temperature (55°C) and excellent storage stabilities after 10 days. The repeated usage of system revealed a remarkable consistent relative activity over several cycles. The immobilized cellulase was employed to decompose agro-waste and the maximum decomposition rate of 67.2 % was achieved. Conclusively, magnetic HNTs can serve as a potential support for enzyme immobilization with long term usage, good efficacy, reusability and easy recovery from solution.

Keywords: halloysite nanotubes, enzyme immobilization, cellulase, response surface methodology, magnetic recovery

Procedia PDF Downloads 131
6937 Digital Marketing Maturity Models: Overview and Comparison

Authors: Elina Bakhtieva

Abstract:

The variety of available digital tools, strategies and activities might confuse and disorient even an experienced marketer. This applies in particular to B2B companies, which are usually less flexible in uptaking of digital technology than B2C companies. B2B companies are lacking a framework that corresponds to the specifics of the B2B business, and which helps to evaluate a company’s capabilities and to choose an appropriate path. A B2B digital marketing maturity model helps to fill this gap. However, modern marketing offers no widely approved digital marketing maturity model, and thus, some marketing institutions provide their own tools. The purpose of this paper is building an optimized B2B digital marketing maturity model based on a SWOT (strengths, weaknesses, opportunities, and threats) analysis of existing models. The current study provides an analytical review of the existing digital marketing maturity models with open access. The results of the research are twofold. First, the provided SWOT analysis outlines the main advantages and disadvantages of existing models. Secondly, the strengths of existing digital marketing maturity models, helps to identify the main characteristics and the structure of an optimized B2B digital marketing maturity model. The research findings indicate that only one out of three analyzed models could be used as a separate tool. This study is among the first examining the use of maturity models in digital marketing. It helps businesses to choose between the existing digital marketing models, the most effective one. Moreover, it creates a base for future research on digital marketing maturity models. This study contributes to the emerging B2B digital marketing literature by providing a SWOT analysis of the existing digital marketing maturity models and suggesting a structure and main characteristics of an optimized B2B digital marketing maturity model.

Keywords: B2B digital marketing strategy, digital marketing, digital marketing maturity model, SWOT analysis

Procedia PDF Downloads 342
6936 Energy Models for Analyzing the Economic Wide Impact of the Environmental Policies

Authors: Majdi M. Alomari, Nafesah I. Alshdaifat, Mohammad S. Widyan

Abstract:

Different countries have introduced different schemes and policies to counter global warming. The rationale behind the proposed policies and the potential barriers to successful implementation of the policies adopted by the countries were analyzed and estimated based on different models. It is argued that these models enhance the transparency and provide a better understanding to the policy makers. However, these models are underpinned with several structural and baseline assumptions. These assumptions, modeling features and future prediction of emission reductions and other implication such as cost and benefits of a transition to a low-carbon economy and its economy wide impacts were discussed. On the other hand, there are potential barriers in the form political, financial, and cultural and many others that pose a threat to the mitigation options.

Keywords: energy models, environmental policy instruments, mitigating CO2 emission, economic wide impact

Procedia PDF Downloads 521
6935 Heat Sink Optimization for a High Power Wearable Thermoelectric Module

Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras

Abstract:

As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.

Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat

Procedia PDF Downloads 150
6934 Operating Speed Models on Tangent Sections of Two-Lane Rural Roads

Authors: Dražen Cvitanić, Biljana Maljković

Abstract:

This paper presents models for predicting operating speeds on tangent sections of two-lane rural roads developed on continuous speed data. The data corresponds to 20 drivers of different ages and driving experiences, driving their own cars along an 18 km long section of a state road. The data were first used for determination of maximum operating speeds on tangents and their comparison with speeds in the middle of tangents i.e. speed data used in most of operating speed studies. Analysis of continuous speed data indicated that the spot speed data are not reliable indicators of relevant speeds. After that, operating speed models for tangent sections were developed. There was no significant difference between models developed using speed data in the middle of tangent sections and models developed using maximum operating speeds on tangent sections. All developed models have higher coefficient of determination then models developed on spot speed data. Thus, it can be concluded that the method of measuring has more significant impact on the quality of operating speed model than the location of measurement.

