Search results for: body surface area
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17396

Search results for: body surface area

17336 Apparent Ageing Mechanism of Polyurethane Coating in Typical Atmospheric Environment

Authors: Jin Gao, Jin Zhang, Xiaogang Li

Abstract:

Outdoor exposure experiments were conducted in three extreme environments, namely the Chinese plateau mountain environment (Lhasa), the cold–temperate environment (Mohe), and the marine atmospheric environment (Wanning), to track a new long-life environment-friendly polyurethane coating. The relationship between apparent properties, namely gloss and microstructural changes, was analyzed, and the influence of typical climatic environment on the aging mechanism of polyurethane coatings was discussed. Results show that the UV radiation in the Lhasa area causes photoaging degradation, micropores are formed on the coating surface, and the powdering phenomenon is obvious. Photodegradation occurs in the Wanning area, and a hydrolysis reaction is observed. The hydrolysis reaction catalyzes the photoaging, the coating surface becomes yellow, and the powdering becomes serious. Photoaging is also present in the Mohe area, but it is mainly due to temperature changes that in turn change the internal stress of the coating. Microcracks and bumps form on the coating surface.

Keywords: aging, atmospheric environment, outdoor exposure, polyurethane coating

Procedia PDF Downloads 129
17335 Reuse of Municipal Solid Waste Incinerator Fly Ash for the Synthesis of Zeolite: Effects of Different Operation Conditions

Authors: Jyh-Cherng Chen, Yi-Jie Lin

Abstract:

This study tries to reuse the fly ash of municipal solid waste incinerator (MSWI) for the synthesis of zeolites. The fly ashes were treated with NaOH alkali fusion at different temperatures for 40 mins and then synthesized the zeolites with hydrothermal method at 105oC for different operation times. The effects of different operation conditions and the optimum synthesis parameters were explored. The specific surface area, surface morphology, species identification, adsorption capacity, and the reuse potentials of the synthesized zeolites were analyzed and evaluated. Experimental results showed that the optimum operation conditions for the synthesis of zeolite from the mixed fly ash were Si/Al=20, alkali/ash=1.5, alkali fusion reaction with NaOH at 800oC for 40 mins, hydrolysis with L/S=200 at 105oC for 24 hr, and hydrothermal synthesis at 105oC for 48 hr. The largest specific surface area of synthesized zeolite could be increased to 943.05m2/g. The influence of different operation parameters on the synthesis of zeolite from mixed fly ash followed the sequence of Si/Al > hydrolysis L/S> hydrothermal time > alkali fusion temperature > alkali/ash ratio. The XRD patterns of synthesized zeolites were identified to be similar with the ZSM-23 zeolite. The adsorption capacities of synthesized zeolite for pollutants were increased as rising the specific surface area of synthesized zeolite. In summary, MSWI fly ash can be treated and reused to synthesize the zeolite with high specific surface area by the alkali fusion and hydrothermal method. The zeolite can be reuse for the adsorption of various pollutants. They have great potential for development.

Keywords: alkali fusion, hydrothermal, fly ash, zeolite

Procedia PDF Downloads 179
17334 Correlation of Building Density toward Land Surface Temperature 2018 in Medan City

Authors: Andi Syahputra, R. H. Jatmiko, D. R. Hizbaron

Abstract:

Land surface temperature (LST) in an area is influenced by conditions of vegetation density, building density, and the number of inhabitants who live in the area. Medan City is one of the largest cities in Indonesia, with a high rate of change from vegetation to developed land. This study aims to identify the relationship between the percentage of building density and land surface temperature in Medan City. Pixel image analysis method is carried out to obtain the value of building density in pixel images of Landsat 8 images with the help of WorldView-2 satellite imagery. The results showed the highest land surface temperature in 2018 of 35, 4°C was found in Medan Perjuangan District, and the lowest was 22.5°C in Medan Belawan District. Building density samples with a density level of 889.17 m were also found in Medan Perjuangan District, while the lowest building density sample was found in Medan Timur District. Linear regression analysis of the effect of building density with land surface temperature obtained a correlation (R) was 0.64, and a coefficient of determination (R²) was 0.411 and modeling of building density based on the LST has a correlation (R), and a coefficient of determination (R²) was 0.72 with The RMSE obtained 0.853.

Keywords: land surface temperature, Landsat, imagery, building density, vegetation, density

Procedia PDF Downloads 155
17333 Nanomechanical Characterization of Titanium Alloy Modified by Nitrogen Ion Implantation

Authors: Josef Sepitka, Petr Vlcak, Tomas Horazdovsky, Vratislav Perina

Abstract:

An ion implantation technique was used for designing the surface area of a titanium alloy and for irradiation-enhanced hardening of the surface. The Ti6Al4V alloy was treated by nitrogen ion implantation at fluences of 2·1017 and 4·1017 cm-2 and at ion energy 90 keV. The depth distribution of the nitrogen was investigated by Rutherford Backscattering Spectroscopy. The gradient of mechanical properties was investigated by nanoindentation. The continuous measurement mode was used to obtain depth profiles of the indentation hardness and the reduced storage modulus of the modified surface area. The reduced storage modulus and the hardness increase with increasing fluence. Increased fluence shifts the peak of the mechanical properties as well as the peak of nitrogen concentration towards to the surface. This effect suggests a direct relationship between mechanical properties and nitrogen distribution.

Keywords: nitrogen ion implantation, titanium-based nanolayer, storage modulus, hardness, microstructure

Procedia PDF Downloads 349
17332 Study of the Relationship between the Roughness Configuration of Channel Bottom and the Creation of Vortices at the Rough Area: Numerical Modelling

Authors: Youb Said, Fourar Ali

Abstract:

To describe the influence of bottom roughness on the free surface flows by numerical modeling, a two-dimensional model was developed. The equations of continuity and momentum (Naviers Stokes equations) are solved by the finite volume method. We considered a turbulent flow in an open channel with a bottom roughness. For our simulations, the K-ε model was used. After setting the initial and boundary conditions and solve the equations set, we were able to achieve the following results: vortex forming in the hollow causing substantial energy dissipation in the obstacle areas that form the bottom roughness. The comparison of our results with experimental ones shows a good agreement in terms of the results in the rough area. However, in other areas, differences were more or less important. These differences are in areas far from the bottom, especially the free surface area just after the bottom. These disagreements are probably due to experimental constants used by the k-ε model.

Keywords: modeling, free surface flow, turbulence, bottom roughness, finite volume, K-ε model, energy dissipation

Procedia PDF Downloads 382
17331 Hybrid Antenna Array with the Bowtie Elements for Super-Resolution and 3D Scanning Radars

Authors: Somayeh Komeylian

Abstract:

The antenna arrays for the entire 3D spherical coverage have been developed for their potential use in variety of applications such as radars and body-worn devices of the body area networks. In this study, we have rigorously revamped the hybrid antenna array using the optimum geometry of bowtie elements for achieving a significant improvement in the angular discrimination capability as well as in separating two adjacent targets. In this scenario, we have analogously investigated the effectiveness of increasing the virtual array length in fostering and enhancing the directivity and angular resolution in the 10 GHz frequency. The simulation results have extensively verified that the proposed antenna array represents a drastic enhancement in terms of size, directivity, side lobe level (SLL) and, especially resolution compared with the other available geometries. We have also verified that the maximum directivities of the proposed hybrid antenna array represent the robustness to the all  variations, which is accompanied by the uniform 3D scanning characteristic.

Keywords: bowtie antenna, hybrid antenna array, array signal processing, body area networks

Procedia PDF Downloads 159
17330 Aeromagnetic Data Interpretation and Source Body Evaluation Using Standard Euler Deconvolution Technique in Obudu Area, Southeastern Nigeria

Authors: Chidiebere C. Agoha, Chukwuebuka N. Onwubuariri, Collins U.amasike, Tochukwu I. Mgbeojedo, Joy O. Njoku, Lawson J. Osaki, Ifeyinwa J. Ofoh, Francis B. Akiang, Dominic N. Anuforo

Abstract:

In order to interpret the airborne magnetic data and evaluate the approximate location, depth, and geometry of the magnetic sources within Obudu area using the standard Euler deconvolution method, very high-resolution aeromagnetic data over the area was acquired, processed digitally and analyzed using Oasis Montaj 8.5 software. Data analysis and enhancement techniques, including reduction to the equator, horizontal derivative, first and second vertical derivatives, upward continuation and regional-residual separation, were carried out for the purpose of detailed data Interpretation. Standard Euler deconvolution for structural indices of 0, 1, 2, and 3 was also carried out and respective maps were obtained using the Euler deconvolution algorithm. Results show that the total magnetic intensity ranges from -122.9nT to 147.0nT, regional intensity varies between -106.9nT to 137.0nT, while residual intensity ranges between -51.5nT to 44.9nT clearly indicating the masking effect of deep-seated structures over surface and shallow subsurface magnetic materials. Results also indicated that the positive residual anomalies have an NE-SW orientation, which coincides with the trend of major geologic structures in the area. Euler deconvolution for all the considered structural indices has depth to magnetic sources ranging from the surface to more than 2000m. Interpretation of the various structural indices revealed the locations and depths of the source bodies and the existence of geologic models, including sills, dykes, pipes, and spherical structures. This area is characterized by intrusive and very shallow basement materials and represents an excellent prospect for solid mineral exploration and development.

Keywords: Euler deconvolution, horizontal derivative, Obudu, structural indices

Procedia PDF Downloads 86
17329 The Effect of Circuit Training on Aerobic Fitness and Body Fat Percentage

Authors: Presto Tri Sambodo, Suharjana, Galih Yoga Santiko

Abstract:

Having an ideal body shape healthy body are the desire of everyone, both young and old. The purpose of this study was to determine: (1) the effect of block circuit training on aerobic fitness and body fat percentage, (2) the effect of non-block circuit training on aerobic fitness and body fat percentage, and (3) differences in the effect of exercise on block and non-circuit training block against aerobic fitness and body fat percentage. This research is an experimental research with the prestest posttest design Two groups design. The population in this study were 57 members of fat loss at GOR UNY Fitness Center. The retrieval technique uses purposive random sampling with a sample of 20 people. The instruments with rockport test (1.6 KM) and body fat percentage with a scale of bioelectrical impedance analysis omron (BIA). So it can be concluded the circuit training between block and non-block has a significant effect on aerobic fitness and body fat percentage. And for differences in the effect of circuit training between blocks and non-blocks, it is more influential on aerobic fitness than the percentage of body fat.

Keywords: circuit training, aerobic fitness, body fat percentage, healthy body

Procedia PDF Downloads 256
17328 Parametric Template-Based 3D Reconstruction of the Human Body

Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo, Linhang Zhu

Abstract:

This study proposed a 3D human body reconstruction method, which integrates multi-view joint information into a set of joints and processes it with a parametric human body template. Firstly, we obtained human body image information captured from multiple perspectives. The multi-view information can avoid self-occlusion and occlusion problems during the reconstruction process. Then, we used the MvP algorithm to integrate multi-view joint information into a set of joints. Next, we used the parametric human body template SMPL-X to obtain more accurate three-dimensional human body reconstruction results. Compared with the traditional single-view parametric human body template reconstruction, this method significantly improved the accuracy and stability of the reconstruction.

Keywords: parametric human body templates, reconstruction of the human body, multi-view, joint

Procedia PDF Downloads 83
17327 Effect of Different Contact Rollers on the Surface Texture during the Belt Grinding Process

Authors: Amine Hamdi, Sidi Mohammed Merghache, Brahim Fernini

Abstract:

During abrasive machining of hard steels by belt grinding, the finished surface texture is influenced by the pressure between the abrasive belt and the workpiece; this pressure is the force applied by the contact roller on the workpiece. Therefore, the contact roller has an important role and has a direct impact on process efficiency. The objective of this article is to study and compare the influence of different contact rollers on the belt ground surface texture. The quality of the surface texture is characterized by eight roughness parameters (Ra, Rz, Rp, Rv, Rsk, Rku, Rsm, and Rdq) and five parameters of the bearing area curve (Rpk, Rk, Rvk, Mr1, and Mr2). The results of the experimental tests indicate a better surface texture obtained by the PA 6 polyamide roller (hardness 60 Shore D) compared to that obtained with other rollers of the same hardness or of different hardness. Simultaneously, optimum medium pressure between the belt and the workpiece allows chip removal without fracturing the abrasive grains. This generates a good surface texture.

Keywords: belt grinding, contact roller, pressure, abrasive belt, surface texture

Procedia PDF Downloads 185
17326 Geothermal Prospect Prediction at Mt. Ciremai Using Fault and Fracture Density Method

Authors: Rifqi Alfadhillah Sentosa, Hasbi Fikru Syabi, Stephen

Abstract:

West Java is a province in Indonesia which has a number of volcanoes. One of those volcanoes is Mt. Ciremai, located administratively at Kuningan and Majalengka District, and is known for its significant geothermal potential in Java Island. This research aims to assume geothermal prospects at Mt. Ciremai using Fault and Fracture Density (FFD) Method, which is correlated to the geochemistry of geothermal manifestations around the mountain. This FFD method is using SRTM data to draw lineaments, which are assumed associated with fractures and faults in the research area. These faults and fractures were assumed as the paths for reservoir fluids to reached surface as geothermal manifestations. The goal of this method is to analyze the density of those lineaments found in the research area. Based on this FFD Method, it is known that area with high density of lineaments located on Mt. Kromong at the northern side of Mt. Ciremai. This prospect area is proven by its higher geothermometer values compared to geothermometer values calculated at the south area of Mt. Ciremai.

Keywords: geothermal prospect, fault and fracture density, Mt. Ciremai, surface manifestation

Procedia PDF Downloads 371
17325 Implication of Built-Up Area, Vegetation, and Motorized Vehicles to Urban Microclimate in Bandung City Center

Authors: Ira Irawati, Muhammad Rangga Sururi

Abstract:

The expansion of built-up areas in many cities, particularly, as the consequences of urbanization process, is a common phenomenon in our contemporary world. As happened in many cities in developing world, this horizontal expansion let only a handful size of the area left for green open spaces, creating an extreme unbalance between built-up and green spaces. Combined with the high density and variety of human activities with its transportation modes; a process of urban heat island will occur, resulting in an increase in air temperature. This is one of the indicators of decreasing of the quality of urban microclimate. This paper will explore the effect of several variables of built-up areas and open spaces to the increase of air temperature using multiple linear regression analysis. We selected 11 zones within the radius of 1 km in Inner Bandung city center, and each zones measured within 300 m radius to represent the variety of land use, as well as the composition of buildings and green open spaces. By using a quantitative method which is multiple linear regression analysis, six dependent variables which are a) tree density-x1, b) shade level of tree-x2, c) surface area of buildings’ side which are facing west and east-x3, d) surface area of building side material-x4, e) surface area of pathway material, and f) numbers of motorized vehicles-x6; are calculated to find those influence to the air temperature as an independent variable-y. Finally, the relationship between those variables shows in this equation: y = 30.316 - 3.689 X1 – 6.563 X2 + 0.002 X3 – 2,517E6 X4 + 1.919E-9 X5 + 1.952E-4 X6. It shows that the existence of vegetation has a great impact on lowering temperature. In another way around, built up the area and motorized vehicles would increase the temperature. However, one component of built up area, the surface area of buildings’ sides which are facing west and east, has different result due to the building material is classified in low-middle heat capacity.

Keywords: built-up area, microclimate, vehicles, urban heat island, vegetation

Procedia PDF Downloads 261
17324 Wave Powered Airlift PUMP for Primarily Artificial Upwelling

Authors: Bruno Cossu, Elio Carlo

Abstract:

The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.

Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter

Procedia PDF Downloads 149
17323 Aerodynamic Heating Analysis of Hypersonic Flow over Blunt-Nosed Bodies Using Computational Fluid Dynamics

Authors: Aakash Chhunchha, Assma Begum

Abstract:

The qualitative aspects of hypersonic flow over a range of blunt bodies have been extensively analyzed in the past. It is well known that the curvature of a body’s geometry in the sonic region predominantly dictates the bow shock shape and its standoff distance from the body, while the surface pressure distribution depends on both the sonic region and on the local body shape. The present study is an extension to analyze the hypersonic flow characteristics over several blunt-nosed bodies using modern Computational Fluid Dynamics (CFD) tools to determine the shock shape and its effect on the heat flux around the body. 4 blunt-nosed models with cylindrical afterbodies were analyzed for a flow at a Mach number of 10 corresponding to the standard atmospheric conditions at an altitude of 50 km. The nose radii of curvature of the models range from a hemispherical nose to a flat nose. Appropriate numerical models and the supplementary convergence techniques that were implemented for the CFD analysis are thoroughly described. The flow contours are presented highlighting the key characteristics of shock wave shape, shock standoff distance and the sonic point shift on the shock. The variation of heat flux, due to different shock detachments for various models is comprehensively discussed. It is observed that the more the bluntness of the nose radii, the farther the shock stands from the body; and consequently, the less the surface heating at the nose. The results obtained from the CFD analyses are compared with approximated theoretical engineering correlations. Overall, a satisfactory agreement is observed between the two.

Keywords: aero-thermodynamics, blunt-nosed bodies, computational fluid dynamics (CFD), hypersonic flow

Procedia PDF Downloads 148
17322 The Investigation of Correlation between Body Composition and Physical Activity in University Students

Authors: Ferruh Taspinar, Gulce K. Seyyar, Gamze Kurt, Eda O. Okur, Emrah Afsar, Ismail Saracoglu, Betul Taspinar

Abstract:

Alterations of physical activity can effect body composition (especially body fat ratio); however body mass index may not sufficient to indicate these minimal differences. The aim of this study was to evaluate the relationship between body composition and physical activity in university students. In this study, 132 university students (mean age; 21.21±1.51) were included. Tanita BC-418 and International Physical Activity Questionnaire (IPAQ) were used to evaluate participants. The correlation between the parameters was analysed via Spearman correlation analysis. Significance level in statistical analyses was accepted is 0.05. The results showed that there was no correlation between body mass index and physical activity (p>0.05). There was a positive correlation between body muscle ratio and physical activity, whereas a negative correlation between body fat ratio and physical activity (p<0.05). This study showed that body fat and muscle ratio affects the level of physical activity in healthy university students. Therefore, we thought that physical activity might reduce effects of the diseases caused by disturbed body composition. Further studies are required to support this idea.

Keywords: body composition, body mass index, physical activity, university student

Procedia PDF Downloads 360
17321 A Study of Parameters That Have an Influence on Fabric Prints in Judging the Attractiveness of a Female Body Shape

Authors: Man N. M. Cheung

Abstract:

In judging the attractiveness of female body shape, visual sense is one of the important means. The ratio and proportion of body shape influence the perception of female physical attractiveness. This study aims to examine visual perception of digital textile prints on a virtual 3D model in judging the attractiveness of the body shape. Also, investigate the influences when using different shape parameters and their relationships. Participants were asked to conduct a set of questionnaires with images to rank the attractiveness of the female body shape. Results showed that morphing the fabric prints with a certain ratio and combination of shape parameters - waist and hip, can enhance the attractiveness of the female body shape.

Keywords: digital printing, 3D body modeling, fashion print design, body shape attractiveness

Procedia PDF Downloads 180
17320 Modeling Thermal Changes of Urban Blocks in Relation to the Landscape Structure and Configuration in Guilan Province

Authors: Roshanak Afrakhteh, Abdolrasoul Salman Mahini, Mahdi Motagh, Hamidreza Kamyab

Abstract:

Urban Heat Islands (UHIs) are distinctive urban areas characterized by densely populated central cores surrounded by less densely populated peripheral lands. These areas experience elevated temperatures, primarily due to impermeable surfaces and specific land use patterns. The consequences of these temperature variations are far-reaching, impacting the environment and society negatively, leading to increased energy consumption, air pollution, and public health concerns. This paper emphasizes the need for simplified approaches to comprehend UHI temperature dynamics and explains how urban development patterns contribute to land surface temperature variation. To illustrate this relationship, the study focuses on the Guilan Plain, utilizing techniques like principal component analysis and generalized additive models. The research centered on mapping land use and land surface temperature in the low-lying area of Guilan province. Satellite data from Landsat sensors for three different time periods (2002, 2012, and 2021) were employed. Using eCognition software, a spatial unit known as a "city block" was utilized through object-based analysis. The study also applied the normalized difference vegetation index (NDVI) method to estimate land surface radiance. Predictive variables for urban land surface temperature within residential city blocks were identified categorized as intrinsic (related to the block's structure) and neighboring (related to adjacent blocks) variables. Principal Component Analysis (PCA) was used to select significant variables, and a Generalized Additive Model (GAM) approach, implemented using R's mgcv package, modeled the relationship between urban land surface temperature and predictor variables.Notable findings included variations in urban temperature across different years attributed to environmental and climatic factors. Block size, shared boundary, mother polygon area, and perimeter-to-area ratio were identified as main variables for the generalized additive regression model. This model showed non-linear relationships, with block size, shared boundary, and mother polygon area positively correlated with temperature, while the perimeter-to-area ratio displayed a negative trend. The discussion highlights the challenges of predicting urban surface temperature and the significance of block size in determining urban temperature patterns. It also underscores the importance of spatial configuration and unit structure in shaping urban temperature patterns. In conclusion, this study contributes to the growing body of research on the connection between land use patterns and urban surface temperature. Block size, along with block dispersion and aggregation, emerged as key factors influencing urban surface temperature in residential areas. The proposed methodology enhances our understanding of parameter significance in shaping urban temperature patterns across various regions, particularly in Iran.

Keywords: urban heat island, land surface temperature, LST modeling, GAM, Gilan province

Procedia PDF Downloads 80
17319 Soil Rehabilitation Using Modified Diatomite: Assessing Chemical Properties, Enzymatic Reactions and Heavy Metal Immobilization

Authors: Maryam Samani. Ahmad Golchin. Hosseinali Alikkani. Ahmad Baybordi

Abstract:

Natural diatomite was modified by grinding and acid treatment to increase surface area and to decrease the impurities. Surface area and pore volume of the modified diatomite were 67.45 m² g-1 and 0.105 cm³ g-¹ respectively, and used to immobilize Pb, Zn and Cu in an urban soil. The modified diatomite was added to soil samples at the rates of 2.5, 5, 7.5 and 10% and the samples incubated for 60 days. The addition of modified diatomite increased SSA of the soil. The SSAs of soils with 2.5, 5.0, 7.5 and 10% modified diatomite were 20.82, 22.02, 23.21 and 24.41 m² g-¹ respectively. Increasing the SSAs of the soils by the application of modified diatomite reduced the DTPA extractable concentrations of heavy metals compared with un-amendment control. The concentration of Pb, Zn and Cu were reduced by 91.1%, 82% and 91.1% respectively. Modified diatomite reduced the concentration of Exchangeable and Carbonate bounded species of Pb, Zn and Cu, compared with the control. Also significantly increased the concentration of Fe Mn- OX (Fe-Mn Oxides) and OM (Organic Matter) bound and Res (Residual) fraction. Modified diatomite increased the urease, dehydrogenase and alkaline phosphatase activity by 52%, 57% and 56.6% respectively.

Keywords: modified diatomite, chemical specifications, specific surface area, enzyme activity, immobilization, heavy metal, soil remediation

Procedia PDF Downloads 68
17318 Surface Modification of Poly High Internal Phase Emulsion by Solution Plasma Process for CO2 Adsorption

Authors: Mookyada Mankrut, Manit Nithitanakul

Abstract:

An increase in the amount of atmospheric carbon dioxide (CO2) resulting from anthropogenic CO2 emission has been a concerned problem so far. Adsorption using porous materials is feasible way to reduce the content of CO2 emission into the atmosphere due to several advantages: low energy consumption in regeneration process, low-cost raw materials and, high CO2 adsorption capacity. In this work, the porous poly(divinylbenzene) (poly(DVB)) support was synthesized under high internal phase emulsion (HIPE) polymerization then modified with polyethyleneimine (PEI) by using solution plasma process. These porous polymers were then used as adsorbents for CO2 adsorption study. All samples were characterized by some techniques: Fourier transform infrared spectroscopy (FT-IR), scanning electron spectroscopy (SEM), water contact angle measurement and, surface area analyzer. The results of FT-IR and a decrease in contact angle, pore volume and, surface area of PEI-loaded materials demonstrated that surface of poly(DVB) support was modified. In other words, amine groups were introduced to poly(DVB) surface. In addition, not only the outer surface of poly(DVB) adsorbent was modified, but also the inner structure as shown by FT-IR study. As a result, PEI-loaded materials exhibited higher adsorption capacity, comparing with those of the unmodified poly(DVB) support.

Keywords: polyHIPEs, CO2 adsorption, solution plasma process, high internal phase emulsion

Procedia PDF Downloads 276
17317 Parent and Child Body Dissatisfaction: The Roles of Implicit Behavior and Child Gender in Middle Childhood

Authors: Vivienne Langhorne, Helen Sharpe

Abstract:

Body dissatisfaction begins developing in middle childhood, with wide-ranging implications for mental health and well-being. Previous research on parent behavior has focused on the role of explicit parent behaviors in adolescent and young adult body dissatisfaction, leaving a gap in understanding how implicit parent behaviors relate to body dissatisfaction in childhood. The current study investigated how implicit parent behavior (such as modeling own body dissatisfaction and dieting) relates to parent and child body dissatisfaction. It was hypothesized that implicit behavior would be directly related to parent and child body dissatisfaction and mediate the relationship between the two. Furthermore, this study aimed to examine child gender as a potential moderator in this mediation, as research shows that boys and girls experience body dissatisfaction differently. This study analyzed survey responses on parent body dissatisfaction, implicit behavior, and child body dissatisfaction measures from a sample of 166 parent-child dyads with children between the ages of 6 to 9 years old. Regression analyses revealed that parent body dissatisfaction is related to both parent-implicit behavior and child body dissatisfaction. However, implicit behavior did not mediate the relationship between the two body dissatisfaction variables. Additionally, the results of moderated mediation indicated there were no child gender differences in the strength of the association between parental implicit behaviors and child body dissatisfaction. These findings highlight the need for further research into the mechanisms behind parent and child body dissatisfaction to better understand the process through which intergenerational transmission occurs.

Keywords: body dissatisfaction, implicit behaviour, middle childhood, parenting

Procedia PDF Downloads 68
17316 Phytoplankton Community Structure in the Moroccan Coast of the Mediterranean Sea: Case Study of Saiidia, Three Forks Cape

Authors: H. Idmoussi, L. Somoue, O. Ettahiri, A. Makaoui, S. Charib, A. Agouzouk, A. Ben Mhamed, K. Hilmi, A. Errhif

Abstract:

The study on the composition, abundance, and distribution of phytoplankton was conducted along the Moroccan coast of the Mediterranean Sea (Saiidia - Three Forks Cape) in April 2018. Samples were collected at thirteen stations using Niskin bottles within two layers (surface and deep layers). The identification and enumeration of phytoplankton were carried out according to the Utermöhl method (1958). A total number of 54 phytoplankton species were identified over the entire survey area. Thirty-six species could be found both in the surface and the deep layers while eleven species were observed only in the surface layer and seven in the deep layer. The phytoplankton throughout the study area was dominated by diatoms represented mainly by Nitzschia sp., Pseudonitzschia sp., Chaetoceros sp., Cylindrotheca closterium, Leptocylindrus minimus, Leptocylindrus danicus, Dactyliosolen fragilissimus. Dinoflagellates were dominated by Gymnodinium sp., Scrippsiella sp., Gyrodinium spirale, Noctulica sp, Prorocentrum micans. Euglenophyceae, Silicoflagellates and Raphidophyceae were present in low numbers. Most of the phytoplankton were concentrated in the surface layer, particularly towards the Three Forks Cape (25200 cells·l⁻¹). Shannon species diversity (ranging from 2 and 4 Bits) and evenness index (broadly > 0.7) suggested that phytoplankton community is generally diversified and structured in the studied area.

Keywords: abundance, diversity, Mediterranean Sea, phytoplankton

Procedia PDF Downloads 164
17315 Face Recognition Using Body-Worn Camera: Dataset and Baseline Algorithms

Authors: Ali Almadan, Anoop Krishnan, Ajita Rattani

Abstract:

Facial recognition is a widely adopted technology in surveillance, border control, healthcare, banking services, and lately, in mobile user authentication with Apple introducing “Face ID” moniker with iPhone X. A lot of research has been conducted in the area of face recognition on datasets captured by surveillance cameras, DSLR, and mobile devices. Recently, face recognition technology has also been deployed on body-worn cameras to keep officers safe, enabling situational awareness and providing evidence for trial. However, limited academic research has been conducted on this topic so far, without the availability of any publicly available datasets with a sufficient sample size. This paper aims to advance research in the area of face recognition using body-worn cameras. To this aim, the contribution of this work is two-fold: (1) collection of a dataset consisting of a total of 136,939 facial images of 102 subjects captured using body-worn cameras in in-door and daylight conditions and (2) evaluation of various deep-learning architectures for face identification on the collected dataset. Experimental results suggest a maximum True Positive Rate(TPR) of 99.86% at False Positive Rate(FPR) of 0.000 obtained by SphereFace based deep learning architecture in daylight condition. The collected dataset and the baseline algorithms will promote further research and development. A downloadable link of the dataset and the algorithms is available by contacting the authors.

Keywords: face recognition, body-worn cameras, deep learning, person identification

Procedia PDF Downloads 170
17314 Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran

Authors: Ali Reza Vaezi, Ouldouz Bakhshi Rad

Abstract:

Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azarbijan province, NW Iran. Toward this, two hundred twenty-two gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r= -0.26), surface area (r= 0.71), the area of rainfed lands (r= 0.23), and the area of rainfed tilled along the slope (r= 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the Universal Soil Loss Equation (USLE). It seems the estimated soil erodibility can’t describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands.

Keywords: agricultural area, gully properties, soil structure, USLE

Procedia PDF Downloads 81
17313 Hydrogeochemistry Preliminary Study of Groundwater Conservation in Buton Island, Southeast Sulawesi, Indonesia

Authors: M. S. M. Prahastomi, Riki Sunaryo, Lorasa Ximanes

Abstract:

The research takes place in EP Area, in the Northern part of Buton, Southeast Sulawesi Province, Indonesia. It is one example of karst areas that have good water resources potential. The landscape is in the form of valleys and hills which is good enough for recharge zone and discharge zones of groundwater. However, the geological characteristics of karst dissolution and a complex geological structure are quite influential to the groundwater flow system in the region. The Discharge of groundwater to the surface can be caused by a fracture in the rock, Underground River due to dissolution, and the contact between permeable rocks with impermeable rocks. In the concept of hydrogeology, groundwater is one of the components of the hydrological cycle which is closely linked to the availability of water under the surface, precipitation, infiltration, percolation, evapotranspiration, and surface runoff. Conceptually, the condition of recharge and discharge areas can be identified through a research distribution springs in a region. The understanding of the condition and the nature of the potential catchment area of groundwater flow, mainly from the catchment area to the discharge area, is urgently needed. This research aimed to assess the general geological conditions of the study area, which is expected to provide an overview of groundwater flow events that used by the public as well as industry. Behavioral characteristics of groundwater become an integral part in the search for potential groundwater in the study area. As for the research methods used hydrogeology mapping and laboratory works.

Keywords: Buton Island, groundwater conservation, hydrogeochemistry preliminary, karst

Procedia PDF Downloads 343
17312 Effects of Surface Insulation of Silicone Rubber Composites in HVDC

Authors: Min-Hae Park, Ju-Na Hwang, Cheong-won Seo, Ji-Ho Kim, Kee-Joe Lim

Abstract:

Polymeric insulators are high hardness, corrosion resistant, lightweight and also good dielectric strength in electric equipment. For such reasons, the amount of polymeric insulators is increased consistently abroad. The current outdoor insulators are replaced by polymeric insulators. Silicone rubber of polymeric insulators is widely used in insulation materials for outdoor application since it has excellent electrical characteristics and high surface hydrophobic. However, it can be evade exposure to pollutant on surface using at outdoor. It also improve the pollution for dust and smoke due to the large are increasing, because most of the industrial area in which the electric power loads are concentrated are located at the coastal area with salt attack. Thus it is important to detect the main cause of the deterioration for outdoor insulation materials. But there has no standards for valuation to apply reliably and determine accurately deterioration under DC, still lacks DC characteristic researches in proportion to AC. In addition, a lot of ATH was added to improve tracking resistivity of silicone rubber, although the problem has been brought up about falling sharply mechanical properties. Therefore, we might compare surface resistivities of silicone rubber compounding of three kinds of filler. In this paper, specimens of silicone rubber composite usable as outdoor insulators were prepared. Micro-silica (SiO2), nano- alumina (Al2O3) and nano-ATH (Al(OH)3) were used in additives. The study aims to investigate properties of DC surface insulation on silicone rubber composite which were filled with various fillers from surface resistivity measurement and salt-fog test.

Keywords: composite, silicone rubber, surface insulation, HVDC

Procedia PDF Downloads 409
17311 The Use of Remotely Sensed Data to Extract Wetlands Area in the Cultural Park of Ahaggar, South of Algeria

Authors: Y. Fekir, K. Mederbal, M. A. Hammadouche, D. Anteur

Abstract:

The cultural park of the Ahaggar, occupying a large area of Algeria, is characterized by a rich wetlands area to be preserved and managed both in time and space. The management of a large area, by its complexity, needs large amounts of data, which for the most part, are spatially localized (DEM, satellite images and socio-economic information...), where the use of conventional and traditional methods is quite difficult. The remote sensing, by its efficiency in environmental applications, became an indispensable solution for this kind of studies. Remote sensing imaging data have been very useful in the last decade in very interesting applications. They can aid in several domains such as the detection and identification of diverse wetland surface targets, topographical details, and geological features... In this work, we try to extract automatically wetlands area using multispectral remotely sensed data on-board the Earth Observing 1 (EO-1) and Landsat satellite. Both are high-resolution multispectral imager with a 30 m resolution. The instrument images an interesting surface area. We have used images acquired over the several area of interesting in the National Park of Ahaggar in the south of Algeria. An Extraction Algorithm is applied on the several spectral index obtained from combination of different spectral bands to extract wetlands fraction occupation of land use. The obtained results show an accuracy to distinguish wetlands area from the other lad use themes using a fine exploitation on spectral index.

Keywords: multispectral data, EO1, landsat, wetlands, Ahaggar, Algeria

Procedia PDF Downloads 381
17310 Numerical Simulation of Waves Interaction with a Free Floating Body by MPS Method

Authors: Guoyu Wang, Meilian Zhang, Chunhui LI, Bing Ren

Abstract:

In recent decades, a variety of floating structures have played a crucial role in ocean and marine engineering, such as ships, offshore platforms, floating breakwaters, fish farms, floating airports, etc. It is common for floating structures to suffer from loadings under waves, and the responses of the structures mounted in marine environments have a significant relation to the wave impacts. The interaction between surface waves and floating structures is one of the important issues in ship or marine structure design to increase performance and efficiency. With the progress of computational fluid dynamics, a number of numerical models based on the NS equations in the time domain have been developed to explore the above problem, such as the finite difference method or the finite volume method. Those traditional numerical simulation techniques for moving bodies are grid-based, which may encounter some difficulties when treating a large free surface deformation and a moving boundary. In these models, the moving structures in a Lagrangian formulation need to be appropriately described in grids, and the special treatment of the moving boundary is inevitable. Nevertheless, in the mesh-based models, the movement of the grid near the structure or the communication between the moving Lagrangian structure and Eulerian meshes will increase the algorithm complexity. Fortunately, these challenges can be avoided by the meshless particle methods. In the present study, a moving particle semi-implicit model is explored for the numerical simulation of fluid–structure interaction with surface flows, especially for coupling of fluid and moving rigid body. The equivalent momentum transfer method is proposed and derived for the coupling of fluid and rigid moving body. The structure is discretized into a group of solid particles, which are assumed as fluid particles involved in solving the NS equation altogether with the surrounding fluid particles. The momentum conservation is ensured by the transfer from those fluid particles to the corresponding solid particles. Then, the position of the solid particles is updated to keep the initial shape of the structure. Using the proposed method, the motions of a free-floating body in regular waves are numerically studied. The wave surface evaluation and the dynamic response of the floating body are presented. There is good agreement when the numerical results, such as the sway, heave, and roll of the floating body, are compared with the experimental and other numerical data. It is demonstrated that the presented MPS model is effective for the numerical simulation of fluid-structure interaction.

Keywords: floating body, fluid structure interaction, MPS, particle method, waves

Procedia PDF Downloads 80
17309 Electrochemical Coagulation of Synthetic Textile Dye Wastewater

Authors: H. B. Rekha, Usha N. Murthy, Prashanth, Ashoka

Abstract:

Dyes are manufactured to have high chemical resistance because they are normally species, very difficult to degrade (reactive dyes). It damages flora and fauna. Furthermore, coloured components are highly hazardous. So removal of dyes becomes a challenge for both textile industry and water treatment facility. Dyeing wastewater is usually treated by conventional methods such as biological oxidation and adsorption but nowadays them becoming in-adequate because of large variability of composition of waste water. In the present investigation, mild steel electrodes of varying surface area were used for treatment of synthetic textile dye. It appears that electro-chemical coagulation could be very effective in removing coloured from wastewater; it could also be used to remove other parameters like chlorides, COD, and solids to some extent. In the present study, coloured removal up to 99% was obtained for surface area of mild steel electrode of 80 cm2 and 96% of surface area of mild steel electrode of 50 cm2. The findings from this study could be used to improve the design of electro-chemical treatment systems and modify existing systems to improve efficiency.

Keywords: electrochemical coagulation, mild steel, colour, environmental engineering

Procedia PDF Downloads 311
17308 Using GIS and Map Data for the Analysis of the Relationship between Soil and Groundwater Quality at Saline Soil Area of Kham Sakaesaeng District, Nakhon Ratchasima, Thailand

Authors: W. Thongwat, B. Terakulsatit

Abstract:

The study area is Kham Sakaesaeng District in Nakhon Ratchasima Province, the south section of Northeastern Thailand, located in the Lower Khorat-Ubol Basin. This region is the one of saline soil area, located in a dry plateau and regularly experience standing with periods of floods and alternating with periods of drought. Especially, the drought in the summer season causes the major saline soil and saline water problems of this region. The general cause of dry land salting resulted from salting on irrigated land, and an excess of water leading to the rising water table in the aquifer. The purpose of this study is to determine the relationship of physical and chemical properties between the soil and groundwater. The soil and groundwater samples were collected in both rainy and summer seasons. The content of pH, electrical conductivity (EC), total dissolved solids (TDS), chloride and salinity were investigated. The experimental result of soil and groundwater samples show the slightly pH less than 7, EC (186 to 8,156 us/cm and 960 to 10,712 us/cm), TDS (93 to 3,940 ppm and 480 to 5,356 ppm), chloride content (45.58 to 4,177,015 mg/l and 227.90 to 9,216,736 mg/l), and salinity (0.07 to 4.82 ppt and 0.24 to 14.46 ppt) in the rainy and summer seasons, respectively. The distribution of chloride content and salinity content were interpolated and displayed as a map by using ArcMap 10.3 program, according to the season. The result of saline soil and brined groundwater in the study area were related to the low-lying topography, drought area, and salt-source exposure. Especially, the Rock Salt Member of Maha Sarakham Formation was exposed or lies near the ground surface in this study area. During the rainy season, salt was eroded or weathered from the salt-source rock formation and transported by surface flow or leached into the groundwater. In the dry season, the ground surface is dry enough resulting salt precipitates from the brined surface water or rises from the brined groundwater influencing the increasing content of chloride and salinity in the ground surface and groundwater.

Keywords: environmental geology, soil salinity, geochemistry, groundwater hydrology

Procedia PDF Downloads 123
17307 The Depth Penetration of Beryllium-7, ⁷BE as a Tracer in the Sembrong Catchment Area Study

Authors: J. Sharib, D. N. A. Tugi, M. T. Ishak, M. I. A. Adziz

Abstract:

The main purpose of this research paper conducted was to study the penetration of ⁷Be onto the soil surface for two different seasons in different areas of agricultural activity. The study was conducted during the dry and wet seasons from January to May 2019 in the Sembrong catchment area. The Sembrong Catchment Area is located in the district of Kluang, Johor in the South of Peninsular Malaysia and was selected based on the small size of the catchment and surrounded by various agricultural activities. A total of twenty (20) core soil samples to a depth of 10 cm each were taken using a metal corer made of metal. All these samples were brought to the Radiochemistry and Environment Group (RAS), Nuclear Malaysia, Block 23, Bangi, Malaysia, to enable the preparation, drying and analysis work to be carried out. Furthermore, all samples were oven dried at 45 – 60 ºC so that the dry weight became constant and gently disaggregated. Lastly, dried samples were milled and sieved at 2 mm before being packed into a well-type container and ready for ⁷Be analysis. The result of the analysis shows that the penetration of ⁷Be into the soil surface decreases by an exponential decay. The distribution of profiles to the interior of the soil surface or ho values ranged from 1.56 to 3.62 kg m⁻² and from 2.59 to 4.17 kg m⁻² for both dry and wet seasons. Consequently, the dry season has given a lower ho value when compared to the wet season. In conclusion, ⁷Be is a very suitable tracer to be used in determining the penetration onto the soil surface or ho values for the two different seasons.

Keywords: depth penetration, dry season, wet season, sembrong catchment, well type container

Procedia PDF Downloads 132