Search results for: brick aggregate concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2276

Search results for: brick aggregate concrete

2216 A Study on Leaching of Toxic Elements of High Strength Concrete Containing Waste Cathode Ray Tube Glass as Coarse Aggregate

Authors: Nurul Noraziemah Mohd Pauzi, Muhammad Fauzi Mohd Zain

Abstract:

The rapid advance in the electronic industry has led to the increase amount of the waste cathode ray tube (CRT) devices. The management of CRT waste upon disposal haves become a major issue of environmental concern as it contains toxic elements (i.e. lead, barium, zinc, etc.) which has a risk of leaching if it is not managed appropriately. Past studies have reported regarding the possible use of CRT glass as a part of aggregate in concrete production. However, incorporating waste CRT glass may present an environmental risk via leachability of toxic elements. Accordingly, the preventive measures for reducing the risk was proposed. The current work presented the experimental results regarding potential leaching of toxic elements from four types of concrete mixed, each compromising waste CRT glass as coarse aggregate with different shape and properties. Concentrations of detected elements are measure in the leachates by using atomic absorption spectrometry (AAS). Results indicate that the concentration of detected elements were found to be below applicable risk, despite the higher content of toxic elements in CRT glass. Therefore, the used of waste CRT glass as coarse aggregate in hardened concrete does not pose any risk of leachate of heavy metals to the environment.

Keywords: recycled CRT glass, coarse aggregate, physical properties, leaching, toxic elements

Procedia PDF Downloads 333
2215 Effects of Aggregate Type and Concrete Age on Compressive Strength After Subjected to Elevated Temperature

Authors: Ahmed M. Seyam, Rita Nemes

Abstract:

In this study, the influence of elevated temperature and concrete age on the compressive strength of concrete produced by normal quartz aggregate, expanded clay, expanded glass, crushed andesite and crushed clay bricks aggregates were investigated. For this purpose, six different mixtures were prepared by 100% replacement of the coarse aggregate. The specimens were cured in water for seven days, then kept in the laboratory for 120 days and 240 days. The concrete specimens were heated in an electric furnace up to 200, 400, 600, 800, and 1000 °C and kept at these temperatures for two hours heating, then for 24 hours cooling. The residual compressive strength of the specimens was measured. The results showed that, the elevated temperature induces a significant decrease in a compressive strength in both normal weight and lightweight aggregate concrete, by comparing the behavior of different mixes, in all cases, the strength of the specimens containing crushed andesite aggregates showed a better performance for compressive strength after exposure to elevated temperatures over 800 °C, while the specimens containing expanded glass showing the least residual strength after subjected to elevated temperature; moreover the age of the concrete in all mixes has also been an effective factor, the behavior of the concrete strength loss by increasing heating temperature was not changed but the strength results showing the better performance and higher compressive strength in both ambient and elevated temperature.

Keywords: elevated temperature, concrete age, compressive strength, expanded clay, expanded glass, crushed andesite, crushed clay bricks

Procedia PDF Downloads 89
2214 Manufacturing Commercial Bricks with Construction and Demolition Wastes

Authors: Mustafa Kara, Yasemin Kilic, Bahattin Murat Demir, Ümit Ustaoglu, Cavit Unal

Abstract:

This paper reports utilization of different kind of construction and demolition wastes (C&D) in the production of bricks at industrial scale. Plastered brick waste and tile wastes were collected from ISTAÇ Co. Compost and Recovery Plant, Istanbul, Turkey. Plastered brick waste and tile waste are mixed with brick clay in the proportion of 0-30% and fired at 900ºC. The physical and mechanical properties of the produced bricks were determined and evaluated according to IKIZLER Brick Company Production values, Brick Industry Association (BIA) and Turkish Standards (TS). The resulted showed that plastered brick waste and tile waste can be used to produce good quality brick for various engineering applications in construction and building. The replacement of brick clay by plastered brick waste and tile waste at the levels of 30% has good effects on the compressive strength of the bricks.

Keywords: commercial brick, construction and demolition waste, manufacturing, recycling

Procedia PDF Downloads 332
2213 Properties of Preplaced Aggregate Concrete with Modified Binder

Authors: Kunal Krishna Das, Eddie S. S. Lam

Abstract:

Preplaced Aggregate Concrete (PAC) is produced by first placing the coarse aggregate into the formwork, followed by injection of grout to fill in the voids in between the coarse aggregates. In this study, tests were carried out to determine the effects of supplementary cementitious materials on the properties of PAC. Cement was partially replaced by ground granulated blast furnace slag (GGBS) and silica fume (SF) at different proportions. Grout properties were determined by the flow cone test and compressive strength test. Grout proportion was optimized statistically. It was applied to form PAC. Hardened properties of PAC, comprising compressive strength, splitting tensile strength, chloride-ion penetration and drying shrinkage, were evaluated. GGBS enhanced the flowability of the grout, whereas SF enhanced the strength of PAC. Both GGBS and SF improved the resistance to chloride-ion penetration with the drawback of increased drying shrinkage. Nevertheless, drying shrinkage was within the range to be classified as low shrinkage concrete.

Keywords: factorial design, ground granulated blast furnace slag, preplaced aggregate concrete, silica fume

Procedia PDF Downloads 113
2212 Freeze-Thaw Resistance of Concretes with BFSA

Authors: Alena Sicakova

Abstract:

Air-cooled Blast furnace slag aggregate (BFSA) is usually referred to as a material providing for unique properties of concrete. On the other hand, negative influences are also presented in many aspects. The freeze-thaw resistance of concrete is dependent on many factors, including regional specifics and when a concrete mix is specified it is still difficult to tell its exact freeze-thaw resistance due to the different components affecting it. An important consideration in working with BFSA is the granularity and whether slag is sorted or not. The experimental part of the article represents a comparative testing of concrete using both the sorted and unsorted BFSA through the freeze-thaw resistance as an indicator of durability. Unsorted BFSA is able to be successfully used for concretes as they are specified for exposure class XF4 with providing that the type of cement is precisely selected.