Keywords: operating speed, continuous speed data, tangent sections, spot speed, consistency

Procedia PDF Downloads 451
6933 Control-Oriented Enhanced Zero-Dimensional Two-Zone Combustion Modelling of Internal Combustion Engines

Authors: Razieh Arian, Hadi Adibi-Asl

Abstract:

This paper investigates an efficient combustion modeling for cycle simulation of internal combustion engine (ICE) studies. The term “efficient model” means that the models must generate desired simulation results while having fast simulation time. In other words, the efficient model is defined based on the application of the model. The objective of this study is to develop math-based models for control applications or shortly control-oriented models. This study compares different modeling approaches used to model the ICEs such as mean-value models, zero dimensional, quasi-dimensional, and multi-dimensional models for control applications. Mean-value models have been widely used for model-based control applications, but recently by developing advanced simulation tools (e.g. Maple/MapleSim) the higher order models (more complex) could be considered as control-oriented models. This paper presents the enhanced zero-dimensional cycle-by-cycle modeling and simulation of a spark ignition engine with a two-zone combustion model. The simulation results are cross-validated against the simulation results from GT-Power package and show a good agreement in terms of trends and values.

Keywords: Two-zone combustion, control-oriented model, wiebe function, internal combustion engine

Procedia PDF Downloads 339
6932 Angiotensin Converting Enzyme (ACE) and Angiotensinogen (AGT) Gene Variants in Pakistani Patients of Diabetes Mellitus and Diabetic Nephropathy

Authors: Rozeena Shaikh, Syed M Shahid, Jamil Ahmad, Qaisar Mansoor, Muhammad Ismail, Abid Azhar

Abstract:

Introduction: Diabetes mellitus (DM) is a prevalent non-communicable disease worldwide. In most high-income countries as well as middle-income and low- income countries. DM is among the top causes of deaths. DM may lead to many vascular complications like hypertension, nephropathy, retinopathy, neuropathy, and foot. Diabetic nephropathy (DN) characterized by persistent albuminuria is a leading cause of end stage renal failure (ESRF). Pathogenesis of diabetic nephropathy is implicated by the polymorphisms in genes encoding the components of reninangiotensin- aldosteron system (RAAS) which include angiotensinogen (AGT), angiotensin-II receptor and particularly angiotensin converting enzyme (ACE) gene. Method: Study subjects include 110 control, 110 patients with DM without hypertension, 110 patients with DM with hypertension and 110 patients with DN. Blood samples were collected for Biochemical analysis and PCR and sequencing for the specific region of both genes. Results: The frequency of DD genotype and D allele of ACE (I/D) was significantly (p<0.05) high in DM normotensive, DM hypertensive and DN patients when compared to control. The ACE G2350A genotypes and allele frequencies were significantly different (p<0.05) in DM hypertensive patients as compared to control and DN, while no difference was observed between DM normotensive and DN when compared to control. The genotypes and alleles of AGT (M268T) polymorphism were significantly different (p<0.05) in DM normotensive, DM hypertensive and DN when compared to control. Conclusion: The DD genotype and D allele of ACE (I/D), GG genotype and G allele of ACE (G2350A) and the TT genotype and T allele of AGT (M268T) polymorphism have shown a significant difference in genotype and allele frequencies between controls and patients.

Keywords: genetic variations, ACE, AGT, diabetes mellitus, diabetic nephropathy, Pakistan

Procedia PDF Downloads 391
6931 Urban Resilience: Relation between COVID-19 and Urban Environment in Amman City

Authors: Layla Mujahed

Abstract:

COVID-19 is an exam for all the city’s systems. It shows many gaps in the systems such as healthcare, economic, social, and environment. This pandemic is paving for a new era, an era of technology and it has changed people’s lives, such as physical, and emotional changes, and converting communication into digitalized. The effect of COVID-19 has covered all urban city parts. COVID-19 will not be the last pandemic our cities will face. For that, more researches focus on enhancing the quality of the urban environment. This pandemic encourages a rethinking of the environment’s role, especially in cities. Cities are trying to provide the best suitable strategies and regulations to prevent the spread of COVID-19, and an example of that is Amman city. Amman has a high increment in the number of COVID-19 infected people, while it has controlled the situation for months. For that, this paper studies the relation between COVID-19 and urban environmental studies cases about cities around the world, and learns from their models to face COVID-19. In Amman, people’s behavior has changed towards public transportation and public green spaces. N­ew governmental regulations focus on increasing people’s mental awareness, supporting local businesses, and enhancing neighborhood planning that can help Amman to face any future pandemics.

Keywords: COVID-19, urban environment, urban planning, urban resilience

Procedia PDF Downloads 122
6930 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams

Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous

Abstract:

Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.

Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams

Procedia PDF Downloads 86
6929 Effect of Spontaneous Ripening and Drying Techniques on the Bioactive Activities Peel of Plantain (Musa paradisiaca) Fruit

Authors: Famuwagun A. A., Abiona O. O., Gbadamosi S.O., Adeboye O. A., Adebooye O. C.

