Search results for: InSAR phase unwrapping
4383 Iridium-Based Bimetallic Catalysts for Hydrogen Production through Glycerol Aqueous-Phase Reforming
Authors: Francisco Espinosa, Juan Chavarría
Abstract:
Glycerol is a byproduct of biodiesel production that can be used for aqueous-phase reforming to obtain hydrogen. Iridium is a material that has high activity and hydrogen selectivity for steam phase reforming. Nevertheless, a drawback for the use of iridium in aqueous-phase reforming is the low activity in water-gas shift reaction. Therefore, in this work, it is proposed the use of nickel and copper as a second metal in the catalyst to reach a synergetic effect. Iridium, iridium-nickel and iridium-copper catalysts were prepared by incipient wetness impregnation and evaluated in the aqueous-phase reforming of glycerol using CeO₂ or La₂O₃ as support. The catalysts were characterized by XRD, XPS, and EDX. The reactions were carried out in a fixed bed reactor feeding a solution of glycerol 10 wt% in water at 270°C, and reaction products were analyzed by gas chromatography. It was found that IrNi/CeO₂ reached highest glycerol conversion and hydrogen production, slightly above 70% and 43 vol% respectively. In terms of conversion, iridium is a promising metal, and its activity for hydrogen production can be enhanced when adding a second metal.Keywords: aqueous-phase reforming, glycerol, hydrogen production, iridium
Procedia PDF Downloads 3234382 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection
Authors: Hussin K. Ragb, Vijayan K. Asari
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor
Procedia PDF Downloads 4854381 Extraction of Dyes Using an Aqueous Two-Phase System in Stratified and Slug Flow Regimes of a Microchannel
Authors: Garima, S. Pushpavanam
Abstract:
In this work, analysis of an Aqueous two-phase (polymer-salt) system for extraction of sunset yellow dye is carried out. A polymer-salt ATPS i.e.; Polyethylene glycol-600 and anhydrous sodium sulfate is used for the extraction. Conditions are chosen to ensure that the extraction results in a concentration of the dye in one of the phases. The dye has a propensity to come to the Polyethylene glycol-600 phase. This extracted sunset yellow dye is degraded photo catalytically into less harmful components. The cloud point method was used to obtain the binodal curve of ATPS. From the binodal curve, the composition of salt and Polyethylene glycol -600 was chosen such that the volume of Polyethylene glycol-600 rich phase is low. This was selected to concentrate the dye from a dilute solution in a large volume of contaminated solution into a small volume. This pre-concentration step provides a high reaction rate for photo catalytic degradation reaction. Experimentally the dye is extracted from the salt phase to Polyethylene glycol -600 phase in batch extraction. This was found to be very fast and all dye was extracted. The concentration of sunset yellow dye in salt and polymer phase is measured at 482nm by ultraviolet-visible spectrophotometry. The extraction experiment in micro channels under stratified flow is analyzed to determine factors which affect the dye extraction. Focus will be on obtaining slug flow by adding nanoparticles in micro channel. The primary aim is to exploit the fact that slug flow will help improve mass transfer rate from one phase to another through internal circulation in dispersed phase induced by shear.Keywords: aqueous two phase system, binodal curve, extraction, sunset yellow dye
Procedia PDF Downloads 3564380 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model
Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang
Abstract:
The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.Keywords: absorber plates, dual-phase-lag, non-Fourier, solar collector
Procedia PDF Downloads 3894379 Material Detection by Phase Shift Cavity Ring-Down Spectroscopy
Authors: Rana Muhammad Armaghan Ayaz, Yigit Uysallı, Nima Bavili, Berna Morova, Alper Kiraz
Abstract:
Traditional optical methods for example resonance wavelength shift and cavity ring-down spectroscopy used for material detection and sensing have disadvantages, for example, less resistance to laser noise, temperature fluctuations and extraction of the required information can be a difficult task like ring downtime in case of cavity ring-down spectroscopy. Phase shift cavity ring down spectroscopy is not only easy to use but is also capable of overcoming the said problems. This technique compares the phase difference between the signal coming out of the cavity with the reference signal. Detection of any material is made by the phase difference between them. By using this technique, air, water, and isopropyl alcohol can be recognized easily. This Methodology has far-reaching applications and can be used in air pollution detection, human breath analysis and many more.Keywords: materials, noise, phase shift, resonance wavelength, sensitivity, time domain approach
Procedia PDF Downloads 1474378 Analysis of Structural Phase Stability of Strontium Sulphide under High Pressure
Authors: Shilpa Kapoor, Namrata Yaduvanshi, Pooja Pawar, Sadhna Singh
Abstract:
A Three Body Interaction Potential (TBIP) model is developed to study the high pressure phase transition of SrS having NaCl (B1) structure at room temperature. This model includes the long range Columbic, three body interaction forces, short range overlap forces operative up to next nearest neighbors and zero point energy effects. We have investigated the phase transition with pressure, volume collapse and second order elastic constants and found results well suited with available experimental data.Keywords: phase transition, second order elastic constants, three body interaction forces, volume collapses
Procedia PDF Downloads 5254377 Effect of Martensite Content and Its Morphology on Mechanical Properties of Microalloyed Dual Phase Steel
Authors: M. K. Manoj, V. Pancholi, S. K. Nath
Abstract:
Microalloyed dual phase steels have been prepared by intercritical austenitisation (ICA) treatment of normalized steel at different temperature and time. Water quenching wad carried to obtain different martensite volume fraction (MVF) in DP steels. DP steels and normalized steels have been characterized by optical and scanning electron microscopy, Vickers hardness measurements and tensile properties determination. The effect of MVF and martensite morphology on mechanical properties and fracture behavior of microalloyed dual phase steels have been explained in the present work.Keywords: dual phase steel, martensite morphology, hardness, tensile strength
Procedia PDF Downloads 3274376 Dynamic Study of a Two Phase Thermosyphon Loop
Authors: Selva Georgena D., Videcoq Etienne, Caner Julien, Benselama Adel, Girault Manu
Abstract:
A Two-Phase Thermosyphon Loop (TPTL) is a passive cooling system which does not require a pump to function. Therefore, TPTL is a simple and robust device and its physics is complex to describe because of the coupled phenomena: heat flux, nucleation, fluid dynamics and gravitational effects. Moreover, the dynamic behavior of TPTL shows some physical instabilities and the actual occurrence of such a behavior remains unknown. The aim of this study is to propose a thermal balance of the TPTL to better identify the fundamental reasons for the appearance of the instabilities.Keywords: Two-phase flow, passive cooling system, thermal reliability, thermal experimental study, liquid-vapor phase change
Procedia PDF Downloads 1104375 Numerical Study on the Heat Transfer Characteristics of Composite Phase Change Materials
Authors: Gui Yewei, Du Yanxia, Xiao Guangming, Liu Lei, Wei Dong, Yang Xiaofeng
Abstract:
A phase change material (PCM) is a substance which absorbs a large amount of energy when undergoing a change of solid-liquid phase. The good physical and chemical properties of C or SiC foam reveal the possibility of using them as a thermal conductivity enhancer for the PCM. C or SiC foam composite PCM has a high effective conductivity and becomes one of the most interesting thermal storage techniques due to its advantage of simplicity and reliability. The paper developed a numerical method to simulate the heat transfer of SiC and C foam composite PCM, a finite volume technique was used to discretize the heat diffusion equation while the phase change process was modeled using the equivalent specific heat method. The effects of the porosity were investigated based on the numerical method, and the effects of the geometric model of the microstructure on the equivalent thermal conductivity was studies.Keywords: SiC foam, composite, phase change material, heat transfer
Procedia PDF Downloads 5094374 Indigo Production in a Fed Batch Bioreactor Using Aqueous-Solvent Two Phase System
Authors: Vaishnavi Unde, Srikanth Mutnuri
Abstract:
Today dye stuff sector is one of the major chemical industries in India. Indigo is a blue coloured dye used all over the world in large quantity. The indigo dye produced and used in textile industries is synthetic having toxic effect, thus there is an increase in interest for natural dyes owing to the environmental concerns. The present study focuses on the use of a strain Pandoraea sp. isolated from garage soil, for the production of indigo in fed batch bioreactor. A comparative study between single phase and two phase production was carried out in this work. The blue colour produced during the experiments was analyzed using, TLC, UV-visible spectrophotometer and FTIR technique. The blue pigment was found to be indigo. The production of bio-indigo was done in a single phase fermentor carrying medium and substrate indole in dissolved form and was found to produce maximum of 0.041 g/L of indigo. Whereas there was an increase in production of indigo to 0.068 g/L in a two phase, water-silicone oil system. In this study the advantage of using second phase as silicone oil has enhanced the indigo production, as the second phase made the substrate available to the bacteria by increasing the surface area as well as it helped to prevent the inhibition effect of the high concentration of substrate, indole. The effect of single and two phases on the growth of bacteria was also studied.Keywords: dyes, fed batch reactor, indole, Indigo
Procedia PDF Downloads 4314373 Anonymous Gel-Fluid Transition of Solid Supported Lipids
Authors: Asma Poursoroush
Abstract:
Solid-supported lipid bilayers are often used as a simple model for studies of biological membranes. The presence of a solid substrate that interacts attractively with lipid head-groups is expected to affect the phase behavior of the supported bilayer. Molecular dynamics simulations of a coarse-grained model are thus performed to investigate the phase behavior of supported one-component lipid bilayer membranes. Our results show that the attraction of the lipid head groups to the substrate leads to a phase behavior that is different from that of a free standing lipid bilayer. In particular, we found that the phase behaviors of the two leaflets are decoupled in the presence of a substrate. The proximal leaflet undergoes a clear gel-to-fluid phase transition at a temperature lower than that of a free standing bilayer, and that decreases with increasing strength of the substrate-lipid attraction. The distal leaflet, however, undergoes a change from a homogeneous liquid phase at high temperatures to a heterogeneous state consisting of small liquid and gel domains, with the average size of the gel domains that increases with decreasing temperature. While the chain order parameter of the proximal leaflet clearly shows a gel-fluid phase transition, the chain order parameter of the distal leaflet does not exhibit a clear phase transition. The decoupling in the phase behavior of the two leaflets is due to a non-symmteric lipid distribution in the two leaflets resulting from the presence of the substrate.Keywords: membrane, substrate, molecular dynamics, simulation
Procedia PDF Downloads 1924372 Comparative Study of Estimators of Population Means in Two Phase Sampling in the Presence of Non-Response
Authors: Syed Ali Taqi, Muhammad Ismail
Abstract:
A comparative study of estimators of population means in two phase sampling in the presence of non-response when Unknown population means of the auxiliary variable(s) and incomplete information of study variable y as well as of auxiliary variable(s) is made. Three real data sets of University students, hospital and unemployment are used for comparison of all the available techniques in two phase sampling in the presence of non-response with the newly generalized ratio estimators.Keywords: two-phase sampling, ratio estimator, product estimator, generalized estimators
Procedia PDF Downloads 2324371 Conflicts Identification Approach among Stakeholders in Goal-Oriented Requirements Analysis
Authors: Muhammad Suhaib
Abstract:
Requirements Analysis are the most important part of software Engineering for both system application development, and project requirements. Conflicts often arise during the requirements gathering and analysis phase. This research aims to identify conflicts during the requirements gathering phase in software development life cycle, Research, Development, and Technology converted the world into a global village. During requirements elicitation/gathering phase it’s very difficult to understand the main objective of stakeholders, after completion of requirements elicitation task final results are used for Software Requirements Specification (SRS), SRS is the highly important outcome of the requirements analysis phase. this is the foundation between the developers and stakeholders or customers, proposed methodology will be helpful to identify those conflicts in a very easy manner during the initial phase of the project.Keywords: goal oriented requirements analysis, conflicts identification model, requirements analysis, requirements engineering
Procedia PDF Downloads 1324370 Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel
Authors: W. Handoko, F. Pahlevani, V. Sahajwalla
Abstract:
Dual-phase high carbon steels (DHCS) are commonly known for their improved strength, hardness, and abrasive resistance properties due to co-presence of retained austenite and martensite at the same time. Retained austenite is a meta-stable phase at room temperature, and stability of this phase governs the response of DHCS at different conditions. This research paper studies the effect of RA stability on corrosion behaviour of high carbon steels after they have been immersed into 1.0 M NaCl solution for various times. For this purpose, two different steels with different RA stabilities have been investigated. The surface morphology of the samples before and after corrosion attack was observed by secondary electron microscopy (SEM) and atomic force microscopy (AFM), along with the weight loss and Vickers hardness analysis. Microstructural investigations proved the preferential attack to retained austenite phase during corrosion. Hence, increase in the stability of retained austenite in dual-phase steels led to decreasing the weight loss rate.Keywords: high carbon steel, austenite stability, atomic force microscopy, corrosion
Procedia PDF Downloads 2094369 A New PWM Command for Cascaded H-Bridge Multilevel Increasing the Quality and Reducing Harmonics
Authors: Youssef Babkrani, S. Hiyani, A. Naddami, K. Choukri, M. Hilal
Abstract:
Power Quality has been a problem ever since electrical power was invented and in recent years, it has become the main interest of researchers who are still concerned about finding ways to reduce its negative influence on electrical devices. In this paper we aim to improve the power quality output for H- bridge multilevel inverter used with solar Photovoltaic (PV) panels, we propose a new switching technique that uses a pulse width modulation method (PWM) aiming to reduce the harmonics. This new method introduces a sinusoidal wave compared with modified trapezoidal carriers used to generate the pulses. This new trapezoid carrier waveform is being implemented with different sinusoidal PWM dispositions such as phase disposition (PWM PD), phase opposition disposition (PWM POD), and (PWM APOD) alternative phase opposition disposition and compared with the conventional ones. Using Matlab Simulink R2014a the line voltage and total harmonic distortions (THD) simulated and the quality are increased in spite of variations of DC introduced.Keywords: carrier waveform, phase disposition (PD), phase opposition disposition (POD), alternative phase opposition disposition (APOD), total harmonics distortion (THD)
Procedia PDF Downloads 2824368 Model Predictive Control of Three Phase Inverter for PV Systems
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a three leg voltage source inverter (VSI). Operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation and results show simplicity and accuracy, as well as reliability of the model.Keywords: model predictive control, three phase voltage source inverter, PV system, Matlab/simulink
Procedia PDF Downloads 5924367 Phase Equilibria in Zn-Al-Sn Alloy for Lead-free Solder Application
Authors: Ji Chan Kim, Seok Hong Min, Tae Kwon Ha
Abstract:
The effect of Yttrium addition on the microstructure and mechanical properties of Sn-Zn eutectic alloy, which has been attracting intensive focus as a Pb-free solder material, was investigated in this study. Phase equilibrium has been calculated by using FactSage® to evaluate the composition and fraction of equilibrium intermetallic compounds and construct a phase diagram. In the case of Sn-8.8 Zn eutectic alloy, the as-cast microstructure was typical lamellar. With addition of 0.25 wt. %Y, a large amount of pro-eutectic phases have been observed and various YZnx intermetallic compounds were expected to successively form during cooling. Hardness of Sn-8.8 Zn alloy was not affected by Y-addition and both alloys could be rolled by 90% at room temperature.Keywords: lead-free solder, zn-al-sn alloy, phase equilibrium, rolling, microstructure, hardness
Procedia PDF Downloads 3054366 Analytical Description of Disordered Structures in Continuum Models of Pattern Formation
Authors: Gyula I. Tóth, Shaho Abdalla
Abstract:
Even though numerical simulations indeed have a significant precursory/supportive role in exploring the disordered phase displaying no long-range order in pattern formation models, studying the stability properties of this phase and determining the order of the ordered-disordered phase transition in these models necessitate an analytical description of the disordered phase. First, we will present the results of a comprehensive statistical analysis of a large number (1,000-10,000) of numerical simulations in the Swift-Hohenberg model, where the bulk disordered (or amorphous) phase is stable. We will show that the average free energy density (over configurations) converges, while the variance of the energy density vanishes with increasing system size in numerical simulations, which suggest that the disordered phase is a thermodynamic phase (i.e., its properties are independent of the configuration in the macroscopic limit). Furthermore, the structural analysis of this phase in the Fourier space suggests that the phase can be modeled by a colored isotropic Gaussian noise, where any instant of the noise describes a possible configuration. Based on these results, we developed the general mathematical framework of finding a pool of solutions to partial differential equations in the sense of continuous probability measure, which we will present briefly. Applying the general idea to the Swift-Hohenberg model we show, that the amorphous phase can be found, and its properties can be determined analytically. As the general mathematical framework is not restricted to continuum theories, we hope that the proposed methodology will open a new chapter in studying disordered phases.Keywords: fundamental theory, mathematical physics, continuum models, analytical description
Procedia PDF Downloads 1294365 The Influence of Structural Disorder and Phonon on Metal-To-Insulator Transition of VO₂
Authors: Sang-Wook Han, In-Hui Hwang, Zhenlan Jin, Chang-In Park
Abstract:
We used temperature-dependent X-Ray absorption fine structure (XAFS) measurements to examine the local structural properties around vanadium atoms at the V K edge from VO₂ films. A direct comparison of simultaneously-measured resistance and XAFS from the VO₂ films showed that the thermally-driven structural phase transition (SPT) occurred prior to the metal-insulator transition (MIT) during heating, whereas these changed simultaneously during cooling. XAFS revealed a significant increase in the Debye-Waller factors of the V-O and V-V pairs in the {111} direction of the R-phase VO₂ due to the phonons of the V-V arrays along the direction in a metallic phase. A substantial amount of structural disorder existing on the V-V pairs along the c-axis in both M₁ and R phases indicates the structural instability of V-V arrays in the axis. The anomalous structural disorder observed on all atomic sites at the SPT prevents the migration of the V 3d¹ electrons, resulting in a Mott insulator in the M₂-phase VO₂. The anomalous structural disorder, particularly, at vanadium sites, effectively affects the migration of metallic electrons, resulting in the Mott insulating properties in M₂ phase and a non-congruence of the SPT, MIT, and local density of state. The thermally-induced phonons in the {111} direction assist the delocalization of the V 3d¹ electrons in the R phase VO₂ and the electrons likely migrate via the V-V array in the {111} direction as well as the V-V dimerization along the c-axis. This study clarifies that the tetragonal symmetry is essentially important for the metallic phase in VO₂.Keywords: metal-insulator transition, XAFS, VO₂, structural-phase transition
Procedia PDF Downloads 2704364 Response Surface Modeling of Lactic Acid Extraction by Emulsion Liquid Membrane: Box-Behnken Experimental Design
Authors: A. Thakur, P. S. Panesar, M. S. Saini
Abstract:
Extraction of lactic acid by emulsion liquid membrane technology (ELM) using n-trioctyl amine (TOA) in n-heptane as carrier within the organic membrane along with sodium carbonate as acceptor phase was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined effect of five independent variables, vizlactic acid concentration in aqueous phase (cl), sodium carbonate concentration in stripping phase (cs), carrier concentration in membrane phase (ψ), treat ratio (φ), and batch extraction time (τ) with equal volume of organic and external aqueous phase on lactic acid extraction efficiency. The maximum lactic acid extraction efficiency (ηext) of 98.21%from aqueous phase in a batch reactor using ELM was found at the optimized values for test variables, cl, cs,, ψ, φ and τ as 0.06 [M], 0.18 [M], 4.72 (%,v/v), 1.98 (v/v) and 13.36 min respectively.Keywords: emulsion liquid membrane, extraction, lactic acid, n-trioctylamine, response surface methodology
Procedia PDF Downloads 3794363 Percentages of Alumina Phase and Different Ph on The Ha- Al2o3 Nano Composite
Authors: S. Tayyebi, F. Mirjalili, H. Samadi, A. Nemati
Abstract:
In this study, hydroxyapatite-Alumina nano composite powder, containing 15,20 and 25% weight percent of reinforced alumina were prepared by chemical precipitation from the reaction between calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate with ratio of Ca / p = 1.67 and different percentage of aluminum nitrate nona hydrate in different pH of 9,10 and 11. The microstructure and thermal stability of samples were measured by X-ray diffraction (XRD), infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The results showed that the presence of reinforced alumina phase reduced the degree of crystallinity of hydroxyapatite phase and increased its decomposition to tricalcium phosphate phase. Microstructural analysis showed that the hydroxyapatite-alumina nano composite powder was obtained with spherical shape and size of less than 100 nm.Keywords: biomaterial, hydroxyapatite, alumina, nano composite, precipitation method
Procedia PDF Downloads 5314362 Modeling of Enthalpy and Heat Capacity of Phase-Change Materials
Authors: Igor Medved, Anton Trnik, Libor Vozar
Abstract:
Phase-change materials (PCMs) are of great interest in the applications where a temperature level needs to be maintained and/or where there is demand for thermal energy storage. Examples are storage of solar energy, cold, and space heating/cooling of buildings. During a phase change, the enthalpy vs. temperature plot of PCMs shows a jump and there is a distinct peak in the heat capacity plot. We present a theoretical description from which these jumps and peaks can be obtained. We apply our theoretical results to fit experimental data with very good accuracy for selected materials and changes between two phases. The development is based on the observation that PCMs are polycrystalline; i.e., composed of many single-crystalline grains. The enthalpy and heat capacity are thus interpreted as averages of the contributions from the individual grains. We also show how to determine the baseline and excess part of the heat capacity and thus the latent heat corresponding to the phase change.Keywords: averaging, enthalpy jump, heat capacity peak, phase change
Procedia PDF Downloads 4564361 Preparation of Nb Silicide-Based Alloy Powder by Hydrogenation-Dehydrogenation (HDH) Reaction
Authors: Gi-Beom Park, Hyong-Gi Park, Seong-Yong Lee, Jaeho Choi, Seok Hong Min, Tae Kwon Ha
Abstract:
The Nb silicide-based alloy has the excellent high-temperature strength and relatively lower density than the Ni-based superalloy; therefore, it has been receiving a lot of attention for the next generation high-temperature material. To enhance the high temperature creep property and oxidation resistance, Si was added to the Nb-based alloy, resulting in a multi-phase microstructure with metal solid solution and silicide phase. Since the silicide phase has a low machinability due to its brittle nature, it is necessary to fabricate components using the powder metallurgy. However, powder manufacturing techniques for the alloys have not yet been developed. In this study, we tried to fabricate Nb-based alloy powder by the hydrogenation-dehydrogenation reaction. The Nb-based alloy ingot was prepared by vacuum arc melting and it was annealed in the hydrogen atmosphere for the hydrogenation. After annealing, the hydrogen concentration was increased from 0.004wt% to 1.22wt% and Nb metal phase was transformed to Nb hydride phase. The alloy after hydrogenation could be easily pulverized into powder by ball milling due to its brittleness. For dehydrogenation, the alloy powders were annealed in the vacuum atmosphere. After vacuum annealing, the hydrogen concentration was decreased to 0.003wt% and Nb hydride phase was transformed back to Nb metal phase.Keywords: Nb alloy, Nb metal and silicide composite, powder, hydrogenation-dehydrogenation reaction
Procedia PDF Downloads 2424360 Quantitative Phase Imaging System Based on a Three-Lens Common-Path Interferometer
Authors: Alexander Machikhin, Olga Polschikova, Vitold Pozhar, Alina Ramazanova
Abstract:
White-light quantitative phase imaging is an effective technique for achieving sub-nanometer phase sensitivity. Highly stable interferometers based on common-path geometry have been developed in recent years to solve this task. Some of these methods also apply multispectral approach. The purpose of this research is to suggest a simple and effective interferometer for such systems. We developed a three-lens common-path interferometer, which can be used for quantitative phase imaging with or without multispectral modality. The lens system consists of two components, the first one of which is a compound lens, consisting of two lenses. A pinhole is placed between the components. The lens-in-lens approach enables effective light transmission and high stability of the interferometer. The multispectrality is easily implemented by placing a tunable filter in front of the interferometer. In our work, we used an acousto-optical tunable filter. Some design considerations are discussed and multispectral quantitative phase retrieval is demonstrated.Keywords: acousto-optical tunable filter, common-path interferometry, digital holography, multispectral quantitative phase imaging
Procedia PDF Downloads 3104359 Conflict Causes within Construction Projects; Conflict Interaction across Project Phases
Authors: Abdullah Mohammed Alshehri
Abstract:
The projects in the construction industry have significantly increased, given its contribution to the overall Gross Domestic Product (GDP) of the countries. Reflecting upon the complex nature and involvement of various agents, the study aims to analyze the conflicts cause within construction projects. Therefore, the study strived to come out with understanding the levels of conflict interaction across project phases. However, this conducted by investigating the association between antecedents and apparent conflicts inherent in. The study used a qualitative approach for collecting the data through a quantitative, semi-structured method. Formation of a questionnaire survey has been conducted for over 30 respondents. However, the survey came out with the identification of 25 conflict cause categories, which can take place in different construction project phases, including pre-design phase, pre-construction phase, construction phase, commissioning, and completion phase. For example, conflicts associated with inconsistencies or discrepancies within or between project documents, which took place at tendering time in the pre-construction phase were relatable with the selection of material specifications that should be supplied or used in the construction projects at the construction phase. Its analysis can provide comprehensive understanding, trace the root of the problem, which offers a roadmap to deepen the understanding of the conflict conditions and ‘course of action’ necessary for project management strategy actions toward avoiding or minimizing conflict causes at project life.Keywords: construction, conflict causes, levels, interaction, phases
Procedia PDF Downloads 1774358 Effect of Co Substitution on Structural, Magnetocaloric, Magnetic, and Electrical Properties of Sm0.6Sr0.4CoxMn1-xO3 Synthesized by Sol-gel Method
Authors: A. A. Azab
Abstract:
In this work, Sm0.6Sr0.4CoxMn1-xO3 (x=0, 0.1, 0.2 and 0.3) was synthesized by sol-gel method for magnetocaloric effect (MCE) applications. XRD analysis confirmed formation of the required orthorhombic phase of perovskite, and there is crystallographic phase transition as a result of substitution. Maxwell-Wagner interfacial polarisation and Koops phenomenological theory were used to investigate and analyze the temperature and frequency dependency of the dielectric permittivity. The phase transition from the ferromagnetic to the paramagnetic state was demonstrated to be second order. Based on the isothermal magnetization curves obtained at various temperatures, the magnetic entropy change was calculated. A magnetocaloric effect (MCE) over a wide temperature range was studied by determining DSM and the relative cooling power (RCP).Keywords: magnetocaloric effect, pperovskite, magnetic phase transition, dielectric permittivity
Procedia PDF Downloads 664357 Cellular Automata Model for Car Accidents at a Signalized Intersection
Authors: Rachid Marzoug, Noureddine Lakouari, Beatriz Castillo Téllez, Margarita Castillo Téllez, Gerardo Alberto Mejía Pérez
Abstract:
This paper developed a two-lane cellular automata model to explain the relationship between car accidents at a signalized intersection and traffic-related parameters. It is found that the increase of the lane-changing probability P?ₕ? increases the risk of accidents, besides, the inflow α and the probability of accidents Pₐ? exhibit a nonlinear relationship. Furthermore, depending on the inflow, Pₐ? exhibits three different phases. The transition from phase I to phase II is of first (second) order when P?ₕ?=0 (P?ₕ?>0). However, the system exhibits a second (first) order transition from phase II to phase III when P?ₕ?=0 (P?ₕ?>0). In addition, when the inflow is not very high, the green light length of one road should be increased to improve road safety. Finally, simulation results show that the traffic at the intersection is safer adopting symmetric lane-changing rules than asymmetric ones.Keywords: two-lane intersection, accidents, fatality risk, lane-changing, phase transition
Procedia PDF Downloads 2164356 Improving Radiation Efficiency Using Metamaterial in Pyramidal Horn Antenna
Authors: Amit Kumar Baghel, Sisir Kumar Nayak
Abstract:
The proposed metamaterial design help to increase the radiation efficiency at 2.9 GHz by reducing the side and back lobes by making the phase difference of the waves emerging from the phase center of the horn antenna same after passing through metamaterial array. The unit cell of the metamaterial is having concentric ring structure made of copper of 0.035 mm thickness on both sides of FR4 sheet. The inner ring diameter is kept as 3 mm, and the outer ring diameters are changed according to the path and tramission phase difference of the unit cell from the phase center of the antenna in both the horizontal and vertical direction, i.e., in x- and y-axis. In this case, the ring radius varies from 3.19 mm to 6.99 mm with the respective S21 phase difference of -62.25° to -124.64°. The total phase difference can be calculated by adding the path difference of the respective unit cell in the array to the phase difference of S21. Taking one of the unit cell as the reference, the total phase difference between the reference unit cell and other cells must be integer multiple of 360°. The variation of transmission coefficient S21 with the ring radius is greater than -6 dB. The array having 5 x 5 unit cell is kept inside the pyramidal horn antenna (L X B X H = 295.451 x 384.233 x 298.66 mm3) at a distance of 36.68 mm from the waveguide throat. There is an improvement in side lobe level in E-plane by 14.6 dB when the array is used. The front to back lobe ration is increased by 1 dB by using the array. The proposed antenna with metamaterial array can be used in beam shaping for wireless power transfer applications.Keywords: metamaterial, side lobe level, front to back ratio, beam forming
Procedia PDF Downloads 2714355 Structural and Phase Transformations of Pure and Silica Treated Nanofibrous Al₂O₃
Authors: T. H. N. Nguyen, A. Khodan, M. Amamra, J-V. Vignes, A. Kanaev
Abstract:
The ultraporous nanofibrous alumina (NOA, Al2O3·nH2O) was synthesized by oxidation of laminated aluminium plates through a liquid mercury-silver layer in a humid atmosphere ~80% at 25°C. The material has an extremely high purity (99%), porosity (90%) and specific area (300 m2/g). The subsequent annealing of raw NOA permits obtaining pure transition phase (γ and θ) nanostructured materials. In this combination, we report on chemical, structural and phase transformations of pure and modified NOA by an impregnation of trimethylethoxysilane (TMES) and tetraethoxysilane (TEOS) during thermal annealing in the temperature range between 20 and 1650°C. The mass density, specific area, average diameter and specific area are analysed. The 3D model of pure NOA monoliths and silica modified NOA is proposed, which successfully describes the evolution of specific area, mass density and phase transformations. Activation energies of the mass transport in two regimes of surface diffusion and bulk sintering were obtained based on this model. We conclude about a common origin of modifications of the NOA morphology, chemical composition and phase transition.Keywords: nanostructured materials, alumina (Al₂O₃), morphology, phase transitions
Procedia PDF Downloads 3764354 A Semi-Implicit Phase Field Model for Droplet Evolution
Authors: M. H. Kazemi, D. Salac
Abstract:
A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.Keywords: coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method
Procedia PDF Downloads 479