Keywords: blast furnace slag aggregate, concrete, freeze-thaw resistance

Procedia PDF Downloads 378
2211 The Use of Palm Kernel Shell and Ash for Concrete Production

Authors: J. E. Oti, J. M. Kinuthia, R. Robinson, P. Davies

Abstract:

This work reports the potential of using Palm Kernel (PK) ash and shell as a partial substitute for Portland Cement (PC) and coarse aggregate in the development of mortar and concrete. PK ash and shell are agro-waste materials from palm oil mills, the disposal of PK ash and shell is an environmental problem of concern. The PK ash has pozzolanic properties that enables it as a partial replacement for cement and also plays an important role in the strength and durability of concrete, its use in concrete will alleviate the increasing challenges of scarcity and high cost of cement. In order to investigate the PC replacement potential of PK ash, three types of PK ash were produced at varying temperature (350-750 degrees) and they were used to replace up to 50% PC. The PK shell was used to replace up to 100% coarse aggregate in order to study its aggregate replacement potential. The testing programme included material characterisation, the determination of compressive strength, tensile splitting strength and chemical durability in aggressive sulfate-bearing exposure conditions. The 90 day compressive results showed a significant strength gain (up to 26.2 N/mm2). The Portland cement and conventional coarse aggregate has significantly higher influence in the strength gain compared to the equivalent PK ash and PK shell. The chemical durability results demonstrated that after a prolonged period of exposure, significant strength losses in all the concretes were observed. This phenomenon is explained, due to lower change in concrete morphology and inhibition of reaction species and the final disruption of the aggregate cement paste matrix.

Keywords: sustainability, concrete, mortar, palm kernel shell, compressive strength, consistency

Procedia PDF Downloads 370
2210 Recycling of End of Life Concrete Based on C2CA Method

Authors: Somayeh Lotfi, Manuel Eggimann, Eckhard Wagner, Radosław Mróz, Jan Deja

Abstract:

One of the main environmental challenges in the construction industry is a strong social force to decrease the bulk transport of the building materials in urban environments. Considering this fact, applying more in-situ recycling technologies for Construction and Demolition Waste (CDW) is an urgent need. The European C2CA project develops a novel concrete recycling technology that can be performed purely mechanically and in situ. The technology consists of a combination of smart demolition, gentle grinding of the crushed concrete in an autogenous mill, and a novel dry classification technology called ADR to remove the fines. The feasibility of this recycling process was examined in demonstration projects involving in total 20,000 tons of End of Life (EOL) concrete from two office towers in Groningen, The Netherlands. This paper concentrates on the second demonstration project of C2CA, where EOL concrete was recycled on an industrial site. After recycling, the properties of the produced Recycled Aggregate (RA) were investigated, and results are presented. An experimental study was carried out on mechanical and durability properties of produced Recycled Aggregate Concrete (RAC) compared to those of the Natural Aggregate Concrete (NAC). The aim was to understand the importance of RA substitution, w/c ratio and type of cement to the properties of RAC. In this regard, two series of reference concrete with strength classes of C25/30 and C45/55 were produced using natural coarse aggregates (rounded and crushed) and natural sand. The RAC series were created by replacing parts of the natural aggregate, resulting in series of concrete with 0%, 20%, 50% and 100% of RA. Results show that the concrete mix design and type of cement have a decisive effect on the properties of RAC. On the other hand, the substitution of RA even at a high percentage replacement level has a minor and manageable impact on the performance of RAC. This result is a good indication towards the feasibility of using RA in structural concrete by modifying the mix design and using a proper type of cement.

Keywords: C2CA, ADR, concrete recycling, recycled aggregate, durability

Procedia PDF Downloads 368
2209 Modeling of Crack Propagation Path in Concrete with Coarse Trapezoidal Aggregates by Boundary Element Method

Authors: Chong Wang, Alexandre Urbano Hoffmann

Abstract:

Interaction between a crack and a trapezoidal aggregate in a single edge notched concrete beam is simulated using boundary element method with an automatic crack extension program. The stress intensity factors of the growing crack are obtained from the J-integral. Three crack extension paths: deflecting around the particulate, growing along the interface and penetrating into the particulate are achieved in terms of the mismatch state of mechanical characteristics of matrix and the particulate. The toughening is also given by the ratio of stress intensity factors. The results reveal that as stress shielding occurs, toughening is obtained when the crack is approaching to a stiff and strong aggregate weakly bonded to a relatively soft matrix. The present work intends to help for the design of aggregate reinforced concretes.

Keywords: aggregate concrete, boundary element method, two-phase composite, crack extension path, crack/particulate interaction

Procedia PDF Downloads 406
2208 The Behavior of Masonry Wall Constructed Using Biaxial Interlocking Concrete Block, Solid Concrete Block and Cement Sand Brick Subjected to the Compressive Load

Authors: Fauziah Aziz, Mohd.fadzil Arshad, Hazrina Mansor, Sedat Kömürcü

Abstract:

Masonry is an isotropic and heterogeneous material due to the presence of the different components within the assembly process. Normally the mortar plays a significant role in the compressive behavior of the traditional masonry structures. Biaxial interlocking concrete block is a masonry unit that comes out with the interlocking concept. This masonry unit can improve the quality of the construction process, reduce the cost of labor, reduce high skill workmanship, and speeding the construction time. Normally, the interlocking concrete block masonry unit in the market place was designed in a way interlocking concept only either x or y-axis, shorter in length, and low compressive strength value. However, the biaxial interlocking concrete block is a dry-stack concept being introduced in this research, offered the specialty compared to the normal interlocking concrete available in the market place due to its length and the geometry of the groove and tongue. This material can be used as a non-load bearing wall, or load-bearing wall depends on the application of the masonry. But, there is a lack of technical data that was produced before. This paper presents a finding on the compressive resistance of the biaxial interlocking concrete block masonry wall compared to the other traditional masonry walls. Two series of biaxial interlocking concrete block masonry walls, namely M1 and M2, a series of solid concrete block and cement sand brick walls M3, and M4 have tested the compressive resistance. M1 is the masonry wall of a hollow biaxial interlocking concrete block meanwhile; M2 is the grouted masonry wall, M3 is a solid concrete block masonry wall, and M4 is a cement sand brick masonry wall. All the samples were tested under static compressive load. The results examine that M2 is higher in compressive resistance compared to the M1, M3, and M4. It shows that the compressive strength of the concrete masonry units plays a significant role in the capacity of the masonry wall.

Keywords: interlocking concrete block, compressive resistance, concrete masonry unit, masonry

Procedia PDF Downloads 147
2207 Shear Behavior of Reinforced Concrete Beams Casted with Recycled Coarse Aggregate

Authors: Salah A. Aly, Mohammed A. Ibrahim, Mostafa M. khttab

Abstract:

The amount of construction and demolition (C&D) waste has increased considerably over the last few decades. From the viewpoint of environmental preservation and effective utilization of resources, crushing C&D concrete waste to produce coarse aggregate (CA) with different replacement percentage for the production of new concrete is one common means for achieving a more environment-friendly concrete. In the study presented herein, the investigation was conducted in two phases. In the first phase, the selection of the materials was carried out and the physical, mechanical and chemical characteristics of these materials were evaluated. Different concrete mixes were designed. The investigation parameter was Recycled Concrete Aggregate (RCA) ratios. The mechanical properties of all mixes were evaluated based on compressive strength and workability results. Accordingly, two mixes have been chosen to be used in the next phase. In the second phase, the study of the structural behavior of the concrete beams was developed. Sixteen beams were casted to investigate the effect of RCA ratios, the shear span to depth ratios and the effect of different locations and reinforcement of openings on the shear behavior of the tested specimens. All these beams were designed to fail in shear. Test results of the compressive strength of concrete indicated that, replacement of natural aggregate by up to 50% recycled concrete aggregates in mixtures with 350 Kg/m3 cement content led to increase of concrete compressive strength. Moreover, the tensile strength and the modulus of elasticity of the specimens with RCA have very close values to those with natural aggregates. The ultimate shear strength of beams with RCA is very close to those with natural aggregates indicating the possibility of using RCA as partial replacement to produce structural concrete elements. The validity of both the Egyptian Code for the design and implementation of Concrete Structures (ECCS) 203-2007 and American Concrete Institute (ACI) 318-2011Codes for estimating the shear strength of the tested RCA beams was investigated. It was found that the codes procedures gives conservative estimates for shear strength.

Keywords: construction and demolition (C&D) waste, coarse aggregate (CA), recycled coarse aggregates (RCA), opening

Procedia PDF Downloads 372
2206 Construction Sustainability Improvement through Using Recycled Aggregates in Concrete Production

Authors: Zhiqiang Zhu, Khalegh Barati, Xuesong Shen

Abstract:

Due to the energy consumption caused by the construction industry, the public is paying more and more attention to the sustainability of the buildings. With the advancement of research on recycled aggregates, it has become possible to replace natural aggregates with recycled aggregates and to achieve a reduction in energy consumption of materials during construction. The purpose of this paper is to quantitatively compare the emergy consumption of natural aggregate concrete (NAC) and recycled aggregate concrete (RAC). To do so, the emergy analysis method is adopted. Using this technique, it can effectively analyze different forms of energy and substance. The main analysis object is the direct and indirect emergy consumption of the stages in concrete production. Therefore, for indirect energy, consumption of production machinery and transportation vehicle also need to be considered. Finally, the emergy values required to produce the two concrete types are compared to analyze whether the RAC can reduce emergy consumption.

Keywords: sustainable construction, NAC, RAC, emergy, concrete

Procedia PDF Downloads 124
2205 Recycling of Aggregates from Construction Demolition Wastes in Concrete: Study of Physical and Mechanical Properties

Authors: M. Saidi, F. Ait Medjber, B. Safi, M. Samar

Abstract:

This work is focused on the study of valuation of recycled concrete aggregates, by measuring certain properties of concrete in the fresh and hardened state. In this study, rheological tests and physic-mechanical characterization on concretes and mortars were conducted with recycled concrete whose geometric properties were identified aggregates. Mortars were elaborated with recycled fine aggregate (0/5mm) and concretes were manufactured using recycled coarse aggregates (5/12.5 mm and 12.5/20 mm). First, a study of the mortars was conducted to determine the effectiveness of adjuvant polycarboxylate superplasticizer on the workability of these and their action deflocculating of the fine recycled sand. The rheological behavior of mortars based on fine aggregate recycled was characterized. The results confirm that the mortars composed of different fractions of recycled sand (0/5) have a better mechanical properties (compressive and flexural strength) compared to normal mortar. Also, the mechanical strengths of concretes made with recycled aggregates (5/12.5 mm and 12.5/20 mm), are comparable to those of conventional concrete with conventional aggregates, provided that the implementation can be improved by the addition of a superplasticizer.

Keywords: demolition wastes, recycled coarse aggregate, concrete, workability, mechanical strength, porosity/water absorption

Procedia PDF Downloads 313
2204 To Optimise the Mechanical Properties of Structural Concrete by Partial Replacement of Natural Aggregates by Glass Aggregates

Authors: Gavin Gengan, Hsein Kew

Abstract:

Glass from varying recycling processes is considered a material that can be used as aggregate. Waste glass is available from different sources and has been used in the construction industry over the last decades. This current study aims to use recycled glass as a partial replacement for conventional aggregate materials. The experimental programme was designed to optimise the mechanical properties of structural concrete made with recycled glass aggregates (GA). NA (natural aggregates) was partially substituted by GA in a mix design of concrete of 30N/mm2 in proportions of 10%, 20%, and 25% 30%, 40%, and 50%. It was found that with an increasing proportion of GA, there is a decline in compressive strength. The optimum percentage replacement of NA by GA is 25%. The heat of hydration was also investigated with thermocouples placed in the concrete. This revealed an early acceleration of hydration heat in glass concrete, resulting from the thermal properties of glass. The gain in the heat of hydration and the better bonding of glass aggregates together with the pozzolanic activity of the finest glass particles caused the concrete to develop early age and long-term strength higher than that of control concrete

Keywords: concrete, compressive strength, glass aggregates, heat of hydration, pozzolanic

Procedia PDF Downloads 187
2203 Seismic Behavior of Masonry Reinforced Concrete Composite Columns

Authors: Hassane Ousalem, Hideki Kimura, Akitoshi Hamada, Masuda Hiroyuki

Abstract:

To provide tall unreinforced brick masonry walls of a century-old existing building with sufficient resistance against earthquake loading actions, additional reinforced concrete columns were integrated into the building at some designated locations and jointed to the existing masonry walls through dowel shear steel bars, resulting in composite structural elements. As conditions at the interface between the existing masonry and newly added reinforced concrete parts were not well grasped and the behavior of such composite elements would be complex, the experimental investigation was carried out. Three relatively large specimens were tested to investigate the overall behavior of brick masonry-reinforced concrete composite elements under lateral cyclic loadings. Confining the brick walls on only one side or on two opposite sides, as well as providing different amounts of dowel shear steel bars at the interface were the main parameters of the investigation. Test results showed that such strengthening provide a good seismic performance even at very large lateral drifts and the investigated amount of shear dowel lead to a good performance level that would result in a considerable cost reduction of the strengthening.

Keywords: unreinforced masonry, reinforced concrete, composite column, seismic strengthening, structural testing

Procedia PDF Downloads 191
2202 Aspects Concerning the Use of Recycled Concrete Aggregates

Authors: Ion Robu, Claudiu Mazilu, Radu Deju

Abstract:

Natural aggregates (gravel and crushed) are essential non-renewable resources which are used for infrastructure works and civil engineering. In European Union member states from Southeast Europe, it is estimated that the construction industry will grow by 4.2% thereafter complicating aggregate supply management. In addition, a significant additional problem that can be associated to the aggregates industry is wasting potential resources through waste dumping of inert waste, especially waste from construction and demolition activities. In 2012, in Romania, less than 10% of construction and demolition waste (including concrete) are valorized, while the European Union requires that by 2020 this proportion should be at least 70% (Directive 2008/98/EC on waste, transposed into Romanian legislation by Law 211/2011). Depending on the efficiency of waste processing and the quality of recycled aggregate concrete (RCA) obtained, poor quality aggregate can be used as foundation material for roads and at the high quality for new concrete on construction. To obtain good quality concrete using recycled aggregate is necessary to meet the minimum requirements defined by the rules for the manufacture of concrete with natural aggregate. Properties of recycled aggregate (density, granulosity, granule shape, water absorption, weight loss to Los Angeles test, attached mortar content etc.) are the basis for concrete quality; also establishing appropriate proportions between components and the concrete production methods are extremely important for its quality. This paper presents a study on the use of recycled aggregates, from a concrete of specified class, to acquire new cement concrete with different percentages of recycled aggregates. To achieve recycled aggregates several batches of concrete class C16/20, C25/30 and C35/45 were made, the compositions calculation being made according NE012/2007 CP012/2007. Tests for producing recycled aggregate was carried out using concrete samples of the established three classes after 28 days of storage under the above conditions. Cubes with 150mm side were crushed in a first stage with a jaw crusher Liebherr type set at 50 mm nominally. The resulting material was separated by sieving on granulometric sorts and 10-50 sort was used for preliminary tests of crushing in the second stage with a jaw crusher BB 200 Retsch model, respectively a hammer crusher Buffalo Shuttle WA-12-H model. It was highlighted the influence of the type of crusher used to obtain recycled aggregates on granulometry and granule shape and the influence of the attached mortar on the density, water absorption, behavior to the Los Angeles test etc. The proportion of attached mortar was determined and correlated with provenance concrete class of the recycled aggregates and their granulometric sort. The aim to characterize the recycled aggregates is their valorification in new concrete used in construction. In this regard have been made a series of concrete in which the recycled aggregate content was varied from 0 to 100%. The new concrete were characterized by point of view of the change in the density and compressive strength with the proportion of recycled aggregates. It has been shown that an increase in recycled aggregate content not necessarily mean a reduction in compressive strength, quality of the aggregate having a decisive role.

Keywords: recycled concrete aggregate, characteristics, recycled aggregate concrete, properties

Procedia PDF Downloads 188
2201 Studies on Mechanical Properties of Concrete and Mortar Containing Waste Glass Aggregate

Authors: Nadjoua Bourmatte, Hacène Houari

Abstract:

Glass has been indispensable to men’s life due to its properties, including pliability to take any shape with ease, bright surface, resistance to abrasion, reasonable safety and durability. Waste glass creates serious environmental problems, mainly due to the inconsistency of waste glass streams. With increasing environmental pressure to reduce solid waste and to recycle as much as possible, the concrete industry has adopted a number of methods to achieve this goal. The object of this research work is to study the effect of using recycled glass waste, as a partial replacement of fine aggregate, on the fresh and hardened properties of concrete. Recycled glass was used to replace fine aggregate in proportions of 0%, 25% and 50%. We could observe that the Glass waste aggregates are lighter than natural aggregates and they show a very low water absorption. The experimental results showed that the slump flow increased with the increase of recycled glass content. On the other hand, the compressive strength and tensile strength of recycled glass mixtures decreased with the increase in the recycled glass content. The results showed that recycled glass aggregate can successfully be used with limited level for producing concrete. The standard sand was substituted with aggregates based on glass waste for manufacturing mortars, Mortar based on glass shows a compressive strength and low bending with a 1/2 ratio with control mortar strength.

Keywords: concrete, environment, glass waste, recycling

Procedia PDF Downloads 212
2200 Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes

Authors: T. D. Gunneswara Rao, Mudimby Andal

Abstract:

Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, partial replacement to fine aggregates and admixture. Addition of fly ash to the concrete in each one of the form mentioned above, makes the concrete more workable and durable than the conventional concrete. Studies on fly ash as partial replacement to cement gained momentum as such replacement makes the concrete economical. In the present study, an attempt has been made to understand the effects of fly ash on the workability characteristics and strength aspects of fly ash concretes. In India, major number of thermal power plants are producing low calcium fly ash. Hence, in the present investigation, low calcium fly ash has been used. Fly ash in concrete was considered for the partial replacement of cement. The percentage replacement of cement by fly ash varied from 0% to 40% at regular intervals of 10%. Moreover the fine aggregate to coarse aggregate ratio also has been varied as 1:1, 1:2, and 1:3. The workability tests revealed that up to 30% replacement of cement by fly ash in concrete mixes water demand for reduces and beyond 30% replacement of cement by fly ash demanded more water content for constant workability.

Keywords: cementing efficiency, compressive strength, low calcium fly ash, workability

Procedia PDF Downloads 458
2199 Selected Technological Factors Influencing the Modulus of Elasticity of Concrete

Authors: Klara Krizova, Rudolf Hela

Abstract:

The topic of the article focuses on the evaluation of selected technological factors and their influence on resulting elasticity modulus of concrete. A series of various factors enter into the manufacturing process which, more or less, influences the elasticity modulus. This paper presents the results of concrete in which the influence of water coefficient and the size of maximum fraction of the aggregate on the static elasticity modulus were monitored. Part of selected results of the long-term programme was discussed in which a wide scope of various variants of proposals for the composition of concretes was evaluated.

Keywords: mix design, water-cement ratio, aggregate, modulus of elasticity

Procedia PDF Downloads 380
2198 Construction of Green Aggregates from Waste Processing

Authors: Fahad K. Alqahtani

Abstract:

Nowadays construction industry is developing means to incorporate waste products in concrete to ensure sustainability. To meet the need of construction industry, a synthetic aggregate was developed using optimized technique called compression moulding press technique. The manufactured aggregate comprises mixture of plastic, waste which acts as binder, together with by-product waste which acts as fillers. The physical properties and microstructures of the inert materials and the manufactured aggregate were examined and compared with the conventional available aggregates. The outcomes suggest that the developed aggregate has potential to be used as substitution of conventional aggregate due to its less weight and water absorption. The microstructure analysis confirmed the efficiency of the manufacturing process where the final product has the same mixture of binder and filler.

Keywords: fly ash, plastic waste, quarry fine, red sand, synthetic aggregate

Procedia PDF Downloads 205
2197 Evaluation of Limestone as Self-Curing Aggregate for Concretes in the Southeast of Yucatan Peninsula

Authors: D. G. Rejon-Parra, B. Escobar-Morales, Romeli Barbosa, J. C. Cruz

Abstract:

In the southeast of Yucatan Peninsula, sedimentary limestone has different degrees of compaction. Due to its recent geological formation (Quaternary) and weathering effects causing an affordable aggregate for local manufacturers of concrete. It is characterized as lightweight aggregates (average density of 2,50), susceptible to abrasion and varying porosities (water content exceeding 7,50 % of its mass, in saturated condition). In this study, local aggregates with two moisture conditions (saturated and dry), have been examined in order to compare them for optimizing the performance of concrete. It is possible that these aggregates favour a phenomenon of mass transport (self-curing by porous aggregate); influencing the water reactions to form crystalline and gel hydration products. Based on the ACI methodology, a concrete mixture of 250 kg/cm2 was designed, with portland blended cement 30R. The bond between the mortar and the coarse aggregate was characterized as physicochemical based on trials which were carefully observed during time span of 28 days. The BET technique was used to analyse the micro porosity and surface areas of contact of the different crystalline phases of the limestone. Its chemical composition and crystal structures were verified with scanning electron microscopy SEM-EDS. On the third day, the samples with saturated aggregate reached 237 kg/cm2 of resistence, nearly the design strength; while samples with dry aggregate, exceeded the design strength, with a capacity of 308 kg/cm2. Aggregates in dry conditions demand a high quantity of water in the initial mixture, causing high resistance at the early stages. In saturated conditions, the development of resistance is progressive but constant.

Keywords: concrete, internal curing, limestone aggregate, porosity

Procedia PDF Downloads 372
2196 Field Evaluation of Concrete Using Hawaiian Aggregates for Alkali Silica Reaction

Authors: Ian N. Robertson

Abstract:

Alkali Silica Reaction (ASR) occurs in concrete when the alkali hydroxides (Na, K and OH) from the cement react with unstable silica, SiO2, in some types of aggregate. The gel that forms during this reaction will expand when it absorbs water, potentially leading to cracking and overall expansion of the concrete. ASR has resulted in accelerated deterioration of concrete highways, dams and other structures that are exposed to moisture during their service life. Concrete aggregates available in Hawaii have not demonstrated a history of ASR, however, accelerated laboratory tests using ASTM 1260 indicated a potential for ASR with some aggregates. Certain clients are now requiring import of aggregates from the US mainland at great expense. In order to assess the accuracy of the laboratory test results, a long-term field study of the potential for ASR in concretes made with Hawaiian aggregates was initiated in 2011 with funding from the US Federal Highway Administration and Hawaii Department of Transportation. Thirty concrete specimens were constructed of various concrete mixtures using aggregates from all Hawaiian aggregate sources, and some US mainland aggregates known to exhibit ASR expansion. The specimens are located in an open field site in Manoa valley on the Hawaiian Island of Oahu, exposed to relatively high humidity and frequent rainfall. A weather station at the site records the ambient conditions on a continual basis. After two years of monitoring, only one of the Hawaiian aggregates showed any sign of expansion. Ten additional specimens were fabricated with this aggregate to confirm the earlier observations. Admixtures known to mitigate ASR, such as fly ash and lithium, were included in some specimens to evaluate their effect on the concrete expansion. This paper describes the field evaluation program and presents the results for all forty specimens after four years of monitoring.

Keywords: aggregate, alkali silica reaction, concrete durability, field exposure

Procedia PDF Downloads 225
2195 Use of Waste Glass as Coarse Aggregate in Concrete: A Possibility towards Sustainable Building Construction

Authors: T. S. Serniabat, M. N. N. Khan, M. F. M. Zain

Abstract:

As climate change and environmental pressures are now well established as major international issues, to which governments, businesses and consumers have to respond through more environmentally friendly and aware practices, products and policies; the need to develop alternative sustainable construction materials, reduce greenhouse gas emissions, save energy, look to renewable energy sources and recycled materials, and reduce waste are just some of the pressures impacting significantly on the construction industry. The utilization of waste materials (slag, fly ash, glass beads, plastic and so on) in concrete manufacturing is significant due to engineering, financial, environmental and ecological importance. Thus, utilization of waste materials in concrete production is very much helpful to reach the goal of the sustainable construction. Therefore, this study intends to use glass beads in concrete production. The paper reports on the performance of 9 different concrete mixes containing different ratios of glass crushed to 5 mm - 20 mm maximum size and glass marble of 20 mm size as coarse aggregate .Ordinary Portland cement type 1 and fine sand less than 0.5 mm were used to produce standard concrete cylinders. Compressive strength tests were carried out on concrete specimens at various ages. Test results indicated that the mix having the balanced ratio of glass beads and round marbles possess maximum compressive strength which is 3888.68 psi, as glass beads perform better in bond formation but have lower strength, on the other hand marbles are strong in themselves but not good in bonding. These mixes were prepared following a specific W/C and aggregate ratio; more strength can be expected to achieve from different W/C, aggregate ratios, adding admixtures like strength increasing agents, ASR inhibitor agents etc.

Keywords: waste glass, recycling, environmentally friendly, glass aggregate, strength development

Procedia PDF Downloads 355
2194 Evaluation of Mixtures of Recycled Concrete Aggregate and Reclaimed Asphalt Pavement Aggregate in Road Subbases

Authors: Vahid Ayan, Joshua R Omer, Alireza Khavandi, Mukesh C Limbachiya

Abstract:

In Iran, utilization of reclaimed asphalt pavement (RAP) aggregate has become a common practice in pavement rehabilitation during the last ten years. Such developments in highway engineering have necessitated several studies to clarify the technical and environmental feasibility of other alternative materials in road rehabilitation and maintenance. The use of recycled concrete aggregates (RCA) in asphalt pavements is one of the major goals of municipality of Tehran. Nevertheless little research has been done to examine the potential benefits of local RCA. The objective of this study is laboratory investigation of incorporating RCA into RAP for use in unbound subbase application. Laboratory investigation showed that 50%RCA+50%RAP is both technically and economically appropriate for subbase use.

Keywords: Roads & highways, Sustainability, Recycling & reuse of materials

Procedia PDF Downloads 464
2193 Recycled Aggregates from Construction and Demolition Waste Suitable for Concrete Production

Authors: Vladimira Vytlacilova

Abstract:

This study presents the latest research trend in the discipline of construction and demolition (C&D) waste management in Czech Republic. The results of research interest exhibit an increasing research interest in C&D waste management practices in recent years. Construction and demolition waste creates a major portion of total solid waste production in the world and most of it is used in landfills, for reclamation or landscaping all the time. The quality of recycled aggregates for use in concrete construction depends on recycling practices. Classifications, composition and contaminants influence the mechanical-physical properties as well as environmental risks related to its utilization. The second part of contribution describes properties of fibre reinforced concrete with the full replacement of natural aggregate by recycled one (concrete or masonry rubble).

Keywords: construction and demolition waste, fibre reinforced concrete, recycled aggregate, recycling, waste management

Procedia PDF Downloads 283
2192 Effect of Aggregate Size on Mechanical Behavior of Passively Confined Concrete Subjected to 3D Loading

Authors: Ibrahim Ajani Tijani, C. W. Lim

Abstract:

Limited studies have examined the effect of size on the mechanical behavior of confined concrete subjected to 3-dimensional (3D) test. With the novel 3D testing system to produce passive confinement, concrete cubes were tested to examine the effect of size on stress-strain behavior of the specimens. The effect of size on 3D stress-strain relationship was scrutinized and compared to the stress-strain relationship available in the literature. It was observed that the ultimate stress and the corresponding strain was related to the confining rigidity and size. The size shows a significant effect on the intersection stress and a new model was proposed for the intersection stress based on the conceptual design of the confining plates.

Keywords: concrete, aggregate size, size effect, 3D compression, passive confinement

Procedia PDF Downloads 187
2191 Waterproofing Agent in Concrete for Tensile Improvement

Authors: Muhamad Azani Yahya, Umi Nadiah Nor Ali, Mohammed Alias Yusof, Norazman Mohamad Nor, Vikneswaran Munikanan

Abstract:

In construction, concrete is one of the materials that can commonly be used as for structural elements. Concrete consists of cement, sand, aggregate and water. Concrete can be added with admixture in the wet condition to suit the design purpose such as to prolong the setting time to improve workability. For strength improvement, concrete is being added with other hybrid materials to increase strength; this is because the tensile strength of concrete is very low in comparison to the compressive strength. This paper shows the usage of a waterproofing agent in concrete to enhance the tensile strength. High tensile concrete is expensive because the concrete mix needs fiber and also high cement content to be incorporated in the mix. High tensile concrete being used for structures that are being imposed by high impact dynamic load such as blast loading that hit the structure. High tensile concrete can be defined as a concrete mix design that achieved 30%-40% tensile strength compared to its compression strength. This research evaluates the usage of a waterproofing agent in a concrete mix as an element of reinforcement to enhance the tensile strength. According to the compression and tensile test, it shows that the concrete mix with a waterproofing agent enhanced the mechanical properties of the concrete. It is also show that the composite concrete with waterproofing is a high tensile concrete; this is because of the tensile is between 30% and 40% of the compression strength. This mix is economical because it can produce high tensile concrete with low cost.

Keywords: high tensile concrete, waterproofing agent, concrete, rheology

Procedia PDF Downloads 302
2190 Effect of Shape and Size of Concrete Specimen and Strength of Concrete Mixture in the Absence and Presence of Fiber

Authors: Sultan Husein Bayqra, Ali Mardani Aghabaglou, Zia Ahmad Faqiri, Hassane Amidou Ouedraogo

Abstract:

In this study, the effect of shape and size of the concrete specimen on the compressive and splitting tensile strength of the concrete mixtures in the absence and presence of steel fiber was investigated. For this aim, ten different concrete mixtures having w/c ratio of 0.3, 0.4, 0.5, 0.6 and 0.7 with and without fiber were prepared. In the mixtures containing steel fibers having aspect ratio (L/D) of 64 were used by 1% of the total mixture volume. In all concrete mixtures, CEM I 42,5R type Portland cement and crushed Lime-stone aggregates having different aggregate size fractions were used. The combined aggregate was obtained by mixing %40 0-5 mm, %30 5-12 mm and %30 12-22 mm aggregate size fraction. The slump values of concrete mixtures were kept constant as 17 ± 2 cm. To provide the desired slump value, a polycarboxylate ether-based high range water reducing admixture was used. In order to investigate the effect of size and shape of concrete specimen on strength properties 10 cm, 15 cm cubic specimens and 10×20 cm, 15×30 cm cylindrical specimens were prepared for each mixture. The specimens were cured under standard conditions until testing days. The 7- and 28-day compressive and splitting tensile strengths of mixtures were determined. The results obtained from the experimental study showed that the strength ratio between the cylinder and the cube specimens increased with the increase of the strength of the concrete. Regardless of the fiber utilization and specimen shape, strength values of concrete mixtures were increased by decreasing specimen size. However, the mentioned behaviour was not observed for the case that the mixtures having high W/C ratio and containing fiber. The compressive strength of cube specimens containing fiber was less affected by the size of the specimen compared to that of cube specimens containing no fibers.

Keywords: compressive strength, splitting tensile strength, fiber reinforced concrete, size effect, shape effect

Procedia PDF Downloads 162
2189 Effect of Electric Arc Furnace Coarse Slag Aggregate And Ground Granulated Blast Furnace Slag on Mechanical and Durability Properties of Roller Compacted Concrete Pavement

Authors: Amiya Kumar Thakur, Dinesh Ganvir, Prem Pal Bansal

Abstract:

Industrial by product utilization has been encouraged due to environment and economic factors. Since electric arc furnace slag aggregate is a by-product of steel industry and its storage is a major concern hence it can be used as a replacement of natural aggregate as its physical and mechanical property are comparable or better than the natural aggregates. The present study investigates the effect of partial and full replacement of natural coarse aggregate with coarse EAF slag aggregate and partial replacement of cement with ground granulated blast furnace slag (GGBFS) on the mechanical and durability properties of roller compacted concrete pavement (RCCP).The replacement level of EAF slag aggregate were at five levels (i.e. 0% ,25% ,50%,75% & 100%) and of GGBFS was (0 % & 30%).The EAF slag aggregate was stabilized by exposing to outdoor condition for several years and the volumetric expansion test using steam exposure device was done to check volume stability. Soil compaction method was used for mix proportioning of RCCP. The fresh properties of RCCP investigated were fresh density and modified vebe test was done to measure the consistency of concrete. For investigating the mechanical properties various tests were done at 7 and 28 days (i.e. Compressive strength, split tensile strength, flexure strength modulus of elasticity) and also non-destructive testing was done at 28 days (i.e. Ultra pulse velocity test (UPV) & rebound hammer test). The durability test done at 28 days were water absorption, skid resistance & abrasion resistance. The results showed that with the increase in slag aggregate percentage there was an increase in the fresh density of concrete and also slight increase in the vebe time but with the 30 % GGBFS replacement the vebe time decreased and the fresh density was comparable to 0% GGBFS mix. The compressive strength, split tensile strength, flexure strength & modulus of elasticity increased with the increase in slag aggregate percentage in concrete when compared to control mix. But with the 30 % GGBFS replacement there was slight decrease in mechanical properties when compared to 100 % cement concrete. In UPV test and rebound hammer test all the mixes showed excellent quality of concrete. With the increase in slag aggregate percentage in concrete there was an increase in water absorption, skid resistance and abrasion resistance but with the 30 % GGBFS percentage the skid resistance, water absorption and abrasion resistance decreased when compared to 100 % cement concrete. From the study it was found that the mix containing 30 % GGBFS with different percentages of EAF slag aggregate were having comparable results for all the mechanical and durability property when compared to 100 % cement mixes. Hence 30 % GGBFS can be used as cement replacement with 100 % EAF slag aggregate as natural coarse aggregate replacement.

Keywords: durability properties, electric arc furnace slag aggregate, GGBFS, mechanical properties, roller compacted concrete pavement, soil compaction method

Procedia PDF Downloads 118
2188 Mechanical Properties and Durability of Concretes Manufactured Using Pre-Coated Recycled Fine Aggregate

Authors: An Cheng, Hui-Mi Hsu, Sao-Jeng Chao, Wei-Ting Lin

Abstract:

This study investigated the mechanical properties and durability of concrete produced using recycled fine aggregate (RFA) pre-coated with fly ash, slag, and a polymer solution (PVA). We investigated the physical and microscopic properties of fresh concrete while adjusting several of the fabrication parameters, such as the constituent makeup and thickness of RFA pre-coatings. The study is divided into two parts. The first part involves mortar testing in which the RFA used for coating had a water/cement ratio of 0.5 and fly ash, slag, and PVA viscosity of 5~6cps, 21~26cps, 25~30cps, or 44~50cps. In these tests, 100% of the natural fine aggregate was replaced by RCA. The second part of the study involved the mixing of concrete with 25% FRA, which was respectively coated with fly ash, slag, or PVA at a viscosity of 44~50cps. In these tests, the water/cement ratio was either .4 or 0.6. The major findings in this study are summarized as follows: Coating RFA coated with fly ash and PVA was shown to increase flow in the fresh concrete; however, the coating of FRA with slag resulted in a slight decrease in flow. Coating FRA with slag was shown to improve the compressive and splitting strength to a greater degree than that achieved by coating FRA with fly ash and PVA. The mechanical properties of concrete mixed with slag were shown to increase with the thickness of the coating. Coating FRA with slag was also shown to enhance the durability of the concrete, regardless of the water/cement ratio.

Keywords: recycled fine aggregates, pre-coated, fly ash, slag, pre-coated thickness

Procedia PDF Downloads 304
2187 High Performance Concrete Using “BAUT” (Metal Aggregates) the Gateway to New Concrete Technology for Mega Structures

Authors: Arjun, Gautam, Sanjeev Naval

Abstract:

Concrete technology has been changing rapidly and constantly since its discovery. Concrete is the most widely used man-made construction material, versatility of making concrete is the 2nd largest consumed material on earth. In this paper an effort has been made to use metal aggregates in concrete has been discussed, the metal aggregates has been named as “BAUT” which had outstandingly qualities to resist shear, tension and compression forces. In this paper, COARSE BAUT AGGREGATES (C.B.A.) 10mm & 20mm and FINE BAUT AGGREGATES (F.B.A.) 3mm were divided and used for making high performance concrete (H.P.C). This “BAUT” had cutting edge technology through draft and design by the use of Auto CAD, ANSYS software can be used effectively In this research paper we study high performance concrete (H.P.C) with “BAUT” and consider the grade of M65 and finally we achieved the result of 90-95 Mpa (high compressive strength) for mega structures and irregular structures where center of gravity (CG) is not balanced. High Performance BAUT Concrete is the extraordinary qualities like long-term performance, no sorptivity by BAUT AGGREGATES, better rheological, mechanical and durability proportion that conventional concrete. This high strength BAUT concrete using “BAUT” is applied in the construction of mega structure like skyscrapers, dam, marine/offshore structures, nuclear power plants, bridges, blats and impact resistance structures. High Performance BAUT Concrete which is a controlled concrete possesses invariable high strength, reasonable workability and negligibly permeability as compare to conventional concrete by the mix of Super Plasticizers (SMF), silica fume and fly ash.

Keywords: BAUT, High Strength Concrete, High Performance Concrete, Fine BAUT Aggregate, Coarse BAUT Aggregate, metal aggregates, cutting edge technology

Procedia PDF Downloads 480