Abstract:

The need to provide more information on the perceived bioactive status of the peel of plantain fruit informed the design of this research. Matured Plantain fruits were harvested, and fruits were allowed to ripen spontaneously. Samples of plantain fruit were taken every fortnight, and the peels were removed. The peels were dried using two different drying techniques (Oven drying and sun drying) and milled into powdery forms. Other samples were picked and processed in a similar manner on the first, third, seventh and tenth day until the peels of the fruits were fully ripped, resulting in eight different samples. The anti-oxidative properties of the samples using different assays (DPPH, FRAP, MCA, HRSA, SRSA, ABTS, ORAC), inhibitory activities against enzymes related to diabetes (alpha-amylase and glucosidase) and inhibition against angiotensin-converting enzymes (ACE) were evaluated. The result showed that peels of plantain fruits on the 7th day of ripening and sundried exhibited greater inhibitions against free radicals, which enhanced its antioxidant activities, resulting in greater inhibitions against alpha-amylase and alpha-glucosidase enzymes. Also, oven oven-dried sample of the peel of plantain fruit on the 7th day of ripening had greater phenolic contents than the other samples, which also resulted in higher inhibition against angiotensin converting enzymes when compared with other samples. The results showed that even though the unripe peel of plantain fruit is assumed to contain excellent bioactive activities, consumption of the peel should be allowed to ripen for seven days after maturity and harvesting so as to derive maximum benefit from the peel.

Keywords: functional ingredient, diabetics, hypertension, functional foods

Procedia PDF Downloads 49
6928 Superiority of High Frequency Based Volatility Models: Empirical Evidence from an Emerging Market

Authors: Sibel Celik, Hüseyin Ergin

Abstract:

The paper aims to find the best volatility forecasting model for stock markets in Turkey. For this purpose, we compare performance of different volatility models-both traditional GARCH model and high frequency based volatility models- and conclude that both in pre-crisis and crisis period, the performance of high frequency based volatility models are better than traditional GARCH model. The findings of paper are important for policy makers, financial institutions and investors.

Keywords: volatility, GARCH model, realized volatility, high frequency data

Procedia PDF Downloads 485
6927 Soil-Structure Interaction Models for the Reinforced Foundation System – A State-of-the-Art Review

Authors: Ashwini V. Chavan, Sukhanand S. Bhosale

Abstract:

Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model.’ The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models.

Keywords: geosynthetics, mathematical modeling, reinforced foundation, soil-structure interaction, ground improvement, soft soil

Procedia PDF Downloads 121
6926 A Game-Theory-Based Price-Optimization Algorithm for the Simulation of Markets Using Agent-Based Modelling

Authors: Juan Manuel Sanchez-Cartas, Gonzalo Leon

Abstract:

A price competition algorithm for ABMs based on game theory principles is proposed to deal with the simulation of theoretical market models. The algorithm is applied to the classical Hotelling’s model and to a two-sided market model to show it leads to the optimal behavior predicted by theoretical models. However, when theoretical models fail to predict the equilibrium, the algorithm is capable of reaching a feasible outcome. Results highlight that the algorithm can be implemented in other simulation models to guarantee rational users and endogenous optimal behaviors. Also, it can be applied as a tool of verification given that is theoretically based.

Keywords: agent-based models, algorithmic game theory, multi-sided markets, price optimization

Procedia PDF Downloads 453
6925 The Use of Stochastic Gradient Boosting Method for Multi-Model Combination of Rainfall-Runoff Models

Authors: Phanida Phukoetphim, Asaad Y. Shamseldin

Abstract:

In this study, the novel Stochastic Gradient Boosting (SGB) combination method is addressed for producing daily river flows from four different rain-runoff models of Ohinemuri catchment, New Zealand. The selected rainfall-runoff models are two empirical black-box models: linear perturbation model and linear varying gain factor model, two conceptual models: soil moisture accounting and routing model and Nedbør-Afrstrømnings model. In this study, the simple average combination method and the weighted average combination method were used as a benchmark for comparing the results of the novel SGB combination method. The models and combination results are evaluated using statistical and graphical criteria. Overall results of this study show that the use of combination technique can certainly improve the simulated river flows of four selected models for Ohinemuri catchment, New Zealand. The results also indicate that the novel SGB combination method is capable of accurate prediction when used in a combination method of the simulated river flows in New Zealand.

Keywords: multi-model combination, rainfall-runoff modeling, stochastic gradient boosting, bioinformatics

Procedia PDF Downloads 338
6924 Unsupervised Reciter Recognition Using Gaussian Mixture Models

Authors: Ahmad Alwosheel, Ahmed Alqaraawi

Abstract:

This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process.

Keywords: Quran, speaker recognition, reciter recognition, Gaussian Mixture Model

Procedia PDF Downloads 379
6923 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 142