Search results for: bottleneck
36 The Relationship among Lifestyles, Accompany Forms, and Children’s Capability to Solve Problems of Modern Families
Authors: Tien-Ling Yeh, Jo-Han Chan
Abstract:
The percentage of dual-earner couples has become higher and higher each year. Family lifestyles in Taiwan have also been changing. This fact reflects the importance of family communication and parent-child relationship. This study aimed to explore the influences of family lifestyles and accompany forms on children’s capability to solve problems. The research process included two phases: (1) literature review, to explore the characteristics of children’s capability to solve problems and methods to measure this capability; and (2) questionnaire analyses, to explore the influences of lifestyles and accompany time and forms of modern families on their children’s capability to solve problems. The questionnaires were issued in October and November, 2016. A total of 300 questionnaires were retrieved, among which 250 were valid. The findings are summarized below: -The linguistic performances of the children from families of the busy and haggling lifestyle or the intermittent childcare lifestyle were rather good. Besides being interested in learning, these children could solve problems or difficulties independently. -The capability to ‘analyze problems’ of children from families with accompanying time during 19:00-19:30 (family dinner time) or 22:00-23:30 (before bedtime) was good. When facing a complex problem, these children could identify the most important factor in the problem. When seeing a problem, they would first look for the cause. If they encountered a bottleneck while solving a problem, they would review the context of the problem and related conditions to come up with another solution. -According to the literature, learning toys with numbers and symbols to learn to read can help develop children’s logic thinking, which is helpful to solve problems. Interestingly, some study suggested that children playing with fluid constructive toys are less likely to give up what they are doing and more likely to identify problems in their daily life. Some of them can even come up with creative and effective solutions.Keywords: accompany, lifestyle, parent-child, problem-solving
Procedia PDF Downloads 11735 Platform Integration for High-Throughput Functional Screening Applications
Authors: Karolis Leonavičius, Dalius Kučiauskas, Dangiras Lukošius, Arnoldas Jasiūnas, Kostas Zdanys, Rokas Stanislovas, Emilis Gegevičius, Žana Kapustina, Juozas Nainys
Abstract:
Screening throughput is a common bottleneck in many research areas, including functional genomics, drug discovery, and directed evolution. High-throughput screening techniques can be classified into two main categories: (i) affinity-based screening and (ii) functional screening. The first one relies on binding assays that provide information about the affinity of a test molecule for a target binding site. Binding assays are relatively easy to establish; however, they reveal no functional activity. In contrast, functional assays show an effect triggered by the interaction of a ligand at a target binding site. Functional assays might be based on a broad range of readouts, such as cell proliferation, reporter gene expression, downstream signaling, and other effects that are a consequence of ligand binding. Screening of large cell or gene libraries based on direct activity rather than binding affinity is now a preferred strategy in many areas of research as functional assays more closely resemble the context where entities of interest are anticipated to act. Droplet sorting is the basis of high-throughput functional biological screening, yet its applicability is limited due to the technical complexity of integrating high-performance droplet analysis and manipulation systems. As a solution, the Droplet Genomics Styx platform enables custom droplet sorting workflows, which are necessary for the development of early-stage or complex biological therapeutics or industrially important biocatalysts. The poster will focus on the technical design considerations of Styx in the context of its application spectra.Keywords: functional screening, droplet microfluidics, droplet sorting, dielectrophoresis
Procedia PDF Downloads 13534 Next-Generation Laser-Based Transponder and 3D Switch for Free Space Optics in Nanosatellite
Authors: Nadir Atayev, Mehman Hasanov
Abstract:
Future spacecraft will require a structural change in the way data is transmitted due to the increase in the volume of data required for space communication. Current radio frequency communication systems are already facing a bottleneck in the volume of data sent to the ground segment due to their technological and regulatory characteristics. To overcome these issues, free space optics communication plays an important role in the integrated terrestrial space network due to its advantages such as significantly improved data rate compared to traditional RF technology, low cost, improved security, and inter-satellite free space communication, as well as uses a laser beam, which is an optical signal carrier to establish satellite-ground & ground-to-satellite links. In this approach, there is a need for high-speed and energy-efficient systems as a base platform for sending high-volume video & audio data. Nano Satellite and its branch CubeSat platforms have more technical functionality than large satellites, wheres cover an important part of the space sector, with their Low-Earth-Orbit application area with low-cost design and technical functionality for building networks using different communication topologies. Along the research theme developed in this regard, the output parameter indicators for the FSO of the optical communication transceiver subsystem on the existing CubeSat platforms, and in the direction of improving the mentioned parameters of this communication methodology, 3D optical switch and laser beam controlled optical transponder with 2U CubeSat structural subsystems and application in the Low Earth Orbit satellite network topology, as well as its functional performance and structural parameters, has been studied accordingly.Keywords: cubesat, free space optics, nano satellite, optical laser communication.
Procedia PDF Downloads 8833 Crop Losses, Produce Storage and Food Security, the Nexus: Attaining Sustainable Maize Production in Nigeria
Authors: Charles Iledun Oyewole, Harira Shuaib
Abstract:
While fulfilling the food security of an increasing population like Nigeria remains a major global concern, more than one-third of crop harvested is lost or wasted during harvesting or in postharvest operations. Reducing the harvest and postharvest losses, especially in developing countries, could be a sustainable solution to increase food availability, eliminate hunger and improve farmers’ livelihoods. Nigeria is one of the countries in sub-Saharan Africa with insufficient food production and high food import bill, which has had debilitating effects on the country’s economy. One of the goals of Nigeria’s agricultural development policy is to ensure that, the nation produces enough food and be less dependent on importation so as to ensure adequate and affordable food for all. Maize could fill the food gap in Nigeria’s effort to beat hunger and food insecurity. Maize is the most important cereal after rice and its production contributes immensely to food availability on the tables of many Nigerians. Maize grains constitute primary source of food for large percentage of the Nigerian populace, thus a considerable waste of this valuable food pre and post-harvest constitutes such a major agricultural bottleneck; that the reduction of pre and post-harvest losses is now a common food security strategy. In surveys conducted, as much as 60% maize outputs can be lost on the field and during the storage stage due to technical inefficiency. Field losses due to rodent damage alone can account for between 10% - 60% grain losses depending on the location. While the use of scientific storage methods can reduce losses below 2% in storage, timely harvesting of crop can check losses on the fields resulting from rodent damage or pest infestation. A push for increased crop production must be complemented by available and affordable post-harvest technologies that will reduce losses on farmers’ fields as well as in storage.Keywords: government policy, maize, population increase, storage, sustainable food production, yield, yield losses
Procedia PDF Downloads 13632 Identification and Classification of Medicinal Plants of Indian Himalayan Region Using Hyperspectral Remote Sensing and Machine Learning Techniques
Authors: Kishor Chandra Kandpal, Amit Kumar
Abstract:
The Indian Himalaya region harbours approximately 1748 plants of medicinal importance, and as per International Union for Conservation of Nature (IUCN), the 112 plant species among these are threatened and endangered. To ease the pressure on these plants, the government of India is encouraging its in-situ cultivation. The Saussurea costus, Valeriana jatamansi, and Picrorhiza kurroa have also been prioritized for large scale cultivation owing to their market demand, conservation value and medicinal properties. These species are found from 1000 m to 4000 m elevation ranges in the Indian Himalaya. Identification of these plants in the field requires taxonomic skills, which is one of the major bottleneck in the conservation and management of these plants. In recent years, Hyperspectral remote sensing techniques have been precisely used for the discrimination of plant species with the help of their unique spectral signatures. In this background, a spectral library of the above 03 medicinal plants was prepared by collecting the spectral data using a handheld spectroradiometer (325 to 1075 nm) from farmer’s fields of Himachal Pradesh and Uttarakhand states of Indian Himalaya. The Random forest (RF) model was implied on the spectral data for the classification of the medicinal plants. The 80:20 standard split ratio was followed for training and validation of the RF model, which resulted in training accuracy of 84.39 % (kappa coefficient = 0.72) and testing accuracy of 85.29 % (kappa coefficient = 0.77). This RF classifier has identified green (555 to 598 nm), red (605 nm), and near-infrared (725 to 840 nm) wavelength regions suitable for the discrimination of these species. The findings of this study have provided a technique for rapid and onsite identification of the above medicinal plants in the field. This will also be a key input for the classification of hyperspectral remote sensing images for mapping of these species in farmer’s field on a regional scale. This is a pioneer study in the Indian Himalaya region for medicinal plants in which the applicability of hyperspectral remote sensing has been explored.Keywords: himalaya, hyperspectral remote sensing, machine learning; medicinal plants, random forests
Procedia PDF Downloads 20331 Effect of N2-cold Plasma Treatment of Carbon Supports on the Activity of Pt3Pd3Sn2/C Towards the Dimethyl Ether Oxidation
Authors: Medhanie Gebremedhin Gebru, Alex Schechter
Abstract:
Dimethyl ether (DME) possesses several advantages over other small organic molecules such as methanol, ethanol, and ammonia in terms of providing higher energy density, being less toxic, and having lower Nafion membrane crossover. However, the absence of an active and stable catalyst has been the bottleneck that hindered the commercialization of direct DME fuel cells. A Vulcan XC72 carbon-supported ternary metal catalyst, Pt₃Pd₃Sn₂/C is reported to have yielded the highest specific power density (90 mW mg-¹PGM) as compared to other catalysts tested fordirect DME fuel cell (DDMEFC). However, the micropores and sulfur groups present in Vulcan XC72 hinder the fuel utilization by causing Pt agglomeration and sulfur poisoning. Vulcan XC72 having a high carbon sp³ hybridization content, is also prone to corrosion. Therefore, carbon supports such as multi-walled carbon nanotube (MWCNT), black pearl 2000 (BP2000), and their cold N2 plasma-treated counterpartswere tested to further enhance the activity of the catalyst, and the outputs with these carbons were compared with the originally used support. Detailed characterization of the pristine and carbon supports was conducted. Electrochemical measurements in three-electrode cells and laboratory prototype fuel cells were conducted.Pt₃Pd₃Sn₂/BP2000 exhibited excellent performance in terms of electrochemical active surface area (ECSA), peak current density (jp), and DME oxidation charge (Qoxi). The effect of the plasma activation on the activity improvement was observed only in the case of MWCNT while having little or no effect on the other carbons. A Pt₃Pd₃Sn₂ supported on the optimized mixture of carbons containing 75% plasma-activated MWCNT and 25% BP2000 (Pt₃Pd₃Sn₂/75M25B) provided the highest reported power density of 117 mW mg-1PGM using an anode loading of1.55 mgPGMcm⁻².Keywords: DME, DDMEFC, ternary metal catalyst, carbon support, plasma activation
Procedia PDF Downloads 14430 Experimental Investigation of Nano-Enhanced-PCM-Based Heat Sinks for Passive Thermal Management of Small Satellites
Authors: Billy Moore, Izaiah Smith, Dominic Mckinney, Andrew Cisco, Mehdi Kabir
Abstract:
Phase-change materials (PCMs) are considered one of the most promising substances to be engaged passively in thermal management and storage systems for spacecraft, where it is critical to diminish the overall mass of the onboard thermal storage system while minimizing temperature fluctuations upon drastic changes in the environmental temperature within the orbit stage. This makes the development of effective thermal management systems more challenging since there is no atmosphere in outer space to take advantage of natural and forced convective heat transfer. PCM can store or release a tremendous amount of thermal energy within a small volume in the form of latent heat of fusion in the phase-change processes of melting and solidification from solid to liquid or, conversely, during which temperature remains almost constant. However, the existing PCMs pose very low thermal conductivity, leading to an undesirable increase in total thermal resistance and, consequently, a slow thermal response time. This often turns into a system bottleneck from the thermal performance perspective. To address the above-mentioned drawback, the present study aims to design and develop various heat sinks featured by nano-structured graphitic foams (i.e., carbon foam), expanded graphite (EG), and open-cell copper foam (OCCF) infiltrated with a conventional paraffin wax PCM with a melting temperature of around 35 °C. This study focuses on the use of passive thermal management techniques to develop efficient heat sinks to maintain the electronics circuits’ and battery module’s temperature within the thermal safety limit for small spacecraft and satellites such as the Pumpkin and OPTIMUS battery modules designed for CubeSats with a cross-sectional area of approximately 4˝×4˝. Thermal response times for various heat sinks are assessed in a vacuum chamber to simulate space conditions.Keywords: heat sink, porous foams, phase-change material (PCM), spacecraft thermal management
Procedia PDF Downloads 1229 Enhancing Animal Protection: Topical RNAi with Polymer Carriers for Sustainable Animal Health in Australian Sheep Flystrike
Authors: Yunjia Yang, Yakun Yan, Peng Li, Gordon Xu, Timothy Mahony, Neena Mitter, Karishma Mody
Abstract:
Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls and the parasite has developed resistance to nearly all control chemicals used in the past. It is therefore critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi and insects. However, the environmental instability of dsRNA is a major bottleneck with a protection window only lasting 5-7 days. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for controlled release of the dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. We have investigated four different BenPol carriers for their dsRNA loading capabilities of which three of them were able to afford dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in the sheep serum. Based on stability results, we further tested dsRNA from potential targeted genes loaded with BenPol carrier in larvae feeding assay, and get three knockdowns. Our results, establish that the dsRNA when loaded on BenPol particles is stable unlike naked dsRNA which is rapidly degraded in the sheep serum. A stable nanoparticles delivery system that can protect and increase the inherent stability of the dsRNA molecules at higher temperatures in a complex biological fluid like serum, offers a great deal of promise for the future use of this approach for enhancing animal protection.Keywords: RNA interference, Lucillia cuprina, polymer carriers, polymer stability
Procedia PDF Downloads 8128 Corpus-Based Neural Machine Translation: Empirical Study Multilingual Corpus for Machine Translation of Opaque Idioms - Cloud AutoML Platform
Authors: Khadija Refouh
Abstract:
Culture bound-expressions have been a bottleneck for Natural Language Processing (NLP) and comprehension, especially in the case of machine translation (MT). In the last decade, the field of machine translation has greatly advanced. Neural machine translation NMT has recently achieved considerable development in the quality of translation that outperformed previous traditional translation systems in many language pairs. Neural machine translation NMT is an Artificial Intelligence AI and deep neural networks applied to language processing. Despite this development, there remain some serious challenges that face neural machine translation NMT when translating culture bounded-expressions, especially for low resources language pairs such as Arabic-English and Arabic-French, which is not the case with well-established language pairs such as English-French. Machine translation of opaque idioms from English into French are likely to be more accurate than translating them from English into Arabic. For example, Google Translate Application translated the sentence “What a bad weather! It runs cats and dogs.” to “يا له من طقس سيء! تمطر القطط والكلاب” into the target language Arabic which is an inaccurate literal translation. The translation of the same sentence into the target language French was “Quel mauvais temps! Il pleut des cordes.” where Google Translate Application used the accurate French corresponding idioms. This paper aims to perform NMT experiments towards better translation of opaque idioms using high quality clean multilingual corpus. This Corpus will be collected analytically from human generated idiom translation. AutoML translation, a Google Neural Machine Translation Platform, is used as a custom translation model to improve the translation of opaque idioms. The automatic evaluation of the custom model will be compared to the Google NMT using Bilingual Evaluation Understudy Score BLEU. BLEU is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Human evaluation is integrated to test the reliability of the Blue Score. The researcher will examine syntactical, lexical, and semantic features using Halliday's functional theory.Keywords: multilingual corpora, natural language processing (NLP), neural machine translation (NMT), opaque idioms
Procedia PDF Downloads 14927 An Adaptive Conversational AI Approach for Self-Learning
Authors: Airy Huang, Fuji Foo, Aries Prasetya Wibowo
Abstract:
In recent years, the focus of Natural Language Processing (NLP) development has been gradually shifting from the semantics-based approach to deep learning one, which performs faster with fewer resources. Although it performs well in many applications, the deep learning approach, due to the lack of semantics understanding, has difficulties in noticing and expressing a novel business case with a pre-defined scope. In order to meet the requirements of specific robotic services, deep learning approach is very labor-intensive and time consuming. It is very difficult to improve the capabilities of conversational AI in a short time, and it is even more difficult to self-learn from experiences to deliver the same service in a better way. In this paper, we present an adaptive conversational AI algorithm that combines both semantic knowledge and deep learning to address this issue by learning new business cases through conversations. After self-learning from experience, the robot adapts to the business cases originally out of scope. The idea is to build new or extended robotic services in a systematic and fast-training manner with self-configured programs and constructed dialog flows. For every cycle in which a chat bot (conversational AI) delivers a given set of business cases, it is trapped to self-measure its performance and rethink every unknown dialog flows to improve the service by retraining with those new business cases. If the training process reaches a bottleneck and incurs some difficulties, human personnel will be informed of further instructions. He or she may retrain the chat bot with newly configured programs, or new dialog flows for new services. One approach employs semantics analysis to learn the dialogues for new business cases and then establish the necessary ontology for the new service. With the newly learned programs, it completes the understanding of the reaction behavior and finally uses dialog flows to connect all the understanding results and programs, achieving the goal of self-learning process. We have developed a chat bot service mounted on a kiosk, with a camera for facial recognition and a directional microphone array for voice capture. The chat bot serves as a concierge with polite conversation for visitors. As a proof of concept. We have demonstrated to complete 90% of reception services with limited self-learning capability.Keywords: conversational AI, chatbot, dialog management, semantic analysis
Procedia PDF Downloads 13626 Role of NaOH in the Synthesis of Waste-derived Solid Hydroxy Sodalite Catalyst for the Transesterification of Waste Animal Fat to Biodiesel
Authors: Thomas Chinedu Aniokete, Gordian Onyebuchukwu Mbah, Michael Daramola
Abstract:
A sustainable NaOH integrated hydrothermal protocol was developed for the synthesis of waste-derived hydroxy sodalite catalysts for transesterification of waste animal fat (WAF) with a high per cent free fatty acid (FFA) to biodiesel. In this work, hydroxy sodalite catalyst was synthesized from two complex waste materials namely coal fly ash (CFA) and waste industrial brine (WIB). Measured amounts of South African CFA and WIB obtained from a coal mine field were mixed with NaOH solution at different concentrations contained in secured glass vessels equipped with magnetic stirrers and formed consistent slurries after aging condition at 47 oC for 48 h. The slurries were then subjected to hydrothermal treatments at 140 oC for 48 h, washed thoroughly and separated by the action of a centrifuge on the mixture. The resulting catalysts were calcined in a muffle furnace for 2 h at 200 oC and subsequently characterized for different effects using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and Bennett Emmet Teller (BET) adsorption-desorption techniques. The produced animal fat methyl ester (AFME) was analyzed using the gas chromatography-mass spectrometry (GC-MS) method. Results of the investigation indicate profoundly an enhanced catalyst purity, textural property and desired morphology due to the action of NaOH. Similarly, the performance evaluation with respect to catalyst activity reveals a high catalytic conversion efficiency of 98 % of the high FFA WAF to biodiesel under the following reaction conditions; a methanol-to-WAF ratio of 15:1, amount of SOD catalyst of 3 wt % with a stirring speed of 300-500 rpm, a reaction temperature of 60 oC and a reaction time of 8 h. There was a recovered 96 % stable catalyst after reactions and potentially recyclable, thus contributing to the economic savings to the process that had been a major bottleneck to the production of biodiesel. This NaOH route for synthesizing waste-derived hydroxy sodalite (SOD) catalyst is a sustainable and eco-friendly technology that speaks directly to the global quest for renewable-fossil fuel controversy enforcing sustainable development goal 7.Keywords: coal fly ash, waste industrial brine, waste-derived hydroxy sodalite catalyst, sodium hydroxide, biodiesel, transesterification, biomass conversion
Procedia PDF Downloads 3425 Predicting Aggregation Propensity from Low-Temperature Conformational Fluctuations
Authors: Hamza Javar Magnier, Robin Curtis
Abstract:
There have been rapid advances in the upstream processing of protein therapeutics, which has shifted the bottleneck to downstream purification and formulation. Finding liquid formulations with shelf lives of up to two years is increasingly difficult for some of the newer therapeutics, which have been engineered for activity, but their formulations are often viscous, can phase separate, and have a high propensity for irreversible aggregation1. We explore means to develop improved predictive ability from a better understanding of how protein-protein interactions on formulation conditions (pH, ionic strength, buffer type, presence of excipients) and how these impact upon the initial steps in protein self-association and aggregation. In this work, we study the initial steps in the aggregation pathways using a minimal protein model based on square-well potentials and discontinuous molecular dynamics. The effect of model parameters, including range of interaction, stiffness, chain length, and chain sequence, implies that protein models fold according to various pathways. By reducing the range of interactions, the folding- and collapse- transition come together, and follow a single-step folding pathway from the denatured to the native state2. After parameterizing the model interaction-parameters, we developed an understanding of low-temperature conformational properties and fluctuations, and the correlation to the folding transition of proteins in isolation. The model fluctuations increase with temperature. We observe a low-temperature point, below which large fluctuations are frozen out. This implies that fluctuations at low-temperature can be correlated to the folding transition at the melting temperature. Because proteins “breath” at low temperatures, defining a native-state as a single structure with conserved contacts and a fixed three-dimensional structure is misleading. Rather, we introduce a new definition of a native-state ensemble based on our understanding of the core conservation, which takes into account the native fluctuations at low temperatures. This approach permits the study of a large range of length and time scales needed to link the molecular interactions to the macroscopically observed behaviour. In addition, these models studied are parameterized by fitting to experimentally observed protein-protein interactions characterized in terms of osmotic second virial coefficients.Keywords: protein folding, native-ensemble, conformational fluctuation, aggregation
Procedia PDF Downloads 36124 Palaeo-Environmental Reconstruction of the Wet Zone of Sri Lanka: A Zooarchaeological Perspective
Authors: Kalangi Rodrigo
Abstract:
Sri Lanka has been known as an island which has a diverse variety of prehistoric occupation among ecological zones. Defining the paleoecology of the past societies has been an archaeological thought developed in the 1960s. It is mainly concerned with the reconstruction from available geological and biological evidence of past biota, populations, communities, landscapes, environments, and ecosystems. Sri Lanka has dealt with this subject, and considerable research has been already undertaken. The fossil and material record of Sri Lanka’s Wet Zone tropical forests continues from c. 38,000–34,000 ybp. This early and persistent human fossil, technical, and cultural florescence, as well as a collection of well-preserved tropical-forest rock shelters with associated 'on-site' palaeoenvironmental records, makes Sri Lanka a central and unusual case study to determine the extent and strength of early human tropical forest encounters. Excavations carried out in prehistoric caves in the low country wet zone has shown that in the last 50,000 years, the temperature in the lowland rainforests has not exceeded 5°C. When taking Batadombalena alone, the entire seven layers have yielded an uninterrupted occupation of Acavus sp and Canerium zeylanicum, a plant that grows in the middle of the rainforest. Acavus, which is highly sensitive to rainforest ecosystems, has been well documented in many of the lowland caves, confirming that the wetland rainforest environment has remained intact at least for the last 50,000 years. If the dry and arid conditions in the upper hills regions affected the wet zone, the Tufted Gray Lunger (semnopithecus priam), must also meet with the prehistoric caves in the wet zone thrown over dry climate. However, the bones in the low country wet zone do not find any of the fragments belonging to Turfed Gray Lunger, and prehistoric human consumption is bestowed with purple-faced leaf monkey (Trachypithecus vetulus) and Toque Macaque (Macaca Sinica). The skeletal remains of Lyriocephalus scutatus, a full-time resident in rain forests, have also been recorded among lowland caves. But, in zoological terms, these remains may be the remains of the Barking deer (Muntiacus muntjak), which is currently found in the wet zone. For further investigations, the mtDNA test of genetic diversity (Bottleneck effect) and pollen study from lowland caves should determine whether the wet zone climate has persisted over the last 50,000 years, or whether the dry weather affected in the mountainous region has invaded the wet zone.Keywords: paleoecology, prehistory, zooarchaeology, reconstruction, palaeo-climate
Procedia PDF Downloads 14023 Development of a Stable RNAi-Based Biological Control for Sheep Blowfly Using Bentonite Polymer Technology
Authors: Yunjia Yang, Peng Li, Gordon Xu, Timothy Mahony, Bing Zhang, Neena Mitter, Karishma Mody
Abstract:
Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls and the parasite has developed resistance to nearly all control chemicals used in the past. It is therefore critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi and insects. However, the environmental instability of dsRNA is a major bottleneck for successful RNAi. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for the controlled release of dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. To investigate the potential of BenPol technology for dsRNA delivery, four different BenPol carriers were tested for their dsRNA loading capabilities, and three of them were found to be capable of affording dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in sheep serum. Based on stability results, dsRNA from potential targeted genes was loaded onto BenPol carriers and tested in larvae feeding assays, three genes resulting in knockdowns. Meanwhile, a primary blowfly embryo cell line (BFEC) derived from L. cuprina embryos was successfully established, aim for an effective insect cell model for testing RNAi efficacy for preliminary assessments and screening. The results of this study establish that the dsRNA is stable when loaded on BenPol particles, unlike naked dsRNA rapidly degraded in sheep serum. The stable nanoparticle delivery system offered by BenPol technology can protect and increase the inherent stability of dsRNA molecules at higher temperatures in a complex biological fluid like serum, providing promise for its future use in enhancing animal protection.Keywords: flystrike, RNA interference, bentonite polymer technology, Lucillia cuprina
Procedia PDF Downloads 9222 Private Coded Computation of Matrix Multiplication
Authors: Malihe Aliasgari, Yousef Nejatbakhsh
Abstract:
The era of Big Data and the immensity of real-life datasets compels computation tasks to be performed in a distributed fashion, where the data is dispersed among many servers that operate in parallel. However, massive parallelization leads to computational bottlenecks due to faulty servers and stragglers. Stragglers refer to a few slow or delay-prone processors that can bottleneck the entire computation because one has to wait for all the parallel nodes to finish. The problem of straggling processors, has been well studied in the context of distributed computing. Recently, it has been pointed out that, for the important case of linear functions, it is possible to improve over repetition strategies in terms of the tradeoff between performance and latency by carrying out linear precoding of the data prior to processing. The key idea is that, by employing suitable linear codes operating over fractions of the original data, a function may be completed as soon as enough number of processors, depending on the minimum distance of the code, have completed their operations. The problem of matrix-matrix multiplication in the presence of practically big sized of data sets faced with computational and memory related difficulties, which makes such operations are carried out using distributed computing platforms. In this work, we study the problem of distributed matrix-matrix multiplication W = XY under storage constraints, i.e., when each server is allowed to store a fixed fraction of each of the matrices X and Y, which is a fundamental building of many science and engineering fields such as machine learning, image and signal processing, wireless communication, optimization. Non-secure and secure matrix multiplication are studied. We want to study the setup, in which the identity of the matrix of interest should be kept private from the workers and then obtain the recovery threshold of the colluding model, that is, the number of workers that need to complete their task before the master server can recover the product W. The problem of secure and private distributed matrix multiplication W = XY which the matrix X is confidential, while matrix Y is selected in a private manner from a library of public matrices. We present the best currently known trade-off between communication load and recovery threshold. On the other words, we design an achievable PSGPD scheme for any arbitrary privacy level by trivially concatenating a robust PIR scheme for arbitrary colluding workers and private databases and the proposed SGPD code that provides a smaller computational complexity at the workers.Keywords: coded distributed computation, private information retrieval, secret sharing, stragglers
Procedia PDF Downloads 12221 The Ideal Memory Substitute for Computer Memory Hierarchy
Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye
Abstract:
Computer system components such as the CPU, the Controllers, and the operating system, work together as a team, and storage or memory is the essential parts of this team apart from the processor. The memory and storage system including processor caches, main memory, and storage, form basic storage component of a computer system. The characteristics of the different types of storage are inherent in the design and the technology employed in the manufacturing. These memory characteristics define the speed, compatibility, cost, volatility, and density of the various storage types. Most computers rely on a hierarchy of storage devices for performance. The effective and efficient use of the memory hierarchy of the computer system therefore is the single most important aspect of computer system design and use. The memory hierarchy is becoming a fundamental performance and energy bottleneck, due to the widening gap between the increasing demands of modern computer applications and the limited performance and energy efficiency provided by traditional memory technologies. With the dramatic development in the computers systems, computer storage has had a difficult time keeping up with the processor speed. Computer architects are therefore facing constant challenges in developing high-speed computer storage with high-performance which is energy-efficient, cost-effective and reliable, to intercept processor requests. It is very clear that substantial advancements in redesigning the existing memory physical and logical structures to meet up with the latest processor potential is crucial. This research work investigates the importance of computer memory (storage) hierarchy in the design of computer systems. The constituent storage types of the hierarchy today were investigated looking at the design technologies and how the technologies affect memory characteristics: speed, density, stability and cost. The investigation considered how these characteristics could best be harnessed for overall efficiency of the computer system. The research revealed that the best single type of storage, which we refer to as ideal memory is that logical single physical memory which would combine the best attributes of each memory type that make up the memory hierarchy. It is a single memory with access speed as high as one found in CPU registers, combined with the highest storage capacity, offering excellent stability in the presence or absence of power as found in the magnetic and optical disks as against volatile DRAM, and yet offers a cost-effective attribute that is far away from the expensive SRAM. The research work suggests that to overcome these barriers it may then mean that memory manufacturing will take a total deviation from the present technologies and adopt one that overcomes the associated challenges with the traditional memory technologies.Keywords: cache, memory-hierarchy, memory, registers, storage
Procedia PDF Downloads 16420 Barrier Analysis of Sustainable Development of Small Towns: A Perspective of Southwest China
Authors: Yitian Ren, Liyin Shen, Tao Zhou, Xiao Li
Abstract:
The past urbanization process in China has brought out series of problems, the Chinese government has then positioned small towns in essential roles for implementing the strategy 'The National New-type Urbanization Plan (2014-2020)'. As the connector and transfer station of cities and countryside, small towns are important force to narrow the gap between urban and rural area, and to achieve the mission of new-type urbanization in China. The sustainable development of small towns plays crucial role because cities are not capable enough to absorb the surplus rural population. Nevertheless, there are various types of barriers hindering the sustainable development of small towns, which led to the limited development of small towns and has presented a bottleneck in Chinese urbanization process. Therefore, this paper makes deep understanding of these barriers, thus effective actions can be taken to address them. And this paper chooses the perspective of Southwest China (refers to Sichuan province, Yunnan province, Guizhou province, Chongqing Municipality City and Tibet Autonomous Region), cause the urbanization rate in Southwest China is far behind the average urbanization level of the nation and the number of small towns accounts for a great proportion in mainland China, also the characteristics of small towns in Southwest China are distinct. This paper investigates the barriers of sustainable development of small towns which located in Southwest China by using the content analysis method, combing with the field work and interviews in sample small towns, then identified and concludes 18 barriers into four dimensions, namely, institutional barriers, economic barriers, social barriers and ecological barriers. Based on the research above, questionnaire survey and data analysis are implemented, thus the key barriers hinder the sustainable development of small towns in Southwest China are identified by using fuzzy set theory, those barriers are, lack of independent financial power, lack of construction land index, financial channels limitation, single industrial structure, topography variety and complexity, which mainly belongs to institutional barriers and economic barriers. In conclusion part, policy suggestions are come up with to improve the politic and institutional environment of small town development, also the market mechanism are supposed to be introduced to the development process of small towns, which can effectively overcome the economic barriers, promote the sustainable development of small towns, accelerate the in-situ urbanization by absorbing peasants in nearby villages, and achieve the mission of new-type urbanization in China from the perspective of people-oriented.Keywords: barrier analysis, sustainable development, small town, Southwest China
Procedia PDF Downloads 34419 Genetic Structure Analysis through Pedigree Information in a Closed Herd of the New Zealand White Rabbits
Authors: M. Sakthivel, A. Devaki, D. Balasubramanyam, P. Kumarasamy, A. Raja, R. Anilkumar, H. Gopi
Abstract:
The New Zealand White breed of rabbit is one of the most commonly used, well adapted exotic breeds in India. Earlier studies were limited only to analyze the environmental factors affecting the growth and reproductive performance. In the present study, the population of the New Zealand White rabbits in a closed herd was evaluated for its genetic structure. Data on pedigree information (n=2508) for 18 years (1995-2012) were utilized for the study. Pedigree analysis and the estimates of population genetic parameters based on gene origin probabilities were performed using the software program ENDOG (version 4.8). The analysis revealed that the mean values of generation interval, coefficients of inbreeding and equivalent inbreeding were 1.489 years, 13.233 percent and 17.585 percent, respectively. The proportion of population inbred was 100 percent. The estimated mean values of average relatedness and the individual increase in inbreeding were 22.727 and 3.004 percent, respectively. The percent increase in inbreeding over generations was 1.94, 3.06 and 3.98 estimated through maximum generations, equivalent generations, and complete generations, respectively. The number of ancestors contributing the most of 50% genes (fₐ₅₀) to the gene pool of reference population was 4 which might have led to the reduction in genetic variability and increased amount of inbreeding. The extent of genetic bottleneck assessed by calculating the effective number of founders (fₑ) and the effective number of ancestors (fₐ), as expressed by the fₑ/fₐ ratio was 1.1 which is indicative of the absence of stringent bottlenecks. Up to 5th generation, 71.29 percent pedigree was complete reflecting the well-maintained pedigree records. The maximum known generations were 15 with an average of 7.9 and the average equivalent generations traced were 5.6 indicating of a fairly good depth in pedigree. The realized effective population size was 14.93 which is very critical, and with the increasing trend of inbreeding, the situation has been assessed to be worse in future. The proportion of animals with the genetic conservation index (GCI) greater than 9 was 39.10 percent which can be used as a scale to use such animals with higher GCI to maintain balanced contribution from the founders. From the study, it was evident that the herd was completely inbred with very high inbreeding coefficient and the effective population size was critical. Recommendations were made to reduce the probability of deleterious effects of inbreeding and to improve the genetic variability in the herd. The present study can help in carrying out similar studies to meet the demand for animal protein in developing countries.Keywords: effective population size, genetic structure, pedigree analysis, rabbit genetics
Procedia PDF Downloads 29218 Insect Cell-Based Models: Asutralian Sheep bBlowfly Lucilia Cuprina Embryo Primary Cell line Establishment and Transfection
Authors: Yunjia Yang, Peng Li, Gordon Xu, Timothy Mahony, Bing Zhang, Neena Mitter, Karishma Mody
Abstract:
Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls, and the parasite has developed resistance to nearly all control chemicals used in the past. It is, therefore, critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi, and insects. However, the environmental instability of dsRNA is a major bottleneck for successful RNAi. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for the controlled release of dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. To investigate the potential of BenPol technology for dsRNA delivery, four different BenPol carriers were tested for their dsRNA loading capabilities, and three of them were found to be capable of affording dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in sheep serum. Based on stability results, dsRNA from potential targeted genes was loaded onto BenPol carriers and tested in larvae feeding assays, three genes resulting in knockdowns. Meanwhile, a primary blowfly embryo cell line (BFEC) derived from L. cuprina embryos was successfully established, aim for an effective insect cell model for testing RNAi efficacy for preliminary assessments and screening. The results of this study establish that the dsRNA is stable when loaded on BenPol particles, unlike naked dsRNA rapidly degraded in sheep serum. The stable nanoparticle delivery system offered by BenPol technology can protect and increase the inherent stability of dsRNA molecules at higher temperatures in a complex biological fluid like serum, providing promise for its future use in enhancing animal protection.Keywords: lucilia cuprina, primary cell line establishment, RNA interference, insect cell transfection
Procedia PDF Downloads 7317 Production of Recombinant Human Serum Albumin in Escherichia coli: A Crucial Biomolecule for Biotechnological and Healthcare Applications
Authors: Ashima Sharma, Tapan K. Chaudhuri
Abstract:
Human Serum Albumin (HSA) is one of the most demanded therapeutic protein with immense biotechnological applications. The current source of HSA is human blood plasma. Blood is a limited and an unsafe source as it possesses the risk of contamination by various blood derived pathogens. This issue led to exploitation of various hosts with the aim to obtain an alternative source for the production of the rHSA. But, till now no host has been proven to be effective commercially for rHSA production because of their respective limitations. Thus, there exists an indispensable need to promote non-animal derived rHSA production. Of all the host systems, Escherichia coli is one of the most convenient hosts which has contributed in the production of more than 30% of the FDA approved recombinant pharmaceuticals. E. coli grows rapidly and its culture reaches high cell density using inexpensive and simple substrates. The fermentation batch turnaround number for E. coli culture is 300 per year, which is far greater than any of the host systems available. Therefore, E. coli derived recombinant products have more economical potential as fermentation processes are cheaper compared to the other expression hosts available. Despite of all the mentioned advantages, E. coli had not been successfully adopted as a host for rHSA production. The major bottleneck in exploiting E. coli as a host for rHSA production was aggregation i.e. majority of the expressed recombinant protein was forming inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA form inclusion body is not preferred because it is tedious, time consuming, laborious and expensive. Because of this limitation, E. coli host system was neglected for rHSA production for last few decades. Considering the advantages of E. coli as a host, the present work has targeted E. coli as an alternate host for rHSA production through resolving the major issue of inclusion body formation associated with it. In the present study, we have developed a novel and innovative method for enhanced soluble and functional production of rHSA in E.coli (~60% of the total expressed rHSA in the soluble fraction) through modulation of the cellular growth, folding and environmental parameters, thereby leading to significantly improved and enhanced -expression levels as well as the functional and soluble proportion of the total expressed rHSA in the cytosolic fraction of the host. Therefore, in the present case we have filled in the gap in the literature, by exploiting the most well studied host system Escherichia coli which is of low cost, fast growing, scalable and ‘yet neglected’, for the enhancement of functional production of HSA- one of the most crucial biomolecule for clinical and biotechnological applications.Keywords: enhanced functional production of rHSA in E. coli, recombinant human serum albumin, recombinant protein expression, recombinant protein processing
Procedia PDF Downloads 34716 Analysis of Non-Conventional Roundabout Performance in Mixed Traffic Conditions
Authors: Guneet Saini, Shahrukh, Sunil Sharma
Abstract:
Traffic congestion is the most critical issue faced by those in the transportation profession today. Over the past few years, roundabouts have been recognized as a measure to promote efficiency at intersections globally. In developing countries like India, this type of intersection still faces a lot of issues, such as bottleneck situations, long queues and increased waiting times, due to increasing traffic which in turn affect the performance of the entire urban network. This research is a case study of a non-conventional roundabout, in terms of geometric design, in a small town in India. These types of roundabouts should be analyzed for their functionality in mixed traffic conditions, prevalent in many developing countries. Microscopic traffic simulation is an effective tool to analyze traffic conditions and estimate various measures of operational performance of intersections such as capacity, vehicle delay, queue length and Level of Service (LOS) of urban roadway network. This study involves analyzation of an unsymmetrical non-circular 6-legged roundabout known as “Kala Aam Chauraha” in a small town Bulandshahr in Uttar Pradesh, India using VISSIM simulation package which is the most widely used software for microscopic traffic simulation. For coding in VISSIM, data are collected from the site during morning and evening peak hours of a weekday and then analyzed for base model building. The model is calibrated on driving behavior and vehicle parameters and an optimal set of calibrated parameters is obtained followed by validation of the model to obtain the base model which can replicate the real field conditions. This calibrated and validated model is then used to analyze the prevailing operational traffic performance of the roundabout which is then compared with a proposed alternative to improve efficiency of roundabout network and to accommodate pedestrians in the geometry. The study results show that the alternative proposed is an advantage over the present roundabout as it considerably reduces congestion, vehicle delay and queue length and hence, successfully improves roundabout performance without compromising on pedestrian safety. The study proposes similar designs for modification of existing non-conventional roundabouts experiencing excessive delays and queues in order to improve their efficiency especially in the case of developing countries. From this study, it can be concluded that there is a need to improve the current geometry of such roundabouts to ensure better traffic performance and safety of drivers and pedestrians negotiating the intersection and hence this proposal may be considered as a best fit.Keywords: operational performance, roundabout, simulation, VISSIM
Procedia PDF Downloads 13915 Placement Characteristics of Major Stream Vehicular Traffic at Median Openings
Authors: Tathagatha Khan, Smruti Sourava Mohapatra
Abstract:
Median openings are provided in raised median of multilane roads to facilitate U-turn movement. The U-turn movement is a highly complex and risky maneuver because U-turning vehicle (minor stream) makes 180° turns at median openings and merge with the approaching through traffic (major stream). A U-turning vehicle requires a suitable gap in the major stream to merge, and during this process, the possibility of merging conflict develops. Therefore, these median openings are potential hot spot of conflict and posses concern pertaining to safety. The traffic at the median openings could be managed efficiently with enhanced safety when the capacity of a traffic facility has been estimated correctly. The capacity of U-turns at median openings is estimated by Harder’s formula, which requires three basic parameters namely critical gap, follow up time and conflict flow rate. The estimation of conflicting flow rate under mixed traffic condition is very much complicated due to absence of lane discipline and discourteous behavior of the drivers. The understanding of placement of major stream vehicles at median opening is very much important for the estimation of conflicting traffic faced by U-turning movement. The placement data of major stream vehicles at different section in 4-lane and 6-lane divided multilane roads were collected. All the test sections were free from the effect of intersection, bus stop, parked vehicles, curvature, pedestrian movements or any other side friction. For the purpose of analysis, all the vehicles were divided into 6 categories such as motorized 2W, autorickshaw (3-W), small car, big car, light commercial vehicle, and heavy vehicle. For the collection of placement data of major stream vehicles, the entire road width was divided into sections of 25 cm each and these were numbered seriatim from the pavement edge (curbside) to the end of the road. The placement major stream vehicle crossing the reference line was recorded by video graphic technique on various weekdays. The collected data for individual category of vehicles at all the test sections were converted into a frequency table with a class interval of 25 cm each and the placement frequency curve. Separate distribution fittings were tried for 4- lane and 6-lane divided roads. The variation of major stream traffic volume on the placement characteristics of major stream vehicles has also been explored. The findings of this study will be helpful to determine the conflict volume at the median openings. So, the present work holds significance in traffic planning, operation and design to alleviate the bottleneck, prospect of collision and delay at median opening in general and at median opening in developing countries in particular.Keywords: median opening, U-turn, conflicting traffic, placement, mixed traffic
Procedia PDF Downloads 13814 Semiotics of the New Commercial Music Paradigm
Authors: Mladen Milicevic
Abstract:
This presentation will address how the statistical analysis of digitized popular music influences the music creation and emotionally manipulates consumers.Furthermore, it will deal with semiological aspect of uniformization of musical taste in order to predict the potential revenues generated by popular music sales. In the USA, we live in an age where most of the popular music (i.e. music that generates substantial revenue) has been digitized. It is safe to say that almost everything that was produced in last 10 years is already digitized (either available on iTunes, Spotify, YouTube, or some other platform). Depending on marketing viability and its potential to generate additional revenue most of the “older” music is still being digitized. Once the music gets turned into a digital audio file,it can be computer-analyzed in all kinds of respects, and the similar goes for the lyrics because they also exist as a digital text file, to which any kin of N Capture-kind of analysis may be applied. So, by employing statistical examination of different popular music metrics such as tempo, form, pronouns, introduction length, song length, archetypes, subject matter,and repetition of title, the commercial result may be predicted. Polyphonic HMI (Human Media Interface) introduced the concept of the hit song science computer program in 2003.The company asserted that machine learning could create a music profile to predict hit songs from its audio features Thus,it has been established that a successful pop song must include: 100 bpm or more;an 8 second intro;use the pronoun 'you' within 20 seconds of the start of the song; hit the bridge middle 8 between 2 minutes and 2 minutes 30 seconds; average 7 repetitions of the title; create some expectations and fill that expectation in the title. For the country song: 100 bpm or less for a male artist; 14-second intro; uses the pronoun 'you' within the first 20 seconds of the intro; has a bridge middle 8 between 2 minutes and 2 minutes 30 seconds; has 7 repetitions of title; creates an expectation,fulfills it in 60 seconds.This approach to commercial popular music minimizes the human influence when it comes to which “artist” a record label is going to sign and market. Twenty years ago,music experts in the A&R (Artists and Repertoire) departments of the record labels were making personal aesthetic judgments based on their extensive experience in the music industry. Now, the computer music analyzing programs, are replacing them in an attempt to minimize investment risk of the panicking record labels, in an environment where nobody can predict the future of the recording industry.The impact on the consumers taste through the narrow bottleneck of the above mentioned music selection by the record labels,created some very peculiar effects not only on the taste of popular music consumers, but also the creative chops of the music artists as well. What is the meaning of this semiological shift is the main focus of this research and paper presentation.Keywords: music, semiology, commercial, taste
Procedia PDF Downloads 39313 Real-Space Mapping of Surface Trap States in Cigse Nanocrystals Using 4D Electron Microscopy
Authors: Riya Bose, Ashok Bera, Manas R. Parida, Anirudhha Adhikari, Basamat S. Shaheen, Erkki Alarousu, Jingya Sun, Tom Wu, Osman M. Bakr, Omar F. Mohammed
Abstract:
This work reports visualization of charge carrier dynamics on the surface of copper indium gallium selenide (CIGSe) nanocrystals in real space and time using four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and correlates it with the optoelectronic properties of the nanocrystals. The surface of the nanocrystals plays a key role in controlling their applicability for light emitting and light harvesting purposes. Typically for quaternary systems like CIGSe, which have many desirable attributes to be used for optoelectronic applications, relative abundance of surface trap states acting as non-radiative recombination centre for charge carriers remains as a major bottleneck preventing further advancements and commercial exploitation of these nanocrystals devices. Though ultrafast spectroscopic techniques allow determining the presence of picosecond carrier trapping channels, because of relative larger penetration depth of the laser beam, only information mainly from the bulk of the nanocrystals is obtained. Selective mapping of such ultrafast dynamical processes on the surfaces of nanocrystals remains as a key challenge, so far out of reach of purely optical probing time-resolved laser techniques. In S-UEM, the optical pulse generated from a femtosecond (fs) laser system is used to generate electron packets from the tip of the scanning electron microscope, instead of the continuous electron beam used in the conventional setup. This pulse is synchronized with another optical excitation pulse that initiates carrier dynamics in the sample. The principle of S-UEM is to detect the secondary electrons (SEs) generated in the sample, which is emitted from the first few nanometers of the top surface. Constructed at different time delays between the optical and electron pulses, these SE images give direct and precise information about the carrier dynamics on the surface of the material of interest. In this work, we report selective mapping of surface dynamics in real space and time of CIGSe nanocrystals applying 4D S-UEM. We show that the trap states can be considerably passivated by ZnS shelling of the nanocrystals, and the carrier dynamics can be significantly slowed down. We also compared and discussed the S-UEM kinetics with the carrier dynamics obtained from conventional ultrafast time-resolved techniques. Additionally, a direct effect of the state trap removal can be observed in the enhanced photoresponse of the nanocrystals after shelling. Direct observation of surface dynamics will not only provide a profound understanding of the photo-physical mechanisms on nanocrystals’ surfaces but also enable to unlock their full potential for light emitting and harvesting applications.Keywords: 4D scanning ultrafast microscopy, charge carrier dynamics, nanocrystals, optoelectronics, surface passivation, trap states
Procedia PDF Downloads 29512 Modeling Driving Distraction Considering Psychological-Physical Constraints
Authors: Yixin Zhu, Lishengsa Yue, Jian Sun, Lanyue Tang
Abstract:
Modeling driving distraction in microscopic traffic simulation is crucial for enhancing simulation accuracy. Current driving distraction models are mainly derived from physical motion constraints under distracted states, in which distraction-related error terms are added to existing microscopic driver models. However, the model accuracy is not very satisfying, due to a lack of modeling the cognitive mechanism underlying the distraction. This study models driving distraction based on the Queueing Network Human Processor model (QN-MHP). This study utilizes the queuing structure of the model to perform task invocation and switching for distracted operation and control of the vehicle under driver distraction. Based on the assumption of the QN-MHP model about the cognitive sub-network, server F is a structural bottleneck. The latter information must wait for the previous information to leave server F before it can be processed in server F. Therefore, the waiting time for task switching needs to be calculated. Since the QN-MHP model has different information processing paths for auditory information and visual information, this study divides driving distraction into two types: auditory distraction and visual distraction. For visual distraction, both the visual distraction task and the driving task need to go through the visual perception sub-network, and the stimuli of the two are asynchronous, which is called stimulus on asynchrony (SOA), so when calculating the waiting time for switching tasks, it is necessary to consider it. In the case of auditory distraction, the auditory distraction task and the driving task do not need to compete for the server resources of the perceptual sub-network, and their stimuli can be synchronized without considering the time difference in receiving the stimuli. According to the Theory of Planned Behavior for drivers (TPB), this study uses risk entropy as the decision criterion for driver task switching. A logistic regression model is used with risk entropy as the independent variable to determine whether the driver performs a distraction task, to explain the relationship between perceived risk and distraction. Furthermore, to model a driver’s perception characteristics, a neurophysiological model of visual distraction tasks is incorporated into the QN-MHP, and executes the classical Intelligent Driver Model. The proposed driving distraction model integrates the psychological cognitive process of a driver with the physical motion characteristics, resulting in both high accuracy and interpretability. This paper uses 773 segments of distracted car-following in Shanghai Naturalistic Driving Study data (SH-NDS) to classify the patterns of distracted behavior on different road facilities and obtains three types of distraction patterns: numbness, delay, and aggressiveness. The model was calibrated and verified by simulation. The results indicate that the model can effectively simulate the distracted car-following behavior of different patterns on various roadway facilities, and its performance is better than the traditional IDM model with distraction-related error terms. The proposed model overcomes the limitations of physical-constraints-based models in replicating dangerous driving behaviors, and internal characteristics of an individual. Moreover, the model is demonstrated to effectively generate more dangerous distracted driving scenarios, which can be used to construct high-value automated driving test scenarios.Keywords: computational cognitive model, driving distraction, microscopic traffic simulation, psychological-physical constraints
Procedia PDF Downloads 9111 Adapting an Accurate Reverse-time Migration Method to USCT Imaging
Authors: Brayden Mi
Abstract:
Reverse time migration has been widely used in the Petroleum exploration industry to reveal subsurface images and to detect rock and fluid properties since the early 1980s. The seismic technology involves the construction of a velocity model through interpretive model construction, seismic tomography, or full waveform inversion, and the application of the reverse-time propagation of acquired seismic data and the original wavelet used in the acquisition. The methodology has matured from 2D, simple media to present-day to handle full 3D imaging challenges in extremely complex geological conditions. Conventional Ultrasound computed tomography (USCT) utilize travel-time-inversion to reconstruct the velocity structure of an organ. With the velocity structure, USCT data can be migrated with the “bend-ray” method, also known as migration. Its seismic application counterpart is called Kirchhoff depth migration, in which the source of reflective energy is traced by ray-tracing and summed to produce a subsurface image. It is well known that ray-tracing-based migration has severe limitations in strongly heterogeneous media and irregular acquisition geometries. Reverse time migration (RTM), on the other hand, fully accounts for the wave phenomena, including multiple arrives and turning rays due to complex velocity structure. It has the capability to fully reconstruct the image detectable in its acquisition aperture. The RTM algorithms typically require a rather accurate velocity model and demand high computing powers, and may not be applicable to real-time imaging as normally required in day-to-day medical operations. However, with the improvement of computing technology, such a computational bottleneck may not present a challenge in the near future. The present-day (RTM) algorithms are typically implemented from a flat datum for the seismic industry. It can be modified to accommodate any acquisition geometry and aperture, as long as sufficient illumination is provided. Such flexibility of RTM can be conveniently implemented for the application in USCT imaging if the spatial coordinates of the transmitters and receivers are known and enough data is collected to provide full illumination. This paper proposes an implementation of a full 3D RTM algorithm for USCT imaging to produce an accurate 3D acoustic image based on the Phase-shift-plus-interpolation (PSPI) method for wavefield extrapolation. In this method, each acquired data set (shot) is propagated back in time, and a known ultrasound wavelet is propagated forward in time, with PSPI wavefield extrapolation and a piece-wise constant velocity model of the organ (breast). The imaging condition is then applied to produce a partial image. Although each image is subject to the limitation of its own illumination aperture, the stack of multiple partial images will produce a full image of the organ, with a much-reduced noise level if compared with individual partial images.Keywords: illumination, reverse time migration (RTM), ultrasound computed tomography (USCT), wavefield extrapolation
Procedia PDF Downloads 7410 Enhanced Functional Production of a Crucial Biomolecule Human Serum Albumin in Escherichia coli
Authors: Ashima Sharma
Abstract:
Human Serum Albumin (HSA)- one of the most demanded therapeutic proteins with immense biotechnological applications- is a large multidomain protein containing 17 disulfide bonds. The current source of HSA is human blood plasma which is a limited and unsafe source. Thus, there exists an indispensable need to promote non-animal derived recombinant HSA (rHSA) production. Escherichia coli is one of the most convenient hosts which had contributed to the production of more than 30% of the FDA approved recombinant pharmaceuticals. It grows rapidly and reaches high cell density using inexpensive and simple substrates. E. coli derived recombinant products have more economic potential as fermentation processes are cheaper compared to the other expression hosts. The major bottleneck in exploiting E. coli as a host for a disulfide-rich multidomain protein is the formation of aggregates of overexpressed protein. The majority of the expressed HSA forms inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA from inclusion bodies is not preferred because it is difficult to obtain a large multidomain disulfide bond rich protein like rHSA in its functional native form. Purification is tedious, time-consuming, laborious and expensive. Because of such limitations, the E. coli host system was neglected for rHSA production for the past few decades despite its numerous advantages. In the present work, we have exploited the capabilities of E. coli as a host for the enhanced functional production of rHSA (~60% of the total expressed rHSA in the soluble fraction). Parameters like intracellular environment, temperature, induction type, duration of induction, cell lysis conditions etc. which play an important role in enhancing the level of production of the desired protein in its native form in vivo have been optimized. We have studied the effect of assistance of different types of exogenously employed chaperone systems on the functional expression of rHSA in the E. coli host system. Different aspects of cell growth parameters during the production of rHSA in presence and absence of molecular chaperones in E. coli have also been studied. Upon overcoming the difficulties to produce functional rHSA in E. coli, it has been possible to produce significant levels of functional protein through engineering the biological system of protein folding in the cell, the E. coli-derived rHSA has been purified to homogeneity. Its detailed physicochemical characterization has been performed by monitoring its conformational properties, secondary and tertiary structure elements, surface properties, ligand binding properties, stability issues etc. These parameters of the recombinant protein have been compared with the naturally occurring protein from the human source. The outcome of the comparison reveals that the recombinant protein resembles exactly the same as the natural one. Hence, we propose that the E. coli-derived rHSA is an ideal biosimilar for human blood plasma-derived serum albumin. Therefore, in the present study, we have introduced and promoted the E. coli- derived rHSA as an alternative to the preparation from a human source, pHSA.Keywords: recombinant human serum albumin, Escherichia coli, biosimilar, chaperone assisted protein folding
Procedia PDF Downloads 2099 Development of Mesoporous Gel Based Nonwoven Structure for Thermal Barrier Application
Authors: R. P. Naik, A. K. Rakshit
Abstract:
In recent years, with the rapid development in science and technology, people have increasing requirements on uses of clothing for new functions, which contributes to opportunities for further development and incorporation of new technologies along with novel materials. In this context, textiles are of fast decalescence or fast heat radiation media as per as comfort accountability of textile articles are concern. The microstructure and texture of textiles play a vital role in determining the heat-moisture comfort level of the human body because clothing serves as a barrier to the outside environment and a transporter of heat and moisture from the body to the surrounding environment to keep thermal balance between body heat produced and body heat loss. The main bottleneck which is associated with textile materials to be successful as thermal insulation materials can be enumerated as; firstly, high loft or bulkiness of material so as to provide predetermined amount of insulation by ensuring sufficient trapping of air. Secondly, the insulation depends on forced convection; such convective heat loss cannot be prevented by textile material. Third is that the textile alone cannot reach the level of thermal conductivity lower than 0.025 W/ m.k of air. Perhaps, nano-fibers can do so, but still, mass production and cost-effectiveness is a problem. Finally, such high loft materials for thermal insulation becomes heavier and uneasy to manage especially when required to carry over a body. The proposed works aim at developing lightweight effective thermal insulation textiles in combination with nanoporous silica-gel which provides the fundamental basis for the optimization of material properties to achieve good performance of the clothing system. This flexible nonwoven silica-gel composites fabric in intact monolith was successfully developed by reinforcing SiO2-gel in thermal bonded nonwoven fabric via sol-gel processing. Ambient Pressure Drying method is opted for silica gel preparation for cost-effective manufacturing. The formed structure of the nonwoven / SiO₂ -gel composites were analyzed, and the transfer properties were measured. The effects of structure and fibre on the thermal properties of the SiO₂-gel composites were evaluated. Samples are then tested against untreated samples of same GSM in order to study the effect of SiO₂-gel application on various properties of nonwoven fabric. The nonwoven fabric composites reinforced with aerogel showed intact monolith structure were also analyzed for their surface structure, functional group present, microscopic images. Developed product reveals a significant reduction in pores' size and air permeability than the conventional nonwoven fabric. Composite made from polyester fibre with lower GSM shows lowest thermal conductivity. Results obtained were statistically analyzed by using STATISTICA-6 software for their level of significance. Univariate tests of significance for various parameters are practiced which gives the P value for analyzing significance level along with that regression summary for dependent variable are also studied to obtain correlation coefficient.Keywords: silica-gel, heat insulation, nonwoven fabric, thermal barrier clothing
Procedia PDF Downloads 1118 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing
Authors: Saqib Aziz, Brad Alexander, Christoph Gengnagel, Stefan Weinzierl
Abstract:
This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full-scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the building information modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit, the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models, which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.Keywords: acoustical design, additive manufacturing, computational design, multimodal optimization
Procedia PDF Downloads 1577 Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: transformers, generative ai, gene expression design, classification
Procedia PDF Downloads